Нестандартные задачи по математике

Инварианты. Полуинвариант. Методы решения задач при помощи инвариантов. эквивалентность позиций. Инвариантная функция. Универсальный инвариант. Полная система инвариантов. Четность плюс инвариант. Теория графов, ее применение для решения задач.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 12.11.2008
Размер файла 73,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пусть a1, a2,…, an-- произвольная перестановка из чисел 1, 2, 3, ..., п. Будем говорить, что числа аi, и аj, образуют в этой перестановке инверсию, если i<j, но ai>aj, то есть большее из этих чисел предшествует меньшему. Поменяв ме-стами два соседних числа в переста-новке, мы увеличим или уменьшим число инверсий на 1. Проделав же не-четное число таких операций, мы из-меним четность числа инверсий, а значит, изменим и перестановку.

2.16.Докажите, что утверждение задачи 2.15 останется справедли-вым, если разрешить менять местами любые два числа в перестановке.

Указание.

Докажите, что любые два чис-ла можно поменять местами, проделав нечетное число раз операцию, описанную в задаче 2.12.

Переход от одной перестановки чисел 1, 2, 3, .... п к другой переста-новке этих чисел, при котором какие-нибудь два числа меняются местами, а остальные остаются на месте, называется транспозицией. Результат задачи 2.16 можно сформулировать так: выполнив нечетное число транс-позиций, мы изменим перестановку

2.17. В различных пунк-тах кольцевого автодрома в одно и то же время в одном направлении старто-вали 25 автомобилей. По правилам гонки автомобили могут обгонять друг друга, но при этом запрещен двойной обгон. Автомобили финиши-ровали одновременно в тех же пунктах, что и стартовали. Докажите, что во время гонки было четное число обгонов.

Решение.

Окрасим один из автомобилей в желтый цвет, а остальным автомобилям присвоим номера 1, 2, 3, ..., 24 в том порядке, в каком они располагаются на старте за жел-тым автомобилем. В центре автодро-ма установим световое табло, на кото-ром после каждого обгона будем ука-зывать номера автомобилей в том по-рядке, в каком они следуют за жел-тым автомобилем. Тогда обгон, в котором не участвует желтый авто-мобиль, приводит к тому, что на све-товом табло меняются местами два соседних числа.

Посмотрим, что произойдет, если какой-нибудь автомобиль обгонит желтый. Если перед этим обгоном числа на табло образовывали переста-новку а1, а2,…, а24 , то после об-гона они образуют перестановку а2, а3,…, а24, а1. Заметим, что к такой же перестановке можно прийти, вы-полнив последовательно 23 транспо-зиции: а1, а2, а3,…, а24 а2, а1, а3,…, а24 а2, а3, а1,…, а24 а2, а3, а1,…, а24 … а2, а3,…,а1, а24 а2, а3,…, а24, а1

Если же желтый автомобиль со-вершил обгон, то из перестановки а1, а2, ..., а24 получим пере-становку а24, а1, а2, а3,…, а23. Этот переход также можно заменить двадцатью тремя транспозициями.

Таким образом, любой обгон сводится к нечетному числу транспо-зиций. Если бы общее число обгонов было нечетным, то нечетным оказалось бы и общее число транспозиций. Ос-тается воспользоваться результатом задачи 2.16.

3. Графы

Графом на плоскости называется конечное множество точек плоскости, некоторые из которых соединены линиями. Эти точки называются вершинами графа, а соединяющие их линии - ребрами. Число ребер, исходящих из вершины графа, называется степенью этой вершины.

С графами мы встречаемся чаще , чем это, возможно, кажется на первый взгляд. Примерами графа может служить любая карта дорог, электросхема, чертеж многоугольника и т. д.

Теория графов возникла в 1736 г., когда Леонард Эйлер опубликовал первую статью о графах. Начиналась она с разбора широко известной теперь задачи о кенигсбергских мостах. Долгое время считалось, что теория графов применяется главным образом для решения логических задач, а сама теория рассматривалась как часть геометрии. Однако в ХХ веке были найдены широкие приложения теории графов в экономике, биологии, химии, электронике, сетевом планировании, комбинаторике и других областях науки и техники. В результате она стала бурно развиваться и превратилась в самостоятельную разветвленную теорию.

Задачи на соответствие между множествами .

3.1.В пяти корзинах А, Б, В, Г и Д лежат яблоки пяти разных сортов. В каждой из корзин А и Б находятся яблоки 3-го и 4-го сорта, в корзине В - 2-го и 3-го , в корзине Г - 4-го и 5-го, в корзине Д - 1-го и 5-го. Занумеруйте корзины так, чтобы в корзине №1 имелись яблоки 1-го сорта ( по меньшей мере одно ), в корзине №2 - яблоки 2-го сорта и т. Д

Решение.

Изобразим два множества множество корзин и множество их номеров. В каждом из этих множеств по пять элементов обозначим их точками

Установим соответствие между этими двумя множествами так, чтобы условия задачи выполнялись. Будем соответствующие элементы двух множеств соединять сплошными линиями, а не соответствующие - пунктирными или совсем не соединять. Так как яблоки первого сорта лежат только в корзине Д, то именно этой корзине и нужно дать номер 1; проведем сплошную линию между точками Д и 1. Далее номер 2 можно присвоить только корзине В, а после этого номер 5 - лишь корзине Г. Наконец, номера 3 и 4 дадим корзинам А и Б ( в любом порядке ).

Ответ: корзины расположились, начиная с №1, в последовательном порядке Д, В, А, Б, Г или в порядке Д, В, Б, А, Г.

3.2. Петр, Геннадий, Алексей и Владимир занимаются в одной детской спортивной школе в разных секциях: гимнастики, легкой атлетики, волейбола и баскетбола. Петр, Алексей и волейболист учатся в одном классе. Петр и Геннадий на тренировки ходят пешком вместе, а гимнаст ездит на автобусе. Легкоатлет не знаком ни с волейболистом, ни с баскетболистом. Кто в какой секции занимается?

