Вода для инъекций

Требования по физико-химическим показателям и микробиологической чистоте, предъявляемые к воде для инъекций. Химическая, технологическая и аппаратурная схемы производства. Способы стерилизации инъекционных растворов. Выбор фильтрующих материалов.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 24.09.2015
Размер файла 666,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГБОУ ВПО ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ

МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Кафедра фармацевтической технологии и биотехнологии

КУРСОВАЯ РАБОТА

по теме «Вода для инъекций»

Волгоград 2015

Оглавление

  • Введение
    • 1. Экспериментальная часть
      • 1.1 Характеристика конечной продукции производства
      • 1.2 Химическая схемы производства
      • 1.3 Технологическая схема производства
      • 1.4 Аппаратурная схема производства
      • 2. Характеристика продукта
      • 3. Технологический процесс производства
      • 3.1 ВР 1.1 Подготовка помещений
      • 3.2 ВР 1.2 Подготовка оборудования
      • 3.3 ВР 1.3 Подготовка персонала
      • 3.4 ВР 2.1 Подготовка ампул
      • 3.5 ВР 2.1 Подготовка растворителя
      • 3.6 ВР 2.3 Подготовка фильтров
      • 3.7 ТП 1.1 Наполнение ампул
      • 3.8 ТП 1.2 Запайка ампул
      • 3.9 ТП 1.3 Проверка качества запайки
      • 3.10 ТП 2.1 Стерилизация
      • 3.11 ТП 2.2 Проверка герметичности ампул
      • 3.12 ТП 3 Стандартизация
      • 3.13 ТП 4 Этикетирование
      • 4. УМО Упаковка, маркировка
      • 5. Переработка и обезвреживание отходов производства
      • 5.1 Контроль производства
      • 5.2 Охрана труда и техники безопасности, пожарная безопасность, производственная санитария и условия труда работников
      • 6. Охрана окружающей среды
      • 7. Перечень производственных инструкций
      • 8. Информационные материалы
      • Список литературы
      • Введение

В процессе приготовления жидких лекарственных форм всегда применяется растворитель, который способен растворять различные вещества, то есть образовывать с ними растворы. Одним из растворителей в медицинской практике является воду для инъекций.

Объект исследования - вода для инъекций.

Предмет исследования - требования к качеству, анализ метода получения и использования воды на примере аптечного предприятия.

На предприятиях фирм "Крист А. Г." и "Хофман Ла-Рош" (Швейцария) была разработана и внедрена в производство технологическая схема получения особо чистой воды для фармацевтической промышленности (Reider В.Р., Bruch М.). В качестве исходного использовали городскую водопроводную воду без предварительной очистки. После деионизации вода подается на установку обратного осмоса с использованием фильтрующих элементов из пористых волокон или спиральных элементов. Полученный концентрат с 90% устранением растворенных веществ подвергается УФ-облучению, микробном обеззараживанию в ионообменника смешанного типа до получения воды, соответствующей стандарту. Далее вода фильтруется через стерилизующие фильтры с диаметром пор 0,22 мкм. Достижения оптимальных условий функционирования отдельных компонентов установки и повышения продолжительности срока службы стерилизующих фильтров позволило снизить стоимость полученной воды на 20%.

Ganzi G. C., Parise P. L. предложили комбинированную установку, имеет модуль обратного осмоса и установку непрерывной деионизации воды. Как показали результаты исследований, при такой комбинации получают особо чистую воду без применения химической регенерации и ионообменной обработки. Последние разработки в технологии непрерывной деионизации позволяют выводить растворенный углекислый газ без предварительного определения кислотно-основного показателя. Существующая комплексная система позволяет получать воду с низким содержанием микроорганизмов и пирогенов.

При подготовке особо чистой воды Nebel С. показал необходимость использования озона для дезинфекции деионизирующеого слоя и самой деионизированной воды. Гранулированный активированный уголь и деионизирующий слой в некоторых случаях способствуют росту микроорганизмов и одно УФ-облучение не может обеспечить полную стерилизацию обрабатываемой воды. Было установлено, что обработка образцов воды озоном в концентрации И2, 5 мг / л дает нулевой показатель наличия микроорганизмов в полученной воде. Далее обработанную воду деозонируют УФ-облучением.

Margardt К. было показано, что при разработке компонентов установок для получения особо чистой воды для фармацевтической промышленности, включающие устройства ионообменной обработки и установки обратного осмоса, необходимо включать технологические стадии дезинфекции систем обратного осмоса с последующим выводом озона и углекислого газа из воды.

Хаяси Акио (Япония) показал возможность получения особо чистой воды, соответствующей требованиям Британской фармакопеи. Обрабатываемая вода (объем 35 л) после прохождения через деионизатор поступала в кварцевый облучатель и обрабатывалась УФ-светом с одновременным пропусканием потока озона в течение 20 минут. Испытания показали соответствие воды существующим нормам, возможность выводить из нее при применении этого метода микроорганизмы, пирогены и химические примеси.

На западе только XXI фармакопея США позволяет получать воду для инъекций с использованием обратного осмоса с применением специального оборудования. В качестве такого в настоящее время используются: трехстадийная установка "Osmocarb" (Англия) с автоматической регулировкой работы, проводит тонкую очистку методом обратного осмоса, деминерализатора "ELGAMAT DUO ИИарисИ8" (Англия), что обессоливает воду методом ионного обмена, и др. Ультрафиолетовые модули выпускают зарубежные фирмы, такие как "Asahi Chemical" (Япония), "Hoffmann La-Roche" (Швейцария), "Еlа" (Великобритания) и др.

1. Экспериментальная часть

1.1 Характеристика конечной продукции производства

Основным документом в нашей стране, регламентирующим требования к воде для фармацевтических целей на настоящий момент является ФС 42-2620-97 "Вода для инъекций".

Также имеются фармакопейные статьи на воду как готовую продукцию: ФС 42-213-96 "Вода для инъекций в ампулах" и ФС 42-2998-99

К воде для инъекций предъявляются следующие требования: вода для инъекций должна пройти все испытания, как и "Aqua destillata". Кроме того, проверяют на отсутствие пирогенности. Вода для инъекций применяется свежедистиллированная.

Для приготовления инъекционных растворов на воде, лишенной углекислоты, воду кипятят непосредственно после дистилляции в течение 30 минут.

Хранения. В асептических условиях. Вода пригодна к употреблению в течение не более 24 часов.

Описание. Бесцветная прозрачная жидкость без запаха и вкуса. рН 5,0-6,8.

