Перавя и вторая интерполяционная формула Ньютона

Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

Рубрика Математика
Вид лабораторная работа
Язык русский
Дата добавления 14.10.2013
Размер файла 481,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа [207,3 K], добавлен 06.12.2014

  • Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

    контрольная работа [155,2 K], добавлен 02.06.2011

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат [71,6 K], добавлен 06.03.2011

  • Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.

    лабораторная работа [147,4 K], добавлен 16.11.2015

  • В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа [131,6 K], добавлен 05.01.2011

  • Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

    контрольная работа [75,6 K], добавлен 06.02.2014

  • Определение значения заданной функции в указанной точке при помощи интерполяционной схемы Эйткина. Проверка правильности данного решения с помощью кубического сплайна. Практическая реализация данного задания на языке Pascal и при помощи таблиц Excel.

    курсовая работа [496,3 K], добавлен 29.08.2010

  • Интерполяционная схема Эйткина. Связь конечных разностей и производных. Распространение ошибки исходных данных при вычислении конечные разности. Свойства разделенной разности. Интерполяционная формула Ньютона для не равноотстоящих узлов. Полином Лагранжа.

    лекция [92,3 K], добавлен 06.03.2009

  • Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

    контрольная работа [1004,9 K], добавлен 01.12.2009

  • Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа [151,3 K], добавлен 15.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.