3.3.Футбольные команды пяти школ города учавствуют в розыгрыше кубка. В финал кубка выходят две команды. До соревнований пять болельщиков высказали прогнозы, что в финал выйдут команды:

1) Б и Г, 2) В и Д , 3) Б и В, 4) А и Г, 5) Г и Д.

Один прогноз оказался полностью неверным, в остальных была правильно названа только одна из команд-финалисток. Какие команды вышли в финал?

3.4. Три товарища - Владимир, Игорь и Сергей - окончили один и тот же педагогический институт и преподают математику, физику и литературу в школах Тулы, Рязани и Ярославля. Владимир работает не в Рязани, Игорь - не в Туле. Рязанец преподает не физику, Игорь - не математику, туляк преподает литературу. Какой предмет и в каком городе преподает каждый из них?

3.5. Среди офицеров А, Б, В и Г - майор, капитан и два лейтенанта. А и один из лейтенантов - танкисты, Б и капитан - артиллеристы, А младше по званию, чем В. Определите род войск и воинское звание каждого из них.

3.6. В стране Радонежии некоторые города связаны между собой авиалиниями. Из столицы выходит 1985 авиалиний, из города Дальнего одна, а из остальных городов - по 20 линий. Докажите, что из столицы можно добраться до Дальнего.

Решение.

Рассмотрим множество городов, до которых можно добраться из столицы. Это граф: его вершины - города, ребра - авиалинии, их соединяющие. Из каждой вершины графа выходит столько ребер, сколько всего авиалиний выходит из соответствующего города. Граф содержит нечетную вершину - столицу. Поскольку число нечетных вершин в графе четно, в нем есть еще одна нечетная вершина. Этой вершиной может быть только город Дальний.

Задачи, при решении которых используются вершины, стороны и диагонали многоугольника

3.7. Можно ли организовать футбольный турнир девяти команд так, чтобы каждая команда провела по четыре встречи?

Решение

Изобразим каждую команду точкой, а проведенную ею встречу - отрезком, исходящим из этой точки. Девять точек лучше расположить так, чтобы при последовательном соединении их отрезками образовался выпуклый девятиугольник.

Задача сводиться к следующей: можно ли девять точек соединить отрезками так, чтобы из каждой точки выходили четыре отрезка? Другими словами, существует ли граф с деятью вершинами, у которого степень каждой вершины равна 4?

Прежде всего проведем все стороны девятиугольника; они будут означать, что каждая команда провела две встречи.

Для того чтобы получить еще две встречи будем, например, соединять все вершины диагоналями через одну ( рис. 19 ). ( Целесообразно для всех держаться одной и той же системы проведения из них отрезков, иначе решение усложнится. ) После этого все получается.

Ответ: можно.

3.8. Можно ли провести футбольный турнир восьми команд так, чтобы каждая команда провела: а) по четыре встречи; б) по пять встреч

3.9. Можно ли провести футбольный турнир семи команд так, чтобы каждая команда провела по три встречи?

Решение.

Попытки решить эту задачу тем же методом, что и предыдущие задачи, приводят к неудаче. Возникает подозрение, что провести турнир таким образом нельзя.

Для того чтобы доказать нашу гипотезу, попробуем вместо рисунка подсчитать общее число встреч, которые надо провести командам. Оно равно 7 (3/2). Но это число не является целым.

Ответ: нельзя.

3.10. Докажите что общее число вершин графа, которые имеют нечетную степень четно.

3.11. В трех вершинах правильного пятиугольника расположили по фишке. Разрешается передвигать их по диагонали в любую свободную вершину. Можно ли таким образом добиться того, чтобы одна из фишек вернулась на свое место, а две другие поменялись местами?

3.12. Дан правильный 45-и угольник. Можно ли так расставить в его вершинах цифры от 0 до 9 так, чтобы для любой пары различных цифр нашлась сторона, концы которой занумерованы этими цифрами.

Указание.

Рассмотреть полный граф, вершины которого суть цифры от 0 до 9. Задача сводится к его обходу.

3.13. Докажите что общее число вершин графа, которые имеют нечетную степень четно.

Решение.

Обозначим число вершин графа, имеющих нечетную степень, через k, а степени таких вершин - соответственно через а1, а2,…, аk. Кроме того, у графа могут быть вершины с четной степенью; обозначим степени этих вершин соответственно через b1, b2,…, bn.

Допустим, что число k нечетно. Подсчитаем общее число ребер графа. Оно равно [(а1 + а2 +…+ аk) + (b1 + b2 +…+ bn)] /2.

Сумма в первых круглых скобках числителя полученной дроби есть число нечетное, как сумма нечетного числа нечетных слагаемых, а сумма во вторых скобках число четное. Но тогда весь числитель - число нечетное, а значит дробь не является натуральным числом. Мы пришли к противоречию.

3.14. Можно ли 15 телефонов соединить между собой так, чтобы каждый из них был связан ровно с 11 другими?

3.15. Девять школьников, разъезжаясь на каникулы, договорились, что каждый из них пошлет открытки пятерым из остальных. Может ли оказаться, что каждый из них получит открытки именно от тех друзей, которым напишет сам?

3.16. В шахматном турнире в один круг участвуют 17 шахматистов. Верно ли, что в любой момент турнира найдется шахматист, сыгравший к этому моменту четное число партий ( может быть ни одной )?

Задачи на обведение контура фигуры непрерывной линией

3.17. В 18 веке город Кенигсберг ( ныне Калининград в составе нашей страны ) был расположен на берегах реки и двух островах. Различные части города были соединены семью мостами (рис. 20). Можно ли обойти все эти мосты так, чтобы побывать на каждом из них ровно один раз?

Это и есть задача Эйлера о кенигсбергских мостах, о которой упоминалось в начале параграфа.