Кислотность или щелочность. К 10 мл воды прибавляют 1 каплю раствора метилового красного; появляется желтое окрашивание, переходящее в розовое от добавления не более 0,05 мл 0,01 Н, раствора соляной кислоты.

Сухой остаток.100 мл воды выпаривают досуха и сушат при 100-105° до постоянного веса. Остаток не должен превышать 0,001%,

Вещества, восстановители.100 мл воды доводят до кипения, добавляют 1 мл 0,01 Н. раствора перманганата калия и 2 мл разбавленной серной кислоты, кипятят 10 минут; розовая окраска воды должно сохраниться.

Угольный ангидрид. При взбалтывании воды с равным объемом известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 часа.

Нитраты и нитриты. К 5 мл воды осторожно доливают 1 мл раствора дифениламин; не должно появляться голубого окраса.

Аммиак 10 мл воды не должны содержать аммиака более 1 мл эталонного раствора, разбавленного водой до 10 мл (не более 0,00002% в препарате). Вода не должна давать реакций на хлориды, сульфаты, кальции и тяжелые металлы.

1.2 Химическая схемы производства

За исходную воду принимается вода очищенная.

Схема 1. заключается в одном процессе - дистилляции. Выбор схемы является наилучшим. Дистилляция, как метод получения воды для инъекций рекомендуется всеми международными организациями, курирующими производство лекарственных средств.

Схема 2. включает процесс обратного осмоса.

Обратный осмос. На стадии обратного осмоса вода очищается от органических соединений и солей. Удаление примесей происходит за счет пропускания воды через полупроницаемую мембрану при давлении, превышающем осмотическое. Для увеличения эффективности процесса используется тангенциальная подача воды к поверхности мембраны при рециркуляции. Оборудование представляет собой системы мембран. Мембраны имеют размеры пор 0,0005 -- 0,001 мкм.

Контроль систем обратного осмоса осуществляется измерением удельной электрической проводимости воды на выходе из системы.

На практике это реализуется в использовании двухступенчатой установки обратного осмоса. Получение воды для инъекций методом обратного осмоса не требует больших капитальных затрат. Недостатками этого метода является продолжительность времени обработки воды, высокие требования к мембранам и большие отходы воды.

Схема 3. включает комплекс процессов: деионизация, фильтрация через фильтр с диаметром отверстий 0,22 мкм.

Исходная вода для схемы 3. должна быть приготовлена по схемам:

а) включает следующие процессы: грубая фильтрация, умягчение, фильтрация через угольный фильтрдистилляция.

Грубая фильтрация позволяет удалять из воды частицы размером более SO-100 мкм. В качестве оборудования для грубой фильтрации используются фильтры с песчаной набивкой. Выбор сорта песка зависит от результатов анализа воды с учетом сезонных изменений. Фильтр периодически промывается. Исправность фильтра контролируется разностью давления воды до и после фильтра.

Умягчение позволяет понизить жесткость воды за счет удаления ионов кальция и магния. Умягчение позволяет значительно снизить содержание ионов перед подачей воды для очистки на ионообменники и мембраны обратного осмоса.

В качестве оборудования на этой стадии могут служить автоматические умягчители, работающие на принципе замены ионов кальция и магния ионами натрия. Умягчители периодически регенерируются раствором хлорида натрия. Исправность работы умягчителя можно контролировать периодическим измерением жесткости воды на входе и на выходе.

Первым промышленным способом устранения солей жесткости был содово-известковый, суть которого заключается в проведении следующих основных уравнений реакций:

Ca(HCO3)2+Ca(OH)2>v2CaCO3+2H2O;

CaCl2+Na2CO3>vCaCO3+2NaCl;

MgSO4+Ca(OH)2>vCaSO4+Mg(OH)2;

CaSO4+Na2CO3>vCaCO3+Na2SO4.

Содово-известковый метод имеет то преимущество, что отходами процесса умягчения являются шламы, образующиеся почти в строго стехиометрическом количестве и легко утилизируемые в хозяйстве. Вторым существенным преимуществом является сопутствующая умягчению глубокая очистка воды от многих органических и минеральных грубодисперсных примесей. Недостатками метода является громоздкость производства и недостаточно глубокое удаление солей жесткости. Остаточной содержание их в умягченной воде, как правило, не бывает менее 0,5 мг-экв/л. Примерно такой же концентрации достигает и гидратная щелочность воды.

С открытием синтеза ионитов с большой обменной емкостью содово-известковый метод при необходимости получения относительно небольших количеств умягченной воды был практически вытеснен ионообменным:

RNa+Ca(HCO3)2-R2Ca+2NaHCO3;

2RNa+Mg(HCO3)2-R2Mg+2NaHCO3;

2RNa+CaCl2-R2Ca+2NaCl;

2RNa+MgSO4-R2Mg+Na2SO4.

Регенерация катионита, т.е. перевод его в натриевую форму, производится пропусканием через слой сорбента 6-10%-ного раствора поваренной соли с последующей отмывкой водой:

R2Ca+2NaCl>2RNa+CaCl2.

Но для регенерации требуется расход поваренной соли, превышающий стехиометрический в 3-5 раз. В своё время на это не обращали внимания, так как удобство метода и его экономические показатели в сравнении с содово-известковым с лихвой перекрывали повышенные затраты такого дешевого реагента как поваренная соль.

В настоящее время запрещён сброс в водотоки сточных вод с минерализованностью, превышающей 1 г/л. Это исключает применение ионообменного метода умягчения в его первоначальном варианте. Выход из положения нашли в использовании содово-щелочного метода очистки, но уже не воды, а регенерата ионообменных установок. Этот процесс описывается реакциями:

CaCl2+Na2CO3>vCaCO3+2NaCl;

MgCl2+2NaOH>vMg(OH)2+2NaCl.

Для полного осаждения магния требуется небольшой избыток щелочи. После освобождения от выпавшего осадка и фильтрования раствор хлористого натрия может быть снова использован для регенерации. Избыточную щелочность нейтрализуют соляной кислотой.

Вода, умягченная с помощью ионитов, отличается от воды после содово-известкового умягчения, так как в ней сохраняются анионы угольной кислоты. Гидрокарбонат натрия в процессе гидролиза в парогенераторах превращается сначала в соду, а затем в щелочь. Их устраняют путем Н-катионирования, т.е. пропуская часть умягченной воды через катионит, отрегенерированный раствором кислоты. При этом происходит реакция:

2RH+CaCl2>R2Ca+2HCl.

