Прикладне вживання методів дискретної математики

Зразки вирішення задач по дискретній математиці. Обчислювання череди функцій універсальних множин методами дискретної математиці. Визначення ймовірності послідовного вибору з колоди певних карт. Використання відомих алгоритмів для обчислення шляхів графа.

Рубрика Математика
Вид контрольная работа
Язык украинский
Дата добавления 22.10.2009
Размер файла 42,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ

Бердичівський політехнічний коледж

Контрольна робота

Прикладне вживання методів дискретної математики

м. Бердичів 2007 р.

Зміст

Задача 1

Задача 2

Задача 3

Задача 4

Список використаної літератури

1. Задача 1

1. Задана універсальна множина U={a,b,c,d,e,f,g,h,i} і дві множини S={b,c,e,i}, T={c,e,f,i}. Знайти:

a) об'єднання, перетин, різницю і симетричну різницю множин S i T;

b) доповнення множини S і доповнення множини T;

c) прямий добуток множин S i T;

d) задати функцію із S в T: ін'єктивну, сюр'єктивну і бієктивну.

2. Дані відображення h1 і h2, що представляють множину сумісних кортежів. Знайти:

a) h3=(h1h2);

b) h4=(h1h2);

c) h5=(h1\h2);

h1

у

x1

x2

x3

h2

у

x1

x2

x3

2

b

e

6

3

с

e

6

3

с

e

5

5

с

b

2

5

с

b

2

4

а

c

5

4

а

e

5

2

b

e

6

d) h6=(h1h2).

3. Хай дані відношення r1 і r2. Знайти:

a) r3=(r1r2);

b) r4=(r1r2);

c) r5=(r1\r2).

d) r6=(r1r2).

r1

x1

x2

x3

x4

r2

x1

x2

x3

x4

x1

1

1

0

1

x1

1

1

0

1

x2

0

1

0

1

x2

1

1

0

0

x3

1

0

1

0

x3

0

1

0

0

x4

0

1

1

1

x4

0

0

1

1

Відповідь:

1.

а) А = ST = {b, c, e, f, i};

А = ST = {c, e, i};

A = S\T = {b}; B = T\S = {f}:

A = ST = {b, f}.

b) A = S = {a, d, f, g, h};

B = T = {a, b, d, g, h}.

c) ST = {{b, c}, {b, e}, {b, f}, {b, i}, {c, c}, {c, e}, {c, f}, {c, i}, {e, c}, {e, e}, {e, f}, {e, i}, {i, c}, {i, e}, {i, f}, {i, i}}.

2.

a) h3 =

у

x1

x2

x3

2

b

e

6

3

с

e

5

5

с

b

2

4

а

e

5

3

с

e

6

4

а

c

5

b) h4 =

c) h5 =

у

x1

x2

x3

3

с

e

5

4

а

e

5

d) h6 =

3.

a)

r3

x1

x2

x3

x4

x1

1

1

0

1

x2

1

1

0

1

x3

1

1

1

0

x4

0

1

1

1

b)

r4

x1

x2

x3

x4

x1

1

1

0

1

x2

0

1

0

0

x3

0

0

0

0

x4

0

0

1

1

c)

r3

x1

x2

x3

x4

x1

0

0

0

0

x2

0

0

0

1

x3

1

0

1

0

x4

0

1

0

0

d)

r3

x1

x2

x3

x4

x1

0

0

0

0

x2

1

0

0

1

x3

1

1

1

0

x4

0

1

0

0

2. Задача 2

У колоді 52 карти. У скількох випадках при виборі з колоди 10 карт серед них виявляться: а) рівно один туз; б) хоча б один туз; в) не менше двох тузів; г) рівно два тузи?

Відповідь:

а) Всього у колоді 4 тузи. Отже за правилом добутку перемножимо ймовірність вибору з чотирьох тузів одного туза та ймовірність вибору інших карт, тобто 9 з 48:

.

б) Хоча б один туз - це означає може бути і 4, і 3, і 2, і 1. Отже для розв'язку необхідно від ймовірності вибору 10 карт з 52 відняти ймовірність вибору 10 карт з 48:

.

в) Не менше двох тузів - означає, що з 10 карт буде 4, 3 або 2 тузи. Рішенням буде попередня відповідь від якої відняти ймовірність вибору 1 туза (першої відповіді):

.

г) Аналогічно розв'язку першого завдання отримаєм:

3. Задача 3

Граф заданий матрицею вагів. Побудувати для нього остов мінімальної ваги використовуючи алгоритми Пріма та Краскала, за алгоритмом Флойда обчислити найкоротші шляхи графа.