Решение.

Обозначим различные части города буквами А, В, С и К и изобразим их точками. Мосты изобразим линиями, соединяющими эти точки. Получим граф ( рис. 21).

Задача сводится к следующей: существует ли путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз?

Рассмотрим два случая.

1) Предположим, что существует такой замкнутый путь. Тогда степень каждой вершины графа должна быть четной, так как, входя в какую-либо вершину, мы затем должны из нее выйти, причем по другому ребру. Что касается начала пути, то после выхода из него мы должны в конце концов в него и вернуться, поскольку путь замкнутый. Однако на рисунке 20 нет ни одной вершины, степень которой была бы четной. Значит этот случай невозможен.

2)Пусть существует такой незамкнутый путь; например, пусть он начинается в вершине А, а заканчивается в С.

Тогда из вершин А и С должно выходить уже нечетное число ребер, а из промежуточных вершин В и К - по-прежнему четное число. Но на рисунке степени вершин В и К нечетны. Следовательно, и этот случай отпадает.

Ответ: нельзя.

Хотя рассуждение проведенное при решении задачи 3.13, выполнено для частного случая, оно носит общий характер:

1)если существует замкнутый путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз, то степени всех вершин графа четные,

2)если существует аналогичный незамкнутый путь, то степени начала и конца пути нечетные, а остальных вершин - четные.

Эйлер в своей статье доказал и обратные утверждения. Пусть граф связный, т. е. любые две его вершины можно связать путем, проходящим по его ребрам. Тогда путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз, существует лишь в следующих двух случаях:

когда степень каждой вершины четная (в этом случае путь замкнут),

когда граф имеет только две вершины А и В с нечетной степенью (тогда путь не замкнут и имеет своими концами вершины А и В ) .

3.18.Можно ли обвести карандашом, не отрывая его от бумаги и не проводя по одной линии дважды:

а) квадрат с диагоналями,

б)правильный пятиугольник с диагоналями?

3.19. Можно ли из проволоки длиной 12 дм изготовить каркас куба с ребром длины 1 дм, не ломая проволоку на части?

3.20. Можно ли граф, изображенный на рисунке 22, обвести карандашом, не отрывая его от бумаги и не проходя ни одной линии дважды? Если можно, то как?

3.21. В точке А расположен гараж для снегоочистительной машины (рис. 23). Водителю машины было поручено убрать снег с улиц части города изображенной на рисунке. Может ли он закончить свою работу на том перекрестке, где находится гараж, если по каждой улице своего участка города водитель будет проезжать только один раз?

3.22. В марсианском метро 100 станций. От любой станции до любой Другой можно проехать. Забастовочный комитет хочет закрыть проезд через одну из станций так, чтобы между всеми остальными стан-циями был возможен проезд. Докажите, что такая станция найдется.

3.23. В тридевятом царстве каждые два города соединены дорогой с односторонним движением. Докажите, что существует город, из которого в любой другой можно проехать не более чем по двум дорогам.

3.24. В городе на каждом перекрестке сходится четное число улиц. Известно, что с любой улицы города можно проехать на любую другую. Докажите, что все улицы города можно объехать, побывав на каждой по одному разу.

Разные задачи на графы.

3.25. В углах шахматной доски 3х3 стоят 4 коня: 2 белых (в соседних углах) и два черных. Можно ли за несколько ходов (по шахматным правилам) поставить коней так, чтобы во всех соседних углах стояли кони разного цвета?

Решение.

Отметим центры клеток доски и соединим отрезками пары отмеченных точек, если из одной в другую можно пройти ходом коня. Мы получим граф, содержащий «цикл» из восьми точек и одну изолированную точку (рис. 24). Перемещение коней по доске соответствует движению по ребрам этого цикла. Ясно, что при движении по циклу нельзя изменить порядок следования коней.

3.26. Выпишите в ряд цифры от 1 до 9 так, чтобы число, составленное из двух соседних цифр, делилось либо на 7, либо на 13.

Решение.

Напишем цифры на листе. Соединим стрелками те цифры, которые могут следовать друг за другом (рис. 25). Теперь ясно, что первой идет 7, затем 8 и 4. Поскольку 8 уже использована, то стрелки, идущие в нее, надо убрать. После 4 идет 9, поскольку к девятке другого пути нет. Дальше идет 1 и так далее.

Ответ: 784913526.

3.27. В школьном турнире в один круг играют шесть шахматистов: Алеша, Боря, Витя, Гриша, Дима и Костя. Ежедневно игрались три партии, и весь турнир окончился в пять дней. В первый день Боря играл с Алешей, а во второй - с Костей. Витя в четвертый день играл с Костей, а в пятый с Димой. Кто с кем играл в каждый день турнира?

Решение.

Обозначим шахматистов соответственно точками А, Б, В, Г, Д и К, а сыгранные ими партии - отрезками, соединяющими эти точки.

Точки лучше располагать так, чтобы при последовательном их соединении они стали вершинами правильного шестиугольника.

Первый день турнира. По условию в этот день Боря играл с Алешей. С кем играл Витя? Только с Гришей, так как с Димой и Костей он играл в другие дни. Следовательно, третью партию в первый день играли Дима с Костей. Построим соответствующий граф (рис. 26).

Второй день турнира. В этот день Боря играл с Костей, поэтому Витя, учитывая первый и пятый дни, мог играть лишь с Алешей (рис. 27).

Третий день турнира. Витя, с учетом всех предыдущих и последующих турнира, мог играть только с Борей. Так как Дима уже играл с Костей и Гришей, то в этот день он играл с Алешей (рис. 28). Значит Гриша играл с Костей.

Четвертый день турнира. Здесь нетрудно определить, кто с кем играл: Витя - с Костей, Алеша - с Гришей, Боря с Димой (рис.29) .

Пятый день турнира (рис. 30).