Очевидно, что через катионит в Н-форме необходимо пропустить такую часть обрабатываемой воды, чтобы выделившегося количества сильных кислот было достаточно для разрушения присутствующих в воде гидрокарбонатов по реакции:

NaHCO3+HCl>NaCl+H2O+CO2.

Преимущество совмещения Na- и Н-катионирования заключается в частичной обессоливании воды за счет обмена ионов Ca2+, Mg2+, Na+ на ионы водорода.

В отличие от содово-известкового метода при ионообменном умягчении глубина процесса зависит от ряда регулируемых факторов, а в первую очередь от глубины регенерации ионитов.

Умягчение воды - один из наиболее надежных методов её предварительной очистки перед подачей на электродиализные ионы обратноосмотические аппараты, производящие частичную деминерализацию. Умягчение воды предотвращает опасность выпадения на поверхности мембран осадков карбоната или сульфата кальция, снижающих селективность мембран и эффективность опреснения воды.

Фильтрация через угольный фильтр позволяет снизить концентрацию органических веществ и хлора.

Используются стандартные патронные фильтры с активированным углем. Исправность фильтра контролируется разностью давления воды до и после фильтра.

При выборе этой схемы требуются большие капитальные затраты. Расход энергоносителей значительно больше, чем в других вариантах. Выбор схемы может быть целесообразен в случае, если предприятие уже имеет в наличии свободный дистиллятор и достаточное количество промышленного пара.

б) включает следующие процессы: подогрев и термостатирование, грубая фильтрация, умягчение, фильтрация через угольный фильтр, фильтрация через фильтр с диаметром отверстий 3 мкм, обратный осмос. Данная схема наиболее оптимальна. При этом не требуются большие капитальные затраты. Оборудование не требует частой регенерации. Эксплуатационные расходы невысоки.

Выбор схемы позволяет экономить как капитальные, так и эксплутационные затраты.

В промышленных условиях воду для инъекций получают из деминерализованной воды, т.е. освобожденной от нежелательных катионов и анионов. Для получения апирогенной воды необходимо удалить микроорганизмы и пирогенные вещества - это продукты жизнедеятельности и распада микроорганизмов, микробные клетки будут удаляться при перегонке в виде капельной фазы, что проводиться разными способами :

1. например, центробежный способ улавливания капельной фазы в аквадистилляторе;

2. в термокомпрессионном аквадистилляторе капельная фаза испаряется на стенках трубок испарителя;

3. в трехступенчатом горизонтальном аквадистилляторе - капельная фаза удаляется из пара в верхней части каждого корпуса барботируется через ситчатую тарелку с постоянным слоем проточной апирогенной воды

1.3 Технологическая схема производства

Рис. 1

1.4 Аппаратурная схема производства

Рис. 2 Установки получения воды для инъекций (WFI)

Рис. 3 Дистилляционный аппарат И-ДПЭ 4-3: 1 -- варочный котелок с холодильником, сливной и сбросной трубами; 2 -- крышка с контактной доской и зажимами; 3 -- электродное отопление; 4 -- вкладыш дефлегматора; 5 -- обесшламывающий сборник; 6 -- электрод для отвода тока замыкания на землю

Аквадистиллятор «Финн - аква»

Принцип работы: деминерализованная вода подается через регулятор давления (1) в конденсатор - холодильник (2) ,проходит теплообменники камер (3), нагревается в зону испарения (5). Здесь вода нагревается с помощью системы трубок, обогреваемых паром изнутри, до кипения. Создается интенсивный поток пара, который направляется во второй корпус, а капли с помощью центробежной силы прислоняются к стенкам и стекают вниз. Корпус 1 обогревается техническим паром, который выводится в линию технического конденсата.

Избыток деминерализованной воды через трубку (6) подается из корпуса (1) в корпус (2) и (3).Вода из корпуса 2 по трубе 7 и корпуса 3 по трубе 8 поступает в холодильник - конденсатор (2), а потом в специальный теплообменник для дистиллята 9 , где температура 80-95 С. Воду проверяют на качество, если не соответствует, то выбрасывают.

Преимущества перед другими аквадистиляторами:

1) образующемуся потоку пара придают спиралеобразное вращательное движение с большой скоростью, за счет центробежной силы капли прижимаются к стенкам аппарата и стекают в нижнюю часть испарителя;

2) в установке питающая вода подается снизу вверх;

3) дистиллят охлаждается в теплообменнике 9 до температуры 80-90С, что предотвращает рост микроорганизмов.

Условные обозначения: 1- регулятор давления; 2- конденсатор-холодильник; 3 - теплообменники трех корпусов камер предварительного нагрева; 4- парозапорное устройство линии технического конденсата; 5- система трубок теплообменников (зона испарения); 6 - трубы для подачи избытка воды в испаритель следующего корпуса; 7-труба для слива конденсата в конденсатор-холодильник; 8 - труба для поступления вторичного пара в холодильник 2; 9 - специальный теплообменник для дистиллята.

Рис. 4 Аквадистиллятор «Финн-аква».

Термокомпрессионный аквадистиллятор

Принцип работы состоит в следующем: деминерализованная вода подается в регулятор давления (4) и через регулятор уровня поступает в нижнюю часть конденсатора - холодильника (1), заполняет его межтрубное пространство и поступает в камеру предварительного нагрева (5), а из нее - в трубки испарителя (6). Здесь вода закипает и пар заполняет межтрубное пространство (2) и откачивается компрессором (3). В камере испарения создается разряжение и вода в трубках закипает. Вторичный пар в компрессоре сжимается, проходит в межтрубное пространство и нагревает воду в трубках до кипения. В межтрубном пространстве образуется конденсат, который направляется в верхнюю часть конденсатора холодильника, охлаждается и собирается в сборник дистиллята.

Трехступенчатый горизонтальный аквадистиллятор состоит из трех корпусов, может быть и более, работает на деминерализованной воде. Корпус (1) представляет собой испаритель с трубчатым паровым нагревателем (5), технический греющий пар подается в верхнюю его часть, а отработанный выводится в нижней части. Внутрь испарителя заливается нагретая в конденсаторе-холодильнике (2) вода деминерализованная до постоянного уровня и нагревается до кипения.

Рис. 5 Термокомпрессионный аквадистиллятор: 1-конденсатор - холодильник; 2-паровое пространство камеры предварительного нагрева; 3 - компрессор;4-регулятор давления деминерализованной воды; 5 - камера предварительного нагрева воды деминерализованной; 6-трубки испарителя; 7-регулятор уровня деминерализованной воды; 8-сборник дистиллята.

