- 661. Золотое сечение
Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.
- 662. Золотое сечение
Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.
- 663. Золотое сечение
Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
- 664. Золотое сечение
Определенное отношение длин отрезков. Сооружения, построенные в золотой пропорции. Основы симметрии и ассиметрии. Пропорции мужского тела и золотого сечения. Золотые пропорции в частях тела человека. "Золотое сечение" в математике, архитектуре, живописи.
- 665. Золотое сечение
Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.
- 666. Золотое сечение
Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
- 667. Идеальное - реально
Сущность и методологические проблемы математической физики. Особенности математического моделирования жёсткости прокатного калиброванного валка. Основные положения и свойства идеальной математики. Порядок устройства и структурные элементы идеальных чисел.
Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.
- 670. Из истории дробей
Особенности возникновения и использования дробей в Египте. Особенности применения шестидесятеричных дробей в Вавилоне, греческими и арабскими математиками и астрономами. Отличительные черты дробей в Древнем Риме и Руси. Дробные числа в современном мире.
Начала математической теории. Арифметика узлов, их классификация. Свойства неальтернированных узлов; преобразование Рейдемейстера. Арифметические операции с математическими узлами. Разложение составного узла. Алгоритм полного перебора с заполнением.
Особенности видов тетраэдров и теоремы о них, их доказательства и примеры решения задач. Сравнительная характеристика изложения темы "тетраэдр" в школьных учебниках. Тестирование уровня развития пространственного мышления у учеников средней школы.
Исторические сведения, понятия о многогранниках. Изгибаемые многогранники Коннелли. Гипотеза кузнечных мехов. Построение модели Октаэдр Брикара, Флексор Штеффена. Симметрия, объем, изгибаемость и основные свойства многогранников. Теорема Сабитова.
Выполнение измерений линейных и угловых величин. Правила обращения с микрометрическими инструментами. Шероховатость, отклонения форм и расположения поверхностей. Контроль поверочными инструментами. Виды отклонения от правильной геометрической формы.
Определение геометрических размеров заданного тела. Расчет массы мерного стакана без жидкости, с жидкостью вытесненной из переливного стакана. Вычисление объема тела методом гидростатического взвешивания, основанного на использовании закона Архимеда.
Обработка результатов при прямых и косвенных измерениях. Принципы обработки результатов. Случайные и систематические погрешности, особенности их сложения. Точность расчетов, результат измерения. Общий порядок расчета суммы квадратов разностей значений.
- 677. Измеримые множества
Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества. Измеримые множества. Измеримость и мера как инварианты движения. Класс измеримых множеств.
- 678. Измеримые функции
Определение и простейшие свойства измеримой функции. Дальнейшие свойства измеримых функций. Последовательности измеримых функций. Сходимость по мере. Структура измеримых функций. теоремы о приближении измеримых функций.
Выборочное наблюдение 50 предлагаемых на продажу автомобилей Suzuki Liana на сайте сайт auto.ru. Выявления зависимости признака Y (цена) от признаков-факторов X (время эксплуатации и пробег). Распределение Y с помощью интервального вариационного ряда.
- 680. Изучение возможностей массивно-параллельных вычислений в применении к задачам математической физики
Задача о малых колебаниях. Вычисление коэффициентов с помощью быстрого преобразования Фурье. Дискретный подход к вычислению коэффициентов. Вычисление методом Лежандра-Гаусса. Расчет узлов и весовых коэффициентов. Массивно-параллельный расчёт амплитуд.
Теория автоматического управления и виды алгоритмических звеньев. Стационарные и нестационарные САР. Типовые динамические звенья: определение и классификация. Запас устойчивости по модулю и фазе. Показатель колебательности и кривая переходного процесса.
Критерий согласия – критерий проверки гипотезы о предполагаемом законе распределения генеральной совокупности. Критерий Колмогорова-Смирнова и его практическое применение. Критические значения статистик Стефенса. Критерии Пирсона и Смирнова-Крамера.
- 683. Изучение матриц
Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
Многогранник как пространственное тело с плоскими гранями и прямолинейными ребрами, устроенное так, чтобы всякое ребро соединяло две вершины и служило общей стороной двух граней. Создание модели призмы, призмоида и пирамиды. Обоснование теоремы Элера.
Анализ основных понятий, утверждений, связанных с показательной и логарифмической функциями в курсе математики. Изучение методик решения типовых задач. Подбор и систематизация задач на нахождение и использование показательной и логарифмической функций.
Вычисление среднего одномерных случайных величин. Определение доверительного интервала для математического ожидания и для дисперсии. Построение эмпирической и приближенной линий регрессии Y по X. Дисперсионный анализ греко-латынского куба второго порядка.
Анализ роли математики в оценке количественных и пространственных взаимоотношений объектов реального мира. Трактовка и обоснование математических теорем Ферма, Ролля, Лагранжа, Коши и Лопиталя. Обзор биографии, деятельности и трудов великих математиков.
Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
Образование конических сечений. Основное свойство и уравнение эллипса, исследование формы по его уравнению. Исследование форм параболы по ее уравнению. Директориальное свойство конических сечений. Эллипс, гипербола и парабола как конические сечения.
Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.