Прибор для измерения скорости кровотока

Использование в медицине приборов на основе доплеровского эффекта, электроакустические принципы построения. Сущность доплеровского эффекта. Разработка прибора для измерения кровотока на основе доплеровского эффекта с применением ультразвуковых волн.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 