Пар верхней части каждого корпуса проходит через ситчатую тарелку с постоянным слоем проточной апирогенной воды (4). Барботаж способствует эффективному задержанию капель из пара. Очищенный пар поступает в нагреватель второго корпуса и нагревает воду до кипения. Вторичный пар второго корпуса барботирует через слой воды в ситчатой тарелке и поступает в нагреватель третьего. Очищенный вторичный пар третьего корпуса поступает в конденсатор-холодильник 2 - общий для всех корпусов. Капельная фаза удаляется из пара.

Преимущества аквадистиллятора объясняются тем, что вода получается достаточно хорошего качества:

1) в корпусах-испарителях большая высота парового пространства;

2) удаление капельной фазы производится за счет того, что вторичный пар проходит через ситчатую тарелку с постоянным слоем проточной апирогенной воды, т.е. барботаж способствует эффективному задержанию капель из пара.

Рис. 6 1 корпус - испаритель; 2- конденсатор-холодильник; 3- сборник дистиллята; 4 - ситчатая тарелка с апирогенной водой; 5 - испаритель с трубчатым паровым нагревателем; 6 - воздушный фильтр.

Рис. 7 Схема аппарата АП-2М2 для наружной мойки ампул: 1- корпус; 2 - промежуточная емкость; 3 - кассета с ампулами; 4 - душирующее устройство; 5 - крышка; 6 - рабочая емкость; 7 - система клапанов.

Рис. 8 Устройство аппарата модели АП - 30 для параконденсационной мойки ампул: 1 - емкость аппарата; 2 - крышка; 3 - пневмоцилиндр для подъема и опускания крышки; 4 - холодильник; 5 - держатель кассеты; 6 - кассета с ампулами; 7 - распылитель для подачи холодной воды в холодильник; 8 - клапаны на сливных патрубках; 9 - сборник; 10 - трубопровод подачи пара; 11- трубопровод подачи обессоленной воды; 12 - трубопровод подачи дистиллированной воды; 13 - фильтр на воздушной подушке.

Рис. 9 Термокомпрессионный аквадистиллятор

Рис. 10 Схема аппарата для наполнения ампул (модель АП-4М2): 1- корпус аппарата; 2 - крышка; 3 - кассета с ампулами; 4 - ложное дно; 5 - патрубок подачи раствора; 6 - клапан нижнего спуска; 7- бак для слива раствора из аппарата; 8- контактный вакуумманометр (наполнение аппарата); 9- контактный вакуумманометр (дозирование раствора при наполнении ампул); 10 - трубопровод подачи раствора; 11 - вакуумпровод.

Рис. 11 Устройство машины для запайки ампул с инертной средой: 1 - станина; 2- питатель для ампул; 3 - барабан для заполнения ампул инертным газом; 4- ротор; 5 - горелка; 6 - кассета для сбора запаянных ампул; 7- патрубок для отсоса продуктов горения.

Рис. 12 Устройство парового стерилизатора: 1 - корпус; 2- крышка; 3 - теплоизоляция; 4 - стерилизационная камера; 5 - клапан предохранительный; 6 - пульт управления; 7 - полка; 8 - подача острого пара.

Рис. 13 Устройство полуавтомата для маркировки ампул: 1 - корпус; 2 - регулирующее устройство; 3 - ванна; 4 - ракель; 5 - формный цилиндр; 6 - офсетный цилиндр; 7 - бункер; 8 - барабан подачи; 9 - направляющие.

Рис. 14 Вариант общей схемы водоподготовки для получения воды для фармацевтических целей

Рис. 15 линия получения, хранения и распределения воды очищенной и воды для инъекции

2. Характеристика продукта

Действующее вещество

Aqua pro injectionibus - Вода для инъекций

Фармакологическая группа

Растворитель для приготовления лекарственнных форм для инъекций

Фармакологическое действие

Растворитель. В теле человека вода необходима для постоянных обменных процессов. В нормальных условиях вода выделяется с мочой, калом, с потом и при дыхании. Потеря жидкости с потом, при дыхании и с каловыми массами происходит независимо от введения жидкости. Поддержание адекватной гидратации требует 30-45 мл/кг/сут воды у взрослых, а у детей - 45-100 мл/кг, у грудных детей - 100-165 мл/кг.

Вода для инъекций служит для приготовления инфузионных и инъекционных растворов, обеспечивая оптимальные условия для совместимости и эффективности субстратов и воды.

Фармакокинетика

При введении постоянно чередующейся воды и электролитов поддержание гомеостаза осуществляется почками.

Показания к применению препарата

В качестве носителя или разбавляющего раствора для приготовления стерильных инфузионных (инъекционных) растворов из порошков, лиофилизатов и концентратов. Применяется с целью приготовления стерильных растворов в т.ч. для п/к, в/м, в/в введения.

Наружно для промывания ран и увлажнения перевязочного материала.

Режим дозирования

Доза и скорость введения должны соответствовать инструкциям по дозировке разводимых лекарственных средств.

Приготовление растворов лекарственных средств с использованием воды для инъекций должно производиться в стерильных условиях (вскрытие ампул, наполнение шприца и емкостей с лекарственными средствами).

Противопоказания к применению препарата

В случае, если для приготовления раствора лекарственного средства указан другой растворитель.

Особые указания

Вода для инъекций не может быть прямо введена внутрисосудисто из-за низкого осмотического давления (риск гемолиза!).

Лекарственное взаимодействие

При смешивании с другими лекарственными средствами (инфузионные растворы, концентраты для приготовления инфузии; инъекционные растворы, порошки, сухие вещества для приготовления инъекции) необходим визуальный контроль на совместимость (может иметь место фармацевтическая несовместимость).

Требования по физико-химическим показателям и микробиологической чистоте, предъявляемые к Воде для инъекций различными фармакопеями

Таблица 1

Показатели

ФС 42-2620-97

EP 5-ое изд. 2005 г.

BP 2004 г.

JP 14-ое изд. 2002 г.

USP 28-ое изд. 2005 г.