3.28. В одном купе поезда ехали четыре пассажира. Среди них не было трех человек, которые прежде были знакомы друг с другом, но один был знаком с тремя остальными. Докажите, что эти три последних пассажира прежде не были знакомы друг с другом.

3.29. Каждые две из шести ЭВМ соединены проводом. Можно ли все эти провода раскрасить в один из пяти цветов так, чтобы из каждой ЭВМ выходили пять проводов разного цвета?

Решение.Для решения начертим выпуклый шестиугольник

и проведем в нем все диагонали (рис. 31). Пусть каждая вершина шестиугольника означает однуB из ЭВМ, а каждый отрезок провод, соединяющий две ЭВМ. Занумеруем различные цвета натуральными числами от 1 до 5 для того, чтобы отличать их друг от друга. Начнем например с вершины Апроведем из нее отрезки всех пяти цветов. Перейдем к вершине В и из нее проведем четыре отрезка всех цветов с №2 по №5, учитывая, что отрезок ВА, выходящий из этой вершины, уже окрашен в цвет №1. Затем займемся вершиной С. И т. д. В итоге получаем положительный ответ на вопрос задачи.

Ответ: можно.

На рисунке 31 каждые две вершины графа соединены своим ребром. Такой граф называется полным.

3.30. На туристском слете выяснилось, что каждый юноша знаком с 8 девушками, каждая девушка знакома с 6 юношами. Кого на слете больше: юношей или девушек?

3.30. На кружке, в котором участвуют шесть школьников, было дано шесть задач. Каждый школьник решил две задачи, и каждую задачу решили два школьника. Докажите, что разбор задач можно организовать так, чтобы каждый школьник изложил решение одной из решенных им задач и все задачи были разобраны.

Решение.

Изобразим школьника точкой, а решенную им задачу - линией исходящей из этой точки. Пусть один из школьников обозначен точкой А.. Проведем из нее линию. Так как каждую задачу решили два школьника , то проведенная линия соединяет точку А с другой точкой В, которая обозначает второго школьника, решившего ту же задачу. Так как каждый школьник решил две задачи, то из точки В должна выходить еще одна линия, которая соединяет точку В с еще одной точкой С и т. д.

Возможны следующие случаи.

Может получиться шестиугольник. Тогда утверждение задачи выполняется.

Может получиться четырехугольник и «двуугольник» ; последнее возможно тогда, когда два школьника решили одни и те же задачи.

Могут получиться два треугольника.

Могут получиться три «двуугольника».

Этим исчерпываются все возможности. В каждом из рассмотренных случаев утверждение задачи выполняется.

3.31. На столе в приемной парикмахерской лежат журналы. Каждый клиент парикмахерской просмотрел два журнала; каждый журнал просмотрели три человека; для каждой пары журналов имеется только один клиент, который их просмотрел. Сколько журналов и сколько клиентов в приемной парикмахерской?

Решение.

Обозначим журнал точкой, а клиента, просмотревшего этот журнал - отрезком, выходящим из этой точки.

Возьмем одну такую точку А. Так как каждый журнал просмотрели три человека, то из точки А должны выходить три отрезка. Так как каждый клиент просмотрел два журнала, то каждый

Отрезок соединят две точки. (рис. 32).

Поскольку каждую пару журналов просмотрел один человек, то нужно каждую пару точек соединить отрезком. Получаем четырехугольник с диагоналями (рис. 33). Проверьте еще сами, что здесь все три условия задачи выполняются.

Может возникнуть вопрос: а не существует ли еще хотя одна , пятая точка Е, такая, что все условия задачи выполняются? Тогда из каждой из пяти точек будет выходить не по три, а по четыре отрезка, а это противоречит условиям задачи.

Ответ: 4 журнала, 6 клиентов.

3.32. В одном учреждении каждый сотрудник выписывает две газеты, каждую газету выписывает пять человек и каждую пару газет выписывает только один человек. Сколько человек в учреждении и сколько они выписывают газет.

3.33. Шесть точек, из которых никакие три не лежат на одной прямой соединены всевозможными отрезками и каждый отрезок окрашен в черный или красный цвет. Докажите, что найдется треугольник с вершинами в данных точках, у которого все стороны черные, или треугольник, у которого все стороны красные.

Решение.

Возьмем одну из шести точек А1более четырех отрезков ( по обобщенному принципу Дирихле ). Пусть отрезки А1А2, А1А3 и А1А4 - красные. Рассмотрим два случая.

Допустим, что среди отрезков А2А3, А2А4 и А3А4 имеется красный, например отрезок А2А3. Тогда у треугольника А1А2А3 все стороны красные. Именно этот вариант изображен на рисунке 34.

Если допустим, что среди отрезков А2А3, А2А4 и А3А4 нет красного, тогда все эти отрезки - черные, а следовательно у треугольника А2А3А4 все стороны черные.

3.34. Докажите, что если в задаче 3.33 вместо шести точек взять пять, треугольник с одноцветными сторонами может и не найтись.

3.35. В международном туристическом лагере шесть туристов познакомились между собой. Выяснилось, что среди любых трех из них имеются двое, которые могут разговаривать друг с другом на каком-нибудь языке. Верно ли, что среди них найдутся трое, каждый из которых может разговаривать с каждым из двух других на каком- нибудь языке?

3.36. 17 ученых из разных стран переписываются между собой на одном из трех языков: английском, французском или русском. Докажите, что среди них найдутся трое, которые переписываются между собой на одном и том же языке.

Решение.

Обозначим каждого из ученых точкой и соединим эти точки всевозможными отрезками. Точки расположим так, чтобы никакие три из них не лежали на одной прямой. Так как каждый ученый переписывается с 16 остальными, то из каждой точки выходит 16 отрезков. Каждый из отрезков, означающий переписку ученых на английском языке, окрасим в черный цвет, на французском - в красный, на русском - в белый.

Рассмотрим два случая.