Відповідь:

Будова графа:

Побудова остову мінімальної ваги по алгоритму Краскала:

Встановлюємо частковий порядок по вазі ребер графа:

L13

L15

L14

L12

L23

L45

L34

L35

L24

L25

8

8

9

11

12

12

14

15

18

20

Будуємо остов мінімальної ваги:

Крок

Ребра остову

Вершини остову

L13

L15

L14

L12

x1

x2

x3

x4

x5

1

1

0

0

0

1

1

0

0

0

2

1

1

0

0

1

1

1

0

0

3

1

1

1

0

1

1

1

1

0

4

1

1

1

1

1

1

1

1

1

Lij

8

8

9

11

L=8+8+9+11=36

Обчислення найкоротших шляхів за алгоритмом Флойда:

Будуємо матрицю вагів та матрицю переходів:

А0 = Р0 =

Елементи матриці вагів будемо знаходити за формулою:

Ak [i; j] = min (Ak-1 [i; j], Ak-1 [i; k] + Ak-1 [k; j])

Перша ітерація: k=1

А1 = Р1 =

Друга ітерація: k=2

А2 = Р2 =

Третя ітерація: k=3

А3 = Р3 =

Четверта ітерація: k=4

А4 = Р4 =

П'ята ітерація: k=5

А5 = Р5 =

4. Задача 4

Знайти мінімальну ДНФ логічної функції F = F (хг, х2, х3, х4), яка дорівнює одиниці на наборах 2, 3, 4, 11, 14, 15 і нулю на решті наборів.

Відповідь:

Спочатку необхідно подати функцію у ДДНФ.

ДДНФ =x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4

Виконуємо склеювання:

1-2 x1x2x3

1-4 x2x3x4

2-4 x2x3x4

4-6 x1x3x4

5-6 x1x2x3

ДДНФ = x1x2x3 x2x3x4 x2x3x4 x1x3x4 x1x2x3 x1x2x3x4

1-2 x2x3

1-3 x2x3

2-3 x2x3

3-4 x3x4

4-5 x1x3

ДДНФ = x2x3 x3x4 x1x3 x1x2x3x4

ДДНФ

x1x2x3x4

x1x2x3x4

x1x2x3x4

x1x2x3x4

x1x2x3x4

x1x2x3x4

x2x3

+

+

-

+

-

-

x3x4

-

+

-

+

-

+

x1x3

-

-

-

+

+

+

x1x2x3x4

-

-

+

-

-

-

Отже,

min ДНФ = x1x3 x2x3 x1x2x3x4

Список використаної літератури

1. «Дискретна математика» С.Лук'яненко. К-2000

2. «Комбінаторика» Д.Сафонов. М-1992

3. «Комбінаторика для програмістів» В.Липський. М-1988

4. Конспект лекцій

5. Комп'ютерна мережа Інтернет


Подобные документы

  • Означення теорії множин. Дії над множинами. Алгебра множин. Вектори і прямий добуток множин. Властивості відношень. Способи задання функції. Сукупність підстановок множини. Алгебраїчні операції та системи. Властивості рефлексивності та симетричності.

    конспект урока [263,1 K], добавлен 28.06.2012

  • Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.

    курсовая работа [988,5 K], добавлен 20.04.2012

  • Суть принципу Діріхле та найпростіші задачі, пов’язані з ним. Використання методів розв’язування математичних задач олімпіадного характеру при вивченні окремих тем шкільного курсу математики та на факультативних заняттях. Індукція в геометричних задачах.

    дипломная работа [239,7 K], добавлен 15.03.2013

  • Побудування графа та матриці інцидентності. Перетворення графа у зважений за допомогою алгоритму Дейкстри, знаходження довжини найкоротшого шляху між двома вершинами та побудування дійсного шляху. Обхід дерева у прямому та зворотному порядках.

    курсовая работа [144,1 K], добавлен 03.07.2014

  • Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.

    курсовая работа [105,2 K], добавлен 09.07.2009

  • Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.

    реферат [134,7 K], добавлен 27.02.2012

  • Методи зведення до канонічної форми задач лінійного програмування. Визначення шляхів знаходження екстремумів функцій графічним способом. Побудова початкового опорного плану методом "північно-західного" напрямку. Складання двоїстої системи матриць.

    контрольная работа [262,0 K], добавлен 08.02.2010

  • Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.

    контрольная работа [67,1 K], добавлен 27.03.2012

  • Імовірність несплати податку для кожного підприємця. Випадкова величина в інтервалі. Ряд розподілу добового попиту на певний продукт. Числові характеристики дискретної випадкової величини. Біноміальний закон розподілу, математичне сподівання величини.

    контрольная работа [152,5 K], добавлен 16.07.2010

  • Визначення основних понять і вивчення методів аналізу безкінечно малих величин. Техніка диференціального і інтегрального числення і вирішення прикладних завдань. Визначення меж числової послідовності і функції аргументу. Обчислення інтегралів.

    курс лекций [570,1 K], добавлен 14.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.