Теория вероятностей
Обработка случайных выборок с нормальным законом распределения. Оценка коэффициентов регрессии и доверительных интервалов. Оценка значимости факторов по доверительным интервалам и корреляционного момента. Построение эмпирической интегральной функции.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.05.2011 |
Размер файла | 135,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство высшего образования Российской Федерации
Ижевский Государственный Университет
Кафедра ВТ
Курсовая работа
Вариант Ж - 5
Выполнил: студент гр. 462
Проверил: Веркиенко Ю. В.
2006 г.
Содержание
Цель работы
Задание
1. Генерирование выборок
2. Поиск оценок для выборок
3. Построение доверительных интервалов математического ожидания и дисперсии
4. Построение доверительного интервала для коэффициента корреляции
5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)
6. Построение эмпирической кривой плотности распределения и теоретической
7. Проверка гипотезы о величине среднего (?), дисперсии (?2), о нормальном законе распределения (по ?2 и по Колмогорову)
8. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках
9. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии
10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза
11. Оценка значимости факторов по доверительным интервалам
Выводы
Цель работы
Выполнить все одиннадцать пунктов работы по заданию и сделать выводы.
Задание
На ЭВМ по программе случайных нормальных чисел с законом N(,2) генерировать две выборки объема n
x1,,xn (1)
y1,,yn (2)
Для выборок (1), (2) найти оценки Ex, Sx, wx, wy.
Для (1) построить доверительные интервалы для математического ожидания (считая 2 известной и неизвестной) и дисперсии.
Для (1), (2) построить доверительный интервал для коэффициента корреляции.
Для (1) построить эмпирическую интегральную функцию распределения и теоретическую (для нормального закона с оценками среднего и дисперсии)
Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (x(1), x(n)) на 5-6 интервалов. На этом же графике изобразить теоретическую кривую.
Проверить гипотезы: о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову).
Проверить гипотезу о независимости выборок (1), (2), об одинаковой дисперсии в выборках.
Для уравнения (модели) с заданными коэффициентами i составить систему условных уравнений, считая и найти по МНК оценки коэффициентов регрессии. Значения брать из равномерного закона или с равномерным шагом на отрезке [-1, 1].
Построить доверительные интервалы для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза в точках x=-1, 0, 1.
По доверительным интервалам оценить значимость факторов xi=xi. Фактор считается незначимым, если доверительный интервал накрывает значение, равное нулю.
При выполнении курсовой работы использовать значения: среднее выборок Х и У равно 3, дисперсия выборок равна 1. Уровень значимости = 0.05. С.к.о. ошибки измерений в задаче регрессии 0.2.
1. Генерирование выборок
На ЭВМ по программе случайных нормальных чисел с законом N(,2) генерируем две выборки объема n = 17, где = 3 и 2 = 1
x1,,xn (1)
y1,,yn (2)
Вариационные ряды:
(1) (2)
2. Поиск оценок для выборок
Для найденных выборок (1), (2) находим оценки Ex, Sx, wx, wy.
Выборочное среднее:
Квадрат средне - квадратичного отклонения:
Оценка центрального момента 3-го порядка:
Оценка центрального момента 4-го порядка:
Коэффициент эксцесса:
Коэффициент асимметрии:
Оценка корреляционного момента:
Оценка коэффициента корреляции:
Размах выборки:
3. Построение доверительных интервалов математического ожидания и дисперсии
Для (1) строим доверительные интервалы для математического ожидания (считая 2 известной и неизвестной) и дисперсии.
Считаем 2 известной.
Считаем 2 неизвестной.
Таким образом, при различных вариантах мmin, мmax имеют почти одинаковые значения.
Подставляем табличные значения 24,7 и 5,01 в знаменатели подкоренного выражения и получаем, что
,
,
4. Построение доверительного интервала для коэффициента корреляции
Для (1), (2) строим доверительный интервал для коэффициента корреляции.
U = 1,96
Так как , то пусть , отсюда z = 0,693
То есть |z| ? 0,693.
Если z = -0,693 и z = 0,693, то получим доверительный интервал для коэффициента корреляции -0,6 < Rxy < 0,6.
5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)
Создание ступенчатой функции, при скачке высотой 1/n.
Построение эмпирических Fx(u), Fy(u) и теоретических интегральных функций распределения. В последних средние и с. к. о. Взяты равными вычисленным оценкам математического ожидания и с. к. о.
Пусть u = 0, 0.001…6, тогда
,
- - - - теоретическая функция распределения.
____ функция для нормального закона с оценками среднего и дисперсии.
6. Построение эмпирической кривой плотности распределения и теоретической
случайный выборка доверительный интервал
Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (х(1),х(n)) на несколько подинтервалов. На этом же графике изобразить теоретическую кривую.
k*sigx - ширина интервалов разбиения, k - коэффициент шага разбиния. взято симметрично от среднего значения по 4 интервала
- - - - теоретическая функция плотности распределения.