Пусть среди отрезков, соединяющих точки А2, А3, А4, А5, А6 и А7 попарно между собой, имеется черный, скажем А2А3. Тогда у треугольника А1А2А3 все стороны черные, т. е. соответствующая тройка ученых переписываются между собой на английском языке.

Пусть среди этих отрезков нет черного. В этом случае отрезки между шестью точками А2, А3, А4, А5, А6 и А7 окрашены не более, чем в два цвета - красный и белый. Тогда на основании утверждения задачи 3.33 среди отрезков, соединяющих эти точки, имеются три, составляющие треугольник со сторонами одного цвета.

3.37. На плоскости даны п точек, из которых никакие три не лежат на одной прямой. Они соединены всевозможными отрезками, и каждый отрезок окрашен в один из четырех различных цветов. При каком наименьшем п обязательно найдется треугольник с одноцветными сторонами с вершинами в трех из данных точек?

3.38. Последовательность из 36 нулей и единиц начинается с пяти нулей. Среди пятерок подряд стоящих цифр встречаются все 32 возможные комбинации. Найдите пять последних цифр последовательности.

3.39. Докажите, что можно расположить по кругу символы 0 и 1 так, чтобы любой возможный набор из n символов, идущих подряд, встретился.

Указание.

Рассмотреть граф, вершины которого суть слова длины n-1. Две вершины u и v соединяются стрелкой, если существует слово длины n, у которого u является началом, а v - концом.

4. Раскраски

Говорят, что фигура покрашена в несколько цветов, если каждой точке фигуры приписан определенный цвет. Бывают задачи, где раскраска уже дана, например для шахматной доски, бывают задачи, где раскраску с данными свойствами нужно придумать, и бывают задачи, где раскраска используется как идея решения.

Задачи

4.1. Из шахматной доски вырезали две противоположные угловые клетки. Докажите, что оставшуюся фигуру нельзя разрезать на «домино» из двух клеток

Решение.

Каждая фигура «домино» содержит 1 белую и 1 черную клетку. Но в нашей фигуре 32 черных и 30 белых клеток (или наоборот).

4.2. Можно ли все клетки доски 9х9 обойти конем по одному разу и вернуться в исходную клетку?

Решение.

Каждым ходом конь меняет цвет клетки, поэтому, если существует обход, то число черных клеток равно числу белых, что неверно.

4.3. Дан куб 6х6х6. Найти максимально возможное число параллелепипедов 4х1х1 (со сторонами параллельными сторонам куба), которые можно поместить в этот куб без пересечений.

Идея решения.

Легко поместить 52 параллелепипеда внутрь куба. Докажем, что нельзя больше. Разобьем куб на 27 кубиков 2х2х2. Раскрасим их в шахматном порядке. При этом образуется 104 клетки одного цвета (белого) и 112 - другого (черного). Осталось заметить, что каждый параллелепипед содержит две черных и две белых клетки.

Ответ: 52.

4.4. Прямая раскрашена в 2 цвета. Докажите, что найдутся 3 точки А, В, С одного цвета такие, что AB = ВС.

4.5. Раскрасьте прямую в 3 цвета так, чтобы нельзя было найти трех точек А, В, С разного цвета таких, что AB = ВС.

5. Плоскость раскрашена а) в 2 цвета, б) в 3 цвета. Докажите, что найдутся 2 точки одного цвета, расстояние между которыми равно 1

Идею, вынесенную в заглавие, хорошо иллюстрирует следующая задача. 4.6. Имеется квадрат 8Х8, у которого удалены две угловые клетки, расположенные на одной диагонали. Можно ли этот квадрат замостить костяшками домино размерами 1Х2? Решение дает нам правильная «шахматная» раскраска этой доски. Каждая костяшка домино закрывает две клетки разного цвета, в то время как клеток черного и белого цветов различное количество.

А вот еще две задачи на эту идею.

4.7. Участок прямоугольной формы разбит на квадраты, образующие n рядов по m квадратов в каждом ряду. Каждый квадрат является отдельным участком, соединенным калитками со всеми соседними участками. При каких m и n можно обойти все квадратные участки, побывав в каждом по одному разу, и вернуться в первоначальный?

Решение.

Раскрасим квадраты в шахматном порядке. При каждом переходе меняется цвет квадрата. Поэтому, если такой маршрут возможен, то число шагов должно быть четным, т. е. m или n четно. Осталось проверить, что в этом случае искомый маршрут возможен.

4.8. Все мы в детстве играли в «морской бой». Напомним, что играется он на квадрате 10Х10, на клетчатой бумаге. «Линкором» в этой игре называется «корабль» 1х4. В связи с этим возникает вопрос: можно ли весь квадрат для морского боя разрезать на 25 линкоров? А кстати, ответьте еще на один вопрос: какое наименьшее число «выстрелов» надо сделать, чтобы наверняка хотя бы один раз попасть в линкор, одиноко плавающий по морю?

Решение.

Раскрасим клетки в 4 цвета, как на рис. 36. Каждый «линкор» закрывает четыре клетки разного цвета. Но клеток цвета 2 всего 26, а «линкоров» должно быть 25.

Эта же раскраска помогает ответить и на второй вопрос. Наименьшее число выстрелов равно числу клеток цвета 4, т. е. 24.

5. Задачи с целыми числами. Четные и нечетные числа

Обычно четные и нечетные числа связывают только с натуральными числами. Здесь мы распространим их на любые целые числа. Целое число называется четным, если оно делится на 2, и нечетным, если оно на 2 не делится.

Любое четное число можно представить в виде 2а, а любое нечетное - в виде 2а + 1, где а - целое число.

Два целых числа называются числами одинаковой четности, если оба они четные или оба нечетные. Два целых числа называются числами разной четности, если одно из них четное, а другое нечетное.

Рассмотрим свойства четных и нечетных чисел важные, для решения задач.

Если хотя бы один множитель произведения двух (или нескольких) чисел четен, то и все произведение четно.

