Восьмиэлементные ассоциативные кольца
Абелевы группы по сложению. Кольца, образованные аддитивной группой ZxZ. Кольца, образованные аддитивной группой ZxZxZ. Подкольца поля комплексных чисел и кольца классов вычетов целых чисел. Теория ассоциативных колец.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.08.2007 |
Размер файла | 28,4 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.
курсовая работа [634,5 K], добавлен 24.11.2021История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.
реферат [50,0 K], добавлен 28.05.2014Допустимые кольца и решетки. Допустимые полутела. О единственности расширения. Теория полуколец - раздел современной алгебры, находящий применения в компьютерной алгебре, идемпотентном анализе, теории оптимального управления.
дипломная работа [92,2 K], добавлен 08.08.2007Понятие и специфика Аддитивной теории чисел, ее содержание и значение. Описание основных проблем Аддитивной теории чисел: Варинга, Гольдбаха, Титчмарша. Методы решения данных проблем: редукция к производящим функциям, исследование структуры множеств.
курсовая работа [150,0 K], добавлен 18.12.2010Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.
реферат [571,1 K], добавлен 25.09.2009История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.
реферат [325,7 K], добавлен 25.10.2012Изучение основных определений и теорем, связанных с полукольцом натуральных чисел, описание его нулевого, главного и двухпорожденного идеалов. Исследование проблемы нахождения констант Фробениуса для аддитивной полугруппы, порожденной линейной формой.
курсовая работа [370,2 K], добавлен 12.06.2010Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.
курсовая работа [345,5 K], добавлен 22.06.2015Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация [435,9 K], добавлен 16.12.2011Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.
научная работа [20,2 K], добавлен 29.12.2006