Удельная электропроводность (УЭ)

-

1,3 мS*см-1 (25оС) в линии; 2,1 мS*см-1 (25оС) в лаборатории

1,3 мS*см-1 (25оС) в линии; 2,1 мS*см-1 (25оС) в лаборатории

-

1,3 мS*см-1 (25оС) в линии; 2,1 мS*см-1 (25оС) в лаборатории

Общий органический углерод (ООУ)

-

0,5 мг/л5)

0,5 мг/л

0,5 мг/л для ВДИ, полученной обратным осмосом в комбинации с ультра-фильтрацией

0,5 мг/л

Микро биологическая чистота

100 м.о./мл при отсутствии сем. Enterobacteriaceae, Staphylococcus aureus, Pseudomonas aeruginosa

10КОЕ/ 100мл

10КОЕ/ 100мл

100 м.о./мл

10КОЕ/ 100мл

Пирогенность

Апирогенна (биологический метод)

-

-

-

-

Бактериальные эндотоксины (БЭ)

0,25 ЕЭ/мл (изменение №1), альтернативный биологическому

0,25 ЕЭ/мл

0,25 ЕЭ/мл

0,25 ЕЭ/мл

0,25 ЕЭ/мл

Примечания:

1. Уровни корректирующих действий приведены в разделе «Получение» ФС «Вода для инъекций» («Water for injection»);

2. Уровни корректирующих действий приведены в ОФС <1231> «Вода для фармацевтических целей» («Water for pharmaceutical purposes»);

3. Требования приведены в тесте ФС EP 0169 «Вода для инъекций. Требования и процедура определения аналогичны ФС USP 28-го изд. «Удельная электропроводность воды» («Water conductivity»);

4. Требования приведены в ФС «Удельная электропроводность воды» («Water conductivity»);

Требования приведены в ФС «Общий органический углерод» («Total organic carbon»);

3. Технологический процесс производства

3.1 ВР 1.1 Подготовка помещений

Производство стерильных лекарственных средств должно быть организовано в чистых помещениях (зонах) с воздушными шлюзами для обеспечения доступа персонала и (или) перемещения оборудования и материалов. В чистых помещениях необходимо поддерживать соответствующий уровень чистоты и подавать воздух через фильтры необходимой эффективности.

Подготовка первичной упаковки, производство и наполнение должны выполняться в отдельных чистых зонах.

Чистые помещения для производства стерильных лекарственных средств классифицируются в соответствии с требованиями к окружающей среде. Каждая производственная операция требует определенного уровня чистоты окружающей среды в эксплуатируемом состоянии.

Для обеспечения соответствия чистых помещений требованиям, предъявляемым к эксплуатируемому состоянию, их проект должен предусматривать достижение заданных классов чистоты воздуха в оснащенном состоянии.

Оснащенное состояние - состояние, в котором чистое помещение функционирует, технологическое оборудование полностью укомплектовано, но персонал отсутствует.

Эксплуатируемое состояние - состояние чистого помещения, в котором технологическое оборудование функционирует в требуемом режиме с заданным числом работающего персонала.

Чистые зоны при производстве стерильных лекарственных средств подразделяются на четыре типа:

А - локальная зона для проведения операций, представляющих высокий риск для качества продукции, например: зоны наполнения, укупорки, вскрытия ампул и флаконов, соединения частей оборудования в асептических условиях;

В - зона, непосредственно окружающая зону А и предназначенная для асептического приготовления и наполнения;

С и D - чистые зоны для выполнения менее ответственных стадий производства стерильных лекарственных средств (таблица 2).

Таблица 2. Классификация зон по загрязнению воздуха частицами

Тип зоны

Максимально допустимое число частиц в 1 куб. м воздуха при размере частиц, равном или большем

в оснащенном состоянии

в эксплуатируемом состоянии

0,5 мкм

5 мкм

0,5 мкм

5 мкм

A

3500

1

3500

1

B

3500

1

350000

2000

C

350000

2000

3500000

20000

D

3500000

20000

Не регламентируется

Не регламентируется

Помещения 1-го класса чистоты предназначаются для выгрузки и наполнения стерильных ампул. В помещениях 2-го класса проводится приготовление растворов, фильтрование, мойка ампул, сушка и стерилизация. Помещение 3-го класса - для мойки и стерилизации вспомогательных материалов. В помещениях 4-го класса осуществляется мойка дрота, выделка ампул и др.

Требования к другим параметрам (температуре, относительной влажности и др.) зависят от продукта и характера технологических операций. Эти параметры не связаны с классами чистоты.

Таблица 3. Пределы допустимого микробного загрязнения чистых зон в эксплуатируемом состоянии

Тип зоны

Рекомендуемые пределы микробного загрязнения

в воздухе, КОЕ/куб. м

седиментация на чашку диаметром 99 мм, КОЕ за 4 ч.

контактные пластины диаметром 55 мм, КОЕ/пластина

отпечаток перчатки (5 пальцев), КОЕ/перчатка

A

< 1

< 1

< 1

< 1

B

10

5

5

5

C

100

50

25

-

D

200

100

50

-

3.2 ВР 1.2 Подготовка оборудования

Ленты конвейеров не должны пересекать разделительный барьер между зонами А или В и рабочей зоной с меньшей чистотой воздуха, если только сама лента не подвергается непрерывной стерилизации.

Конструкция, установка и расположение оборудования, мест соединения и зон обслуживания должны предусматривать возможность работы с оборудованием, его техническое обслуживание и ремонт снаружи чистой зоны. В случае необходимости проведения стерилизации ее следует выполнять после максимально полной разборки оборудования.

Если при проведении технического обслуживания или ремонта оборудования, находящегося в чистой зоне, был нарушен уровень чистоты (стерильности), то перед возобновлением производства следует выполнять соответствующую очистку, дезинфекцию и/или стерилизацию этого оборудования (зоны).

Получение воды требуемого качества должно гарантироваться проектом, конструкцией, монтажом и техническим обслуживанием систем подготовки и распределения воды. Не допускается эксплуатация оборудования подготовки воды сверх проектной мощности. Приготовление, хранение и распределение воды для инъекций следует выполнять так, чтобы исключить рост микроорганизмов, например за счет постоянной циркуляции воды при температуре выше плюс 70°С.

Все критическое оборудование (стерилизаторы, системы подготовки и фильтрации воздуха, воздушные и газовые фильтры, системы приготовления, хранения и распределения воды и пр.) подлежат аттестации (валидации) и плановому техническому обслуживанию. Их повторный ввод в действие должен быть разрешен в установленном порядке.

3.3 ВР 1.3 Подготовка персонала

В чистых зонах должно находиться минимально необходимое количество персонала, что является особенно важным при асептическом производстве. Проверки и контрольные операции следует, по возможности, проводить, находясь за пределами чистых зон.

Весь персонал (в т.ч. персонал, занятый очисткой и техническим обслуживанием), работающий в вышеупомянутых зонах, должен проходить систематическое обучение по вопросам производства стерильных лекарственных средств, включая гигиену и основы микробиологии.

