Формулы, возможно неизвестные, для решений уравнения Пифагора
Выведены формулы, возможно ранее неизвестные, для решений уравнения Пифагора, Формулы отличаются от общеизвестных формул древних индусов и вавилонян.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 26.06.2008 |
Размер файла | 31,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Формулы, возможно неизвестные, для решений уравнения Пифагора
Выведены формулы (возможно ранее неизвестные, в широко доступной литературе не встречаются) для решений уравнения Пифагора x^2 + y^2 = z^2. Формулы отличаются от общеизвестных формул древних индусов и вавилонян. Формулы древних индусов:
x= a- b, y=2ab, z= a+ b, a > b.
Вывод других формул
Известно, что уравнение x + y = z (1)
имеет целые решения, например, общеизвестные тройки чисел Пифагора. Таких решений, доказал ещё Евклид, имеется бесконечное множество. Тройку целых положительных чисел x,y,z не имеющих общих делителей, назовём оригинальным решением уравнения (1). Далее оригинальные решения будут обозначаться большими буквами X,Y,Z. Пусть далее везде x < y < z.
Так как x, y и z числа целые, то существуют целые положительные числа a и b, такие, что x = z - a и y = z - b, где b < a, так как по условию x < y. Тогда уравнение (1) запишется следующим образом: ( z - a)+ (z - b) = z (2).
После возведения в степень и группирования из (2) получится следующее уравнение:
z- 2 (a + b ) z + ( a+ b) = 0 (3).
В результате решения уравнения (3) относительно z получим:
z = + a + b; x = + b; y = + a; (4).
Корень не может быть отрицательным в результате решения уравнения (3), потому что по условию не может быть отрицательным или равным нулю ни одно из чисел x,y.
Все три числа целого решения содержат корень , который определяет такие решения и должен быть целочисленным. Кроме того, для получения оригинальных решений числа a и b должны быть взаимно просты, т.е. не иметь общих делителей отличных от 1.
Число является целым в следующих случаях:
- случай 1: a=2c, b=d,=2cd; после подстановки значений a и b в (4) получим:
X=d(2c+d); Y=2c(c+d); Z=2c(c+d)+ d; (5),
здесь a>b, a - чётное число, b - нечётное, следовательно, X,Z - нечётные, Y - чётное;
- случай 2: a=c, b=2d,=2cd; после подстановки значений a и b в (4) получим:
X=2d (c+d); Y=c(c+2d); Z=c(c+2d)+ 2d (6),
здесь a>b, a - нечётное число, b - чётное, следовательно, X - чётное, а Y и Z - нечётные;
примечание: в случаях 1 и 2 числа c и d целые и взаимно простые, потому что таковыми являются a и b. Если определены и целы c и d, то определены и целы все числа X,Y,Z.
Следствия
Общие формулы (46) для решений уравнения (1) доказывают бесконечность множества троек целых решений и могут быть использованы для получения целых решений, не имеющих общих делителей. При этом должно всегда быть a>b, а также a и b должны быть взаимно просты. Так как число b меньшее из последних двух, то удобно обозначать ряды решений по его значению, например, если b=1, то ряд решений P1 (Пифагор).
Ряд P1: b= d=1, a=2c, =2c , где c=1,2,3,…
Подставляя d и c в (5) получим неограниченный ряд оригинальных целых решений X, Y, Z:
X = 2c+1; Y = 2c(c+1); Z = 2c(c+1)+1.
Первые решения этого ряда: 3,4,5; 5,12,13; 7,24,25; 9,40,41; 11,60,61; 13,84,85; 15,112,113; 17,144,145; 19,180,181; 21,220,221; 23,264,265; 25,312,313; 27,364,365; 29,420,421; …
Ряд P2: b=2d=, a=c, =2c , где c=3,5,7,…
Последовательность c начинается с 3, потому что a > b, и нечётна, чтобы не было общих делителей с b. После подстановки d=1 и c в (6):
X = 2(c+1); Y = c(c+2); Z = c(c+2)+2.