Если каждый множитель произведения двух ( или нескольких ) чисел нечетен, то и все произведение нечетно.

Сумма любого количества четных чисел есть число четное.

Сумма четного и нечетного чисел есть число нечетное.

Сумма четного количества нечетных чисел есть число четное; сумма нечетного количества нечетных чисел есть число нечетное.

Задачи

5.1. В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными?

Решение.

Обозначим число жителей на этажах соответственно через а1, а2, а3, а4, а5, а число жителей в подъездах - соответственно через b1, b2, b3, b4. Тогда общее число жителей дома можно подсчитать двумя способами - по этажам и по подъездам:

a1 + а2 + а3 + а4 + а5 = b1 + b2 + b3 + b4.

Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части - четной. Следовательно, это невозможно.

Ответ: не могут.

5.2. В футбольном турнире в один круг участвуют 15 команд. Докажите, что в любой момент турнира найдется команда, которая сыграла к этому моменту четное число матчей (может быть, ни одного ).

Решение.

Обозначим число матчей, проведенных первой, второй, третьей и т. д. командами, через а1, а2, а3,…, а15.

Допустим, что все эти 15 чисел нечетны. Подсчитаем общее число матчей, проведенных командами. Оно равно

( а1 + а2 +…+ а15)/2.

Но числитель дроби есть число нечетное, как сумма нечетного числа нечетных слагаемых. Тогда общее число матчей есть число дробное. Получили противоречие.

Утверждение задачи есть частный случай одной из теорем теории графов.

5.3. Четно или нечетно произведение

( 7а + b - 2c +1 )( 3a - 5b + 4c + 10 ),

где числа a, b, c - целые?

Решение.

Можно перебирать случаи, связанные с четностью или нечетностью чисел а, b, c (8 случаев!), но проще поступить иначе. Сложим множители:

( 7a + b - 2c + 1 ) + ( 3a - 5b + 4c + 10) =

= 10a - 4b + 2c + 11.

Так как полученная сумма нечетна, то один из множителей данного произведения четен, а другой нечетен. Следовательно, само произведение четно.

Ответ: четно.

5.4. Пусть а1, а2, а3,…, а25 - целые числа, а с1, с2, с3,…, с25 - те же самые числа, взятые в другом порядке. Докажите, что число

1 - с1)(а2 - с2)(а3 - с3) … (а25 - с25)

является четным.

5.5. Четно или нечетно число

1 - 2 + 3 - 4 + 5 - 6 +…+ 993 ?

Решение.

Разность 1 - 2 имеет ту же четность, что и сумма 1 + 2, разность 3 - 4 - ту же четность, что и сумма 3 + 4, и т. д. Поэтому данная сумма имеет ту же четность, что и сумма

1 + 2 + 3 + 4 + 5 + 6 +…+ 993.

Из 993 слагаемых последней суммы 496 четных и 497 нечетных, следовательно, сумма нечетно.

О т в е т: нечетно.

5.6. На прямой расположено несколько точек. Затем между каждыми двумя соседними точками поставили еще по точке. И т. д. Докажите, что после каждой такой операции общее число точек будет нечетным.

Указание.

Если имеется п точек и к ним добавляется еще п - 1 промежуточных точек, то общее число точек становится нечетным, так как п+(п-1) = =2п - 1.

5.7. Найдите все целые значения а, при которых число

x 3 + ax2 + 5x + 9

нечетно для всех целых значений х.

5.8. На семи карточках написали числа 1, 2, 3, 4, 5, 6 и 7. Затем карточки перевернули, перемешали и на обратных сторонах написали те же числа. Числа, написанные на обеих сторонах каждой карточки, сложили и полученные суммы перемножили. Четно или нечетно полученное произведение?

Решение.

Допустим, что произведение нечетно. Для этого все 7 множителей должны быть нечетными. Но тогда у четырех карточек, у которых на одной стороне написаны нечетные числа 1, 3, 5, 7, на другой стороне должны быть числа четные. Однако четных чисел здесь - только три. Следовательно, этот случай невозможен.

Ответ: четно.

5.9. Докажите, что в любой компании число тех людей, которые знакомы с нечетным числом членов компании, четно.

Решение.

Обозначим число людей, которые имеют в компании нечетное число знакомых, через k, а число знакомых этих людей соответственно через a1, a2,…, ak . Кроме того, число людей, знакомых с четным числом членов компании, обозначим через n, а число знакомых этих людей соответственно через b1,b2,…,bn. Тогда общее число знакомств равно

( a1 + a2 +…+ ak + b1 + b2 +…+ bn )/ 2

Сумма b1 + b2 +…+ bn четна, так как все ее слагаемые четны.

Тогда для того, чтобы эта дробь была равна целому числу, сумма

a1 + a2 +…+ ak , должна быть четной. Но все слагаемые последней суммы нечетны, поэтому число k слагаемых суммы может быть только четным.

5.10. Докажите, что не существует многогранника, у которого 1997 граней - треугольники, а остальные грани - четырехугольники и шестиугольники.

5.11. Окружность разделили на 40 равных дуг и в 40 точках деления поставили по шашке. Среди шашек 25 белых и 15 черных. Докажите, что среди шашек найдутся белая и черная, которые стоят на концах одного диаметра.

Решение.

Допустим, что это не верно. Рассмотрим любую белую шашку и диаметр, на котором она стоит. Тогда по нашему допущению на другом конце этого диаметра должна стоять тоже белая шашка. Получается, что всего белых шашек ( как и черных ) четное число. Но последнее противоречит условию задачи.

5.12. Сумма номеров домов одного квартала равна 99, а соседнего квартала той же улицы - 117. Найдите номера всех домов этих кварталов.

5.13.В некотором натуральном числе произвольно переставили цифры. Докажите, что сумма полученного числа с исходным не может быть равна 999…9 (125 девяток).

Решение.