____ эмпирическая кривая плотности распределения.
7. Проверка гипотезы о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову)
Проверка по критерию согласия Пирсона:
По данным выборки найдем теоретические частоты , затем, сравнивая их с наблюдаемыми частотами , рассмотрим статистику - случайная физическая величина, имеющая распределение с k степенями свободы. Если сумма , то выборочные данные согласуются с нормальным распределением и нет оснований отвергать нулевую гипотезу.
Определим с степенями свободы:
Как видно условие выполняется.
Проверка по критерию согласия Колмогорова:
Условие:
где , где максимальное значение разности между экспериментальным и теоретическим распределением нормального закона.
при для X, и при для Y.
- критическое значение квантиля распределения Колмогорова.
Так как условие - выполняется, то гипотеза о нормальном законе распределения подтверждена.
8. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках
Чтобы из выборки х получить вариационный ряд необходимо осуществить 18 инверсий (т. е. Q=18).
Проверим гипотезу о независимости :
Так как из нормального закона , то
Так как условие - выполняется, то выборки независимы.
Теперь нам необходимо проверить гипотезу об одинаковой дисперсии в выборках
:
так как F< ,то нет оснований, отвергать нулевую гипотезу.
9. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии.
Для уравнения модели
Генерируем выборку с шагом
h = 1/N, где N = 100
Пусть даны коэффициенты регрессии:
в0 = 0; в1 = 1; в2 = 1; в3 = 0; в4 = 0; в5 = 1;
Значения матрицы плана
Сформируем элементы матрицы А вида:
Формирование правых частей нормальной системы
Где случайная величина, сгенерированная по нормальному закону с учётом коэффициентов регрессии.
Информационная матрица
Решение относительно коэффициентов регрессии.
Для нахождения вида уравнения регрессии необходимо вычислить коэффициенты регрессии данного уравнения.
Уравнение регрессии :
Графики уравнения регрессии и результатов измерений, по которым определялись коэффициенты регрессии:
- - - - уравнение регрессии
____ случайная выборка из нормального закона
10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза
Доверительные интервалы будем находить для каждого элемента вектора оценок коэффициентов регрессии .
В случае нормальных ошибок доверительные интервалы находятся из двойного неравенства:
где - остаточная сумма квадратов; - диагональный элемент ковариационной матрицы вида
так как слагаемых в уравнении регрессии шесть.
(1)
(2)
(3)
Строим интервал для коэф-та регрессии:
Доверительный интервал , где из таблицы находим.
k = 6;
Тогда для r = [1…6] будем
брать соответствующий элемент ковариационной матрицы, и находить доверительный интервал с учётом (1) (2) (3).
Нахождение доверительного интервала для (фактор ):
-
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Нахождение доверительного интервала для (фактор ):
Доверительные интервалы для ,, не накрывают значение равное нулю, следовательно, факторы ,, являются значимыми, а факторы ,, - незначимыми.
11. Оценка значимости факторов по доверительным интервалам
Исключив из уравнения регрессии незначимые факторы, приходим к следующему виду:
Таким образом, из графика видно, что при исключении из уравнения регрессии незначимых факторов график не изменился. Найдем доверительный интервал для остаточной дисперсии
при .
А доверительный интервал найдём из следующего двойного неравенства:
Таким образом, доверительный интервал для остаточной дисперсии есть:
Выводы
Таким образом, в данной курсовой работе были изучены методы обработки случайных выборок с нормальным законом распределения. Так же найдены оценки коэффициентов регрессии и построены доверительные интервалы. В последнем пункте работы были оценены значимости факторов по доверительным интервалам.
Размещено на Allbest.ru
Подобные документы
Обработка одномерной и двумерной случайных выборок. Нахождение точечных оценок. Построение гистограммы функций распределения, корреляционной таблицы. Нахождение выборочного коэффициента корреляции. Построение поля рассеивания, корреляционные отношения.
курсовая работа [1,3 M], добавлен 10.06.2013Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача [82,0 K], добавлен 12.02.2011Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.
реферат [325,3 K], добавлен 23.01.2011Определение дифференциальной функции распределения f(x)=F'(x) и математического ожидания случайной величины Х. Применение локальной и интегральной теоремы Лапласа. Составление уравнения прямой линии регрессии. Определение оптимального плана перевозок.
контрольная работа [149,6 K], добавлен 12.11.2012Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.
реферат [146,5 K], добавлен 19.08.2015Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.
шпаргалка [328,7 K], добавлен 04.05.2015Анализ и обработка статистического материала выборок Х1, Х2, Х3. Вычисление статистической дисперсии и стандарта случайной величины. Определение линейной корреляционной зависимости нормального распределения двух случайных величин, матрицы вероятностей.
контрольная работа [232,5 K], добавлен 25.10.2009Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.
контрольная работа [30,0 K], добавлен 15.06.2012Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
контрольная работа [36,5 K], добавлен 14.11.2010Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.
контрольная работа [162,6 K], добавлен 28.05.2012