Первые решения этого ряда: 8,15,17; 12,35,37; 16,63,65; 20,99,101; 24,143,145; 28,195,197; 32,255,257; 36,323,325; 40,399,401; 44,483,485; 48,575,577; 52,675,677; 56,783,785;…
Ряд P8: b=2d=, a=c, =4c , где c=3,5,7,…
X = 4(c+2); Y = c(c+4); Z = c(c+4)+8.
20,21,29; 28,45,53; 36,77,85; 44,117,125; 52,165,173; 60,221,229; 68,285,293; 76,357,365; 84,437,445; 92,525,533; 100,621,629; 108,725,733; 116,837,845; 124,957,965; …
Ряд P9: b= d=3, a=2c, =6c . где c mod 30, c=4,5,7,8,10,11,…
33,56,65; 39,80,89; 51,140,149; 57,176,185; 69,260,269; 75,308,317; 87,416,425; 93,476,485; 105,608,617; 111,680,689; 123,836,845; 129,920,929; 141,1100,1109; 147,1196,1205; и т.д.
Диофант в своей «Арифметике» рассматривал особую группу троек целых решений уравнения (1), так называемые «хромые» треугольники, катеты которых, т.е. X и Y, отличаются на 1.
Для случая 1 условие существования таких решений: d= 2c- 1.
Ряд D1: 3, 4, 5; 119, 120, 169; 4059, 4060, 5741; 137903, 137904, 195025; 4684659, 4684660, 6625109; 159140519, 159140520, 225058681; 5406093003, 5406093004, 7645370045; 183648021599, 183648021600, 259717522849; …
Для случая 2 условие существования таких решений: 2d= c- 1.
Ряд D2: 20,21,29; 696 ,697, 985; 23660, 23661, 33461; 803760, 803761, 1136689; 27304196, 27304197, 38613965; 927538920, 927538921, 1311738121;
31509019100, 31509019101, 44560482149;
1070379110496, 1070379110497, 1513744654945; …
Первый и наименьший такой треугольник - 3,4,5, для которого c=d=1 (случай 1). С помощью простых формул, исходя из него, могут быть вычислены сколько угодно много других «хромых» треугольников (m=1,2,3,…):
d= c+ d; c= 2d + 1; X,Y,Z рассчитываются по (6);
c= c+ d; d= 2c - 1; X,Y,Z рассчитываются по (5).
Например, вычислить 1-й треугольник ряда D2:
d= c+ d = 1 + 1 = 2; c= 2d + 1 = + 1 = 9; c = 3.
X = 2d (c+d ) = 2*2(3+2) = 20; Y = c(c+2d ) = 3(3+2*2 ) = 21;
Z = c(c+2d )+ 2d= 3(3+2*2)+2*2= 29.
Следующим является треугольник 2 ряда D1:
c= c+ d = 3 + 2 = 5; d= 2c - 1 = 2*25 - 1 = 49; d = 7.
X = d(2c+d) = 7(2*5+7) = 119; Y = 2c(c+d) = 2*5(5+7) = 120;
Z = 2c(c+d) + d= 2*5(5+7)+7= 169.
Формулы (4) могут быть использованы для доказательства большой теоремы Ферма, методом бесконечного спуска, для всех нечётных (в т.ч. всех простых > 2) значений показателя степени n.
Подобные документы
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4. Доказательство.
статья [38,5 K], добавлен 30.04.2008Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
реферат [29,1 K], добавлен 19.11.2010История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат [75,8 K], добавлен 09.05.2009Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.
задача [276,1 K], добавлен 20.02.2011Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.
доклад [166,1 K], добавлен 26.04.2009Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.
презентация [103,1 K], добавлен 29.03.2016Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".
научная работа [858,3 K], добавлен 29.03.2011Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.
курс лекций [119,3 K], добавлен 21.04.2009Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.
материалы конференции [554,8 K], добавлен 13.03.2009Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа [2,9 M], добавлен 11.07.2012