Обозначим исходное число через а, число, полученное из него после перестановки цифр - через b.

Допустим, что равенство

а + b = 999…9 (125 девяток)

возможно. Тогда при сложении чисел а и b не может быть переноса единицы в следующий разряд. Так как сумма цифр чисел а и b равны, то сумма цифр у числа а + b в два раза больше, чем у числа а, а значит она четна. Но с другой стороны , эта сумма равна 9 125, а следовательно, нечетна. Мы получили противоречие.

5.14. Какое наибольшее количество натуральных чисел можно записать в строку так, чтобы сумма любых трех соседних чисел была четной, а сумма любых четырех соседних чисел - нечетной?

Решение.

Обозначим последовательные натуральные числа строки через а1, а2, а3 и т. д.

По условию суммы

а1 + а2 + а3, а2 + а3 + а4, а3 + а4 + а5, а4 + а5 + а6

и другие четны. Вычитая из каждой суммы, начиная со второй, предыдущую получим, что разности

а4 - а1, а5 - а2, а6 - а3,…

четны, а следовательно, имеют одинаковую четность пары чисел

а4 и а1, а5 и а2, а6 и а3 и т. д.

Выпишем нечетные суммы, состоящие из четырех соседних чисел: а1 + а2 + а3+ а4 = 1 + а2 + а3)+ а4 ,

а2 + а3 + а4+ а5 = (а2 + а3 + а4)+ а5,

а3 + а4 + а5+ а6 = (а3 + а4 + а5)+ а6,…

Отсюда следует, что числа а4, а5, а6 и т. д. нечетны. Но тогда сумма а4 + а5 + а6 нечетна, а это противоречит условию.

Полученное противоречие возникает всякий раз, когда чисел не меньше шести. Попробуем взять пять чисел .

Рассуждая аналогично , устанавливаем, что числа а4, а5 нечётны, а следовательно , по предыдущему, нечетны и числа а1, а2 .Тогда, так как сумма а1 + а2 + а3 чётна , то число а3 чётно .

Сделаем ещё проверку и убедимся в том, что если взять пять чисел а1, а2, а3, а4, а5 , где число а3 чётно, а остальные нечётны, то каждая из сумм а1 + а2 + а3, а2 + а3 + а4, а3 + а4 + а5 чётна, а каждая из сумм а1 + а2 + а3 + а4 , а2 + а3 + а4 + а5 нечётна.

Ответ: 5.

5.15.Можно ли на клетчатой бумаге, закрасить 25 клеток так, чтобы у каждой из них было: а) четное, б) нечетное число закрашенных соседей? (клетки называются соседями, если у них общая сторона )

Решение.

Предположим, что удалось закрасить 25 клеток требуемым образом. Попробуем найти число общих сторон закрашенных клеток и придем к противоречию. Сосчитаем, сколько у каждой клетки общих сторон с соседями, сложим полученные числа и сумму разделим пополам (так как каждую общую сторону мы считали при этом дважды ). У каждой клетки - нечетное число соседей, и клеток 25. Сумма 25 нечетных чисел нечетна и поэтому нацело на 2 не делится.

Ответ: а) можно, б) нельзя.

Такое же рассуждение показывает, что при любом нечетном n, закрасить n клеток так, чтобы у каждой было нечетное число закрашенных соседей, невозможно. В случае любого четного n такая раскраска возможна.

5.16. Существует ли замкнутая ломаная, которая пересекает каждое свое звено ровно один раз и состоит из: а) 6 звеньев, б) 7 звеньев ?

Простые и составные числа

Натуральное число, большее 1, называется простым, если оно делится только на 1 и на само себя. Натуральное число называется составным, если оно имеет больше двух различных делителей.

Принято считать, что число 1 не относится ни к простым, ни к составным числам.

Отсюда следует, что множество натуральных чисел можно разбить на такие три подмножества: множество простых чисел, множество составных чисел и множество содержащее единственный элемент 1.

Справедлива следующая теорема.

Любое натуральное число, большее 1, можно и притом единственным образом представить в виде произведения простых чисел.

Это предложение называется основной теоремой арифметики натуральных чисел.

Среди простых делителей натурального числа могут быть равные, и их произведение можно записать в виде степени. Тогда разложение натурального числа а на простые множители можно представить в следующем виде:

a = p1 k1 p2 k2 … pnkn ,

где p1, p2,…, pn - различные простые числа, k1, k2,…, kn - натуральные.

Задачи

5.17.К двузначному числу приписали такое же число. Может ли полученное число быть простым?

5.18. К числу, являющемуся произведением двух последовательных натуральных чисел, приписали справа число 21. Докажите, что полученное число - составное.

5.19. Натуральные числа a и b таковы, что 31a = 54b. Докажите, что число a + b - составное.

Решение.

Так как число 31а делится на 54 и числа 31 и 54 - взаимно простые, то а делится на 54: a = 54n; где nN. Тогда

31 54 n = 54b, b = 31n.

Отсюда a + b = 54n + 31n = 85n, а следовательно, число a + b является составным.

5.20. Натуральные числа a и b удовлетворяют условию 15a = 32b. Может ли число a - b быть простым? Если может - постройте пример; если не может - докажите.

5.21. Назовите все натуральные n, при которых число n4 + 4 -составное.

Решение.

Попробуем разложить выражение n4 + 4 на множители с целыми коэффициентами. Мы привыкли к тому, что сумма квадратов на множители с целыми коэффициентами не раскладывается. В данном случае это делается с помощью приема «плюс - минус» следующим образом:

n4 + 4 = (n4 + 4 + 4n2) - 4n2 = (n2 + 2)2 - 4n2 = (n2 + 2n + 2)( n2 - 2n + 2).

Очевидно, множитель n2 + 2n + 2 всегда больше 1. Второй множитель n2 - 2n + 2 может быть равным 1:

n2 - 2n + 2 = 1, n2 - 2n + 1 = 0, (n - 1)2 = 0, n = 1.