Не допускается вход в зоны стерильного производства персонала, работающего с материалами из тканей животных или культурами микроорганизмов, которые не используются в текущем технологическом процессе, за исключением особых случаев, при которых необходимо соблюдение специальных инструкций для входа в эти зоны.

Необходимо соблюдать требования к личной гигиене и чистоте. Персонал, занятый в производстве стерильных лекарственных средств, должен знать порядок оповещения руководства (службы качества) о любых факторах, которые могут привести к повышению уровня загрязнения сверх допустимой нормы. Следует организовать контроль за состоянием здоровья персонала. Переодевание и мытье следует выполнять в соответствии с инструкциями, чтобы свести к минимуму риск загрязнения одежды, предназначенной для чистых зон, и внесения загрязнения в чистые зоны. В чистых зонах персоналу запрещается носить наручные часы и ювелирные украшения, а также применять косметику. Одежда и ее качество должны соответствовать технологическому процессу и типу зоны. Ее нужно носить так, чтобы обеспечить защиту продукции от загрязнений.

Зона D. Головной убор должен закрывать волосы. Борода также должна быть закрыта (специальной маской). Следует носить защитный костюм общего назначения, соответствующую обувь или бахилы, надеваемые поверх обуви. Должны быть приняты меры для предотвращения проникновения любого загрязнения в чистую зону извне.

Зона С. Головной убор должен закрывать волосы. Борода и усы также должны быть закрыты. Следует носить костюм (цельный или состоящий из двух частей), плотно облегающий запястья, с воротником-стойкой и соответствующую обувь или бахилы. Одежда и обувь не должны выделять волокна или частицы.

Зоны А и В. Головной убор должен полностью закрывать волосы, а также бороду и усы (при их наличии). Края головного убора должны быть убраны под воротник костюма. Следует носить маску, чтобы предотвратить распространение капель, стерильные, неопудренные резиновые или полимерные перчатки и стерильные (или дезинфицированные) бахилы. Нижняя часть штанин должна быть заправлена внутрь бахил, а рукава одежды - в перчатки. Защитная одежда не должна выделять волокна или частицы и должна удерживать частицы, отделяющиеся от тела.

Наружная одежда не должна попадать в помещения для переодевания, ведущие в зоны В и С. Каждый работник в зонах А и В должен быть обеспечен чистой стерильной одеждой на каждую смену. Во время работы перчатки следует регулярно дезинфицировать. Маски и перчатки следует менять, по крайней мере, один раз в смену.

Одежда, предназначенная для чистой зоны, должна очищаться и храниться таким образом, чтобы исключить накопление загрязнений, которые могут от нее впоследствии отделиться.

3.4 ВР 2.1 Подготовка ампул

Подготовка ампул включает их получение. Ампулы получают из стеклодрота (стеклянные трубки одинаковой длины и толщины, но разного диаметра). Стеклодрот калибруют, чтобы получить ампулы одинакового объема. Калибровка проводится вручную или при помощи приспособлений по наружному диаметру.

Мойка стеклодрота производится в установке для мойки и сушки стеклянных трубок ( стеклодрота) камерного типа.Трубки загружаются в контейнер в вертикальном положении, и он закатывается внутрь камеры с помощью пневмопривода.Двери камеры герметизируются и включается система автоматического управления режима мойки. Камера с трубками заполняется водопроводной водой, жидкость нагревается до кипения. Замачивание продолжается в течение 1 часа при температуре 60°С. Затем проводится барботирование подачей пара в течение 40 минут. После этого жидкость из камеры сливается. В душирующее устройство подается под давлением деминерализованная вода. С помощью пневмоцилиндров форсунки душирующего устройства перемещаются в горизонтальной плоскости, душирование проводится в течение 30-60 минут. Жидкость из камеры сливается.

Сушка производится горячим профильтрованным воздухом с температурой 60°С - 15-20 минут.

Качество мойки проверяется визуально путем осмотра внутренней поверхности при освещении пучка трубок с противоположной стороны. Поверхность должна быть ровная без заметных механических включений.

Из подготовленного стеклодрота изготавливают ампулы на полуавтомате типа «Амбег». По конструкции - 16 или 30-тишпиндельный. Стеклянная трубка вставляется через патрон верхнего шпинделя до упора, затем поднимается по копиру патрон нижнего шпинделя, опирающийся на ролик, и захватывает конец трубки. Включается горелка. В это время дрот вращается вокруг своей оси и размягчается. Горелка тухнет и нижний патрон опускается, растягивая дрот, получается шейка ампулы. Затем дрот подходит к другой горелке, которая имеет острое пламя и перерезает трубку. Перерезанные концы трубки заплавляются. Одновременно получается донышко новой ампулы и герметизируется готовая ампула, которая выпадает из патрона на лоток. Цикл повторяется.

Далее проводят отжиг ампул для снятия внутреннего напряжения в стекле и увеличения перекисной устойчивости ампул. Для отжига используют печи с газовым (или электрическим) обогревом. Ампулы нагревают до 560-580°С. Затем выдерживают при этой же температуре 7-10 минут. Охлаждают постепенно: сначала до 200°С в течении 30 минут, затем до 60°С и далее до комнатной температуры в течении 5 минут.

Вскрытие капилляров проводится так, чтобы ампулы получались одинаковой высоты. Концы капилляров на месте вскрытия должны иметь ровные и гладкие края.

Вскрытие ампул проводят на полуавтоматах роторного типа. В качестве транспортера применяется ротор с гнездами для ампул, они перемещаются к вращающемуся дисковому ножу. Возле ножа ампула начинает вращаться за счет трения ее о неподвижную пластину, укрепленную на корпусе. Дисковый нож делает на капилляре круговой надрез, на месте которого происходит вскрытие за счет термоудара при нагревании горелкой. После вскрытия капилляр оплавляется горелкой, и ампула поступает в бункер для набора в кассеты.

Вначале осуществляют наружную мойку ампул душированием (рисунок 1). Кассеты с ампулами помещают в ванну на подставку и душируют деминерализованной водой с температурой 60°С. Во время мойки кассета с ампулами совершает вращательное движение под давлением струй воды, что способствует одинаковой очистке всей наружной поверхности.

Далее производят внутреннюю мойку ампул параконденсационным методом на аппарате АП-30 (рисунок 2). Через холодильник и аппарат пропускают пар. После заполнения паром в холодильник подают холодную воду, пар конденсируется. Создается вакуум, который частично высасывает воздух из ампул. Эта операция повторяется несколько раз до полного удаления воздуха из ампул. В аппарат подают воду не ниже 80°С, которая заполняет ампулы. Затем подают в холодильник холодную воду, пар конденсируется, создается вакуум, при котором вскипает вода внутри ампулы и выбрасывается наружу. Цикл повторяется несколько раз, очищенные ампулы извлекают из аппарата.

3.5 ВР 2.1 Подготовка растворителя

Вода для инъекций - вода, использующаяся в качестве растворителя при изготовлении лекарственных средств для парентерального применения, или для растворения, или для разведения субстанций либо лекарственных средств для парентерального применения перед использованием.

Воду для инъекций получают из воды деминерализованной.

Воду деминерализованную можно получать с помощью ионного обмена (рисунок 3) и с помощью методов разделения через мембрану (обратного осмоса, электродиализа, ультрафильтрации и др.)

Вода для инъекций получается методом перегонки питьевой или обессоленной воды в специальных аквадистилляторах. Основными узлами аквадистилляторов являются испаритель, конденсатор и сборник.

Для получения воды для инъекций применяют различные аппараты. Можно использовать термокомпрессионный аквадистиллятор (рисунок 4). Питание данного апппарата осуществляется водой деминерализованной. Вода в данный прибор подается через регулятор давления (4) и через регулятор уровня поступает в нижнюю часть конденсатора-холодильника (1), заполняет его межтрубное пространство, направляется в камеру предварительного нагрева (5), а из нее - в трубки испарителя (6). Здесь предварительно нагретая вода доводится до кипения и образующийся пар откачивается из парового пространства (2) компрессором (3). В камере испарения создается небольшое разрежение закипание воды в трубках - при температуре 96°С. Вторичный пар в компрессоре снимается, его температура повышается до 103-120°С. Как греющий он проходит в межтрубное пространство испарителя и нагревает воду в трубках до кипения. В межтрубном пространстве образуется конденсат, который направляетсся в верхнюю часть конденсатора-холодильника, охлаждается и собирается в сборнике дистиллята. Качество воды апирогенной, получаемой в этом аппарате, высокое, так как капельная фаза испаряется на стенках трубок.

Нагревание и кипение в трубках испарителя происходит в тонком слое равномерно и без перебросов. Задерживанию капель из пара способствует также высота парового пространства.

Наиболее часто в промышленном производстве применяют аквадистилляторы- многоступенчатые; они имеют три и более корпусов, расположенных вертикально или горизонтально.

Дистилляторы Finn-Aqua предназначены для перегонки воды, прошедшей ионообменную очистку.

Работа дистилляционных колон Finn-Aqua основана на двух принципах: мгновенном испарении подаваемой воды и механическом центробежном отделении пирогенных веществ и механических включений.

Возможно получение стерильной и апирогенной воды методом ультрафильтрации или обратного осмоса.

3.6 ВР 2.3 Подготовка фильтров

Фильтрующие материалы должны максимально защищать раствор от контакта с воздухом; задерживать очень мелкие частицы и микроорганизмы; обладать высокой механической прочностью, чтобы препятствовать выделению волокон и механических включений; противодействовать гидравлическим ударам и менять свои функциональные характеристики; не изменять физико-химический состав и свойства фильтрата; не взаимодействовать с лекарственными, вспомогательными веществами и растворителем; выдерживать тепловую стерилизацию.

Фильтр ХНИХФИ состоит из корпуса и перфорированной трубки, на которую плотно и ровно наматывается фильтрующий материал. Корпус фильтра изготовлен из нержавеющей стали. На внутренний цилиндр укрепляется два слоя ткани и слой марли толщиной 1,5 см. Цилиндр закрепляют в корпусе фильтра. Фильтр устанавливают в вертикальном положении и присоединяют к нему трубопроводы, подающие жидкость и отводящие фильтрат. Высота столба жидкости должна быть около 1 м.

Подготовка фильтра осуществляется подачей воды очищенной в выпускной патрубок в течение 1,5 часов.

3.7 ТП 1.1 Наполнение ампул

Проводится в помещениях первого (А) класса чистоты с соблюдением всех правил асептики. Фактический объем наполнения ампул должен быть больше номинального, чтобы обеспечить нужную дозу при наполнении шприца. ГФРБ устанавливает объем заполнения 10,5 мл для ампул с номинальным объемом 10 мл.

Осуществляется наполнение в автоматах для наполнения (рисунок 5) и запайки ампул шприцевым способом (рисунок 6) с помощью мембранного дозатора.

Инъекционная жидкость под давлением чистого профильтрованного воздуха из резервуара подается в емкость с раствором для наполнения ампул. Полые иглы опускаются внутрь ампул, расположенных на конвейере. Вначале в иглу подается инертный газ, из ампулы вытесняется воздух, затем наливается раствор, вновь струя инертного газа. Ампулы тотчас подаются не запайку.

Для проверки точности объема наполнения берется требуемое ГФ количество ампул от партии; объем раствора, выбранного из ампулы калибровочным шприцем при температуре 20±2°С, после вытеснения воздуха и заполнения иглы не должен быть меньше номинального.

3.8 ТП 1.2 Запайка ампул

Запайка ампул осуществляется в автомате для наполнения и запайки ампул. На участке запайки с пневматической оттяжкой капилляра ампула прижимается к роликам, вращается, горелка разогревает участок капилляра в месте запайки, а струи сжатого воздуха оттягивают отпаявшуюся часть. Запаянная ампула по транспортеру толкателем подается в приемный питатель.

3.9 ТП 1.3 Проверка качества запайки

Заполненную кассету с ампулами ставят в вакуум-аппарат капиллярами книзу, а затем донышками книзу и поочередно создают вакуум. Раствор из ампул, имеющих незапаянные капилляры, а также трещины отсасывается. Его собирают, фильтруют и вновь используют для заполнения ампул.

3.10 ТП 2.1 Стерилизация

Ампулы с раствором стерилизуют насыщенным паром при избыточном давлении 0,11 Па и температуре 120°С в паровом стерилизаторе АП-7 (рисунок 7). Он имеет две двери, через одну происходит загрузка нестерильной продукции, через другую - выгрузка простерилизованной. Корпус стерилизатора обогревается глухим паром, затем в стерилизующую камеру для вытеснения воздуха подается острый пар. Отсчет времени начинается с момента достижения заданного давления по манометру. Стерилизатор оснащен автоматической контрольной аппаратурой. Кроме того, в 4 разные точки стерилизационной камеры перед стерилизацией помещают максимальные термометры и регистрируют их показания. Продолжительность стерилизации - 8 минут.