Так как при n = 1 множитель n2 + 2n + 2 принимает значение 5, являющееся простым числом, то значение n = 1 нужно отбросить.

Ответ: все n не равные 1.

5.22. Докажите, что любое число вида а = 101010…101 (n нулей, n + +1 единица, где n > 1) - составное.

Решение.

Преобразуем число а, учитывая, что всего у него 2n + 1 цифр, а следовательно, первая единица - разряда 2n:

a = 101010…101 = 102n + 102n-2 + 102n-4 +…+ 102 + 1 =

= (1/(102 -1))(102 - 1)(102n + 102n-2 +…+102 +1) =

= (1/99)(102n+2-1) = (1/99)((10n+1)2 - 1) = (1/99)(10n+1+1)( 10n+1-1).

Теперь рассмотрим два случая.

Пусть n четно.

Тогда сумма 10n+1+1 делится на 11, причем частное от такого деления больше 1, так как 10n+1+1 >11; разность 10n+1-1 делится на 9, причем частное также больше 1, так как 10n+1+1 >11; разность 10n+1-1 делится на 9, причем частное также больше 1. Получилось составное число

а = ((10n+1+1)/11) ((10n+1-1)/9).

Пусть n нечетно.

В этом случае разность 10n+1-1 делится на 102 - 1= 99 и частное больше 1, поскольку 10n+1-1 > 99.

5.23. Докажите, что все числа вида

10001,100010001,1000100010001,…

составные.

5.24. Докажите, что число 8(35k + 55n) - 5 при любых натуральных k и n является составным.

5.25. Какое наибольшее число простых чисел может быть среди 15 последовательных натуральных чисел, больших 2?

Решение.

Очевидно, простые числа нужно искать среди нечетных. Из 15 последовательных натуральных чисел имеется 7 или 8 нечетных. Среди любых трех последовательных натуральных чисел ровно одно делится на 3, поэтому среди 7 или 8 последовательных нечетных натуральных чисел имеется 2 или 3 числа, делящихся на 3. Если их отбросить, то останется 5 или 6 нечетных чисел.

Нужно еще убедиться, что такие 6 простых чисел возможны. Например, если взять такие 15 последовательных натуральных чисел: 3, 4, 5, 6,…, 17, то среди них - 6 простых. 3, 5, 7, 11, 13, 17.

О т в е т: 6.

5.26. Составьте из простых чисел все возможные арифметические прогрессии с разностью 6 и числом членов, большим 4.

5.27. Докажите, что все числа p, p + 2, p + 4 являются простыми только в случае, когда они образуют тройку 3, 5, 7.

Решение.

Рассмотрим несколько случаев, в зависимости от p.

При p = 2 число p +2 = 4 - составное, поэтому значение p = 2 отпадает.

При p = 3 получим тройку 3, 5, 7, о которой упоминается в условии задачи.

При p = 5 число p + 2 = 7 - простое, но число p + 4 = 9 - составное, значит, p = 5 нужно отбросить.

При p = 7 число p + 2 = 9 - составное.

При p = 11 число p + 4 = 15 - тоже составное.

Возникает предположение, что подходит только p = 3. Докажем его.

Нетрудно заметить, что значение p = 5, p = 7, p = 11 не подходили потому, что или p + 2 или p + 4 делятся на 3. Убедимся, что так будет всегда при простом p>3.

Простое число, большее 3, не делится на 3 и, следовательно, при делении на 3 может давать в остатке только 1 или 2. Рассмотрим оба случая.

Пусть p при делении на 3 дает в остатке 1: p = 3k + 1 (kN). Тогда число p + 2 = (3k + 1) + 2 = 3k = 3 делится на 3, причем частное от этого деления больше 1. Значит число p + 2 составное.

Пусть p = 3k + 2 (kN). Тогда число p + 4 = (3k + 2) + 4 = 3k + 6 - составное.

5.28. Найдите все такие p, что числа p, p + 10 и p + 20 - простые.

Задачи этого пункта - это, по существу, числовые ребусы. Своеобразие таких задач в том, что одна из двух компонент действия получается из другой путем перестановки или зачеркивания цифр.

Задачи на зачеркивание цифр в натуральном числе

5.29. Найдите все натуральные числа, которые при зачеркивании последней цифры уменьшаются в 14 раз.

Решение.

Обозначим искомое число через 10x + y, где x - количество десятков числа, y - его последняя цифра. Тогда

10x + y = 14x, y = 4x.

Так как y есть цифра, то и x - цифра, причем не превосходящая 2. Полагая x = 1, 2, находим, что соответственно y = 4, 8.


Подобные документы

  • Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.

    курсовая работа [638,6 K], добавлен 14.02.2010

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Теория инвариантов уравнения линии второго порядка от трех переменных, определение канонического уравнения. Общий пример решения задачи на определение вида и расположения поверхности, заданной относительно декартовой прямоугольной системы координат.

    курсовая работа [1,1 M], добавлен 02.06.2013

  • Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.

    курсовая работа [622,2 K], добавлен 15.06.2010

  • Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.

    курсовая работа [488,3 K], добавлен 22.05.2022

  • Общая характеристика графов с нестандартными достижимостями, их применение. Особенности задания, представления и разработки алгоритмов решения задач на таких графах. Описание нового класса динамических графов, программной реализации полученных алгоритмов.

    реферат [220,4 K], добавлен 22.11.2010

  • Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.

    реферат [933,5 K], добавлен 10.08.2014

  • Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.

    курсовая работа [1,8 M], добавлен 18.01.2013

  • Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.

    контрольная работа [466,3 K], добавлен 11.03.2011

  • Систематизация различных методов решения планиметрических задач. Обоснование рациональности решения планиметрической задачи методами дополнительных построений, подобия треугольников, векторного аппарата, соотношения углов и тригонометрической замены.

    реферат [727,1 K], добавлен 19.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.