3.11 ТП 2.2 Проверка герметичности ампул

После стерилизации контроль герметичности ампул проводится путем немедленного полного погружения ампул в кассетах в емкость с раствором метиленового синего на 20-25 минут, создают давление 100±20 кПа, затем его снижают. Ампулы с попавшим подкрашенным раствором бракуют. Герметичные ампулы упаковывают.

3.12 ТП 3 Стандартизация

1 Подлинность (идентификация).

2 Отсутствие механических включений.

Контроль растворов на отсутствие механических загрязнений осуществляется невооруженным глазом в затемненном помещении на белом и черном фонах, освещенных электрической лампочкой 60 ватт. Расстояние от глаз контролера до ампул 25 см.Контролер берет ампулу в руку, вносит в зону просмотра в положении вверх донышками и просматривает на белом и черном фонах. Затем ампулы плавным движением переворачивают в положение вниз донышками и также просматривают на белом и черном фонах.

3 Стерильность.

Из простерилизованных ампул часть отбирается на бактериологический анализ в бактериологическую лабораторию. Там производиться вскрытие ампул в строго асептических условиях и посев раствора на питательные среды. Если хотя бы из одной ампулы раствор дал рост, вся серия считается нестерильной.

4 Пирогенность.

Испытание на пирогенность проводится в бактериологической лаборатории биологическим методом. Метод основан на измерении температуры тела кроликов после введения раствора испытуемого вещества.

Испытуемый изотонический раствор натрия хлорида подогревают до 37°С и вводят в ушную вену кролика в объеме 10 мл в течение 2 минут. Перед введением дважды через каждые 30 минут измеряют температуру тела кроликов, результаты должны отличаться не более чем на 0,2°С. Результат последнего измерения принимают за исходную температуру. После введения испытуемого раствора температуру измеряют трижды через 1 час. Раствор лекарственного вещества считают не пирогенным, если сумма повышений температуры меньше или равна 1,4°С. Если эта сумма превышает 2,2°С, то раствор считают пирогенным.

6 Бактериальные эндотоксины.

Испытание на бактериальные эндотоксины проводят для определения наличия эндотоксинов, источником которых являются грамотрицательные бактерии, с использованием лизата амебоцитов мечехвоста Limulus polyphemus.

Существует три принципа проведения данного испытания: принцип гель-тромба, основанный на образовании геля; турбидиметрический принцип, основанный на помутнении в результате расщепления эндогенного субстрата; хромогенный принцип, основанный на появлении окраски после расщепления синтетического пептидно-хромогенного комплекса.

Испытание выполняют в условиях, не допускающих загрязнения посторонними эндотоксинами. Всю стеклянную посуду и другую термоустойчивую аппаратуру депирогенизируют в сухожаровом шкафу с использованием процесса с подтвержденной эффективностью. Общеприняты минимальные значения времени и температуры обработки, составляющие 30 минут и 250°С, соответственно. При использовании пластиковой аппаратуры, например, микротитрационных планшетов и наконечников для автоматических пипеток, следует продемонстрировать отсутствие на ней поддающихся определению эндотоксинов и мешающих факторов.

Исходный стандартный раствор эндотоксина готовят и хранят, следуя спецификациям, приведенным на листке-вкладыше и этикетке.

3.13 ТП 4 Этикетирование

Нанесение надписи на ампулы производится на полуавтомате, устройство которого изображено на рисунке 8.

В бункер (7) загружают ампулы и барабаном подачи (8) направляют к офсетному цилиндру, на котором нанесены буквы и цифры надписи, вдавленные виде углубления в 40-50 мкм. Формный цилиндр (5) , вращаясь в ванне с быстровысыхающей краской для глубокой печати, подает ее на офсетный цилиндр. Избыток краски с помощью ракеля (4) и регулирующего устройства снимается с поверхности офсетного цилиндра и остается в глубине надписи. При контакте надпись наноситься на ампулу и быстро высыхает.

4. УМО Упаковка, маркировка

Ампулы нейтрального стекла АС-3 с раствором упаковывают в коробки из картона по 10 штук. В каждую коробку вкладывают нож для вскрытия ампул. На коробку наклеивают этикетку из бумаги этикетной или писчей. Далее упаковывают в транспортную тару.

Материальный баланс

Таблица 4 Состав

Наименование

Состав

Воды для инъекций

229940 мл

Количество ампул

45988 шт

Номинальный объем заполнения ампул-- 5 мл.

Фактический объем-- 5 мл.

Соответственно состав на 5*45988=229940 мл:

Количество ампул 45988 шт.

Материальные потери на различных стадиях производства:

Кр= 1,20

229940 * 1,2 = 275928 мл

275928-229940= 45988мл

Таблица 5. Материальный баланс

Израсходовано

Получено

Наименование сырья и полупродуктов

Кол-во

Наименование конечного продукта, потерь

Количество

Вода очищенная

275928 мл

Вода для инъекций

229940 мл

Итого:

275928 мл

Потери

45988 мл

Итого:

275928 мл

5. Переработка и обезвреживание отходов производства

В процессе производства воды для инъекций отходов не образуется.

5.1 Контроль производства

Воду для инъекций используют свежеприготовленной или хранят при температуре от 5° до 10° С. При подготовке запаса воды для инъекций ее необходимо стерилизовать сразу же после перегонки в плотно закрытых сосудах при 120° С в течение 20 минут или при 100° С - в течение 30 минут, или подогревать в сборнике до температуры 80-95° С в процессе перегонки, сбора и затем хранить в асептических условиях не более 24 часов.

Проверка качества воды для инъекций. В аптеках качество воды для инъекций проверяется химическими методами ежедневно с каждого баллона согласно требованиям ДФ на отсутствие хлоридов, сульфатов, солей кальция, возобновляемых веществ, аммиака и угольного ангидрида. Ежеквартально вода направляется в контрольно-аналитическую лабораторию для полного химического анализа. В этом случае, помимо вышеупомянутых анализов, в воде определяют рН, кислотность или щелочность, наличие сухого остатка, нитратов, нитритов, тяжелых металлов.

Бактериологический контроль проводится не реже 2 раз в квартал. В 1 мл очищенной воды, используемой для изготовления растворов для инъекций сразу же после перегонки, предельно допустимое содержание микроорганизмов не должно превышать 10-15 колоний.

Ежеквартально вода для инъекций контролируется на пирогенность (ГФ XI, с.183), так как исследования на восстанавливающие вещества с калия перманганатом не может указывать на отсутствие пирогенных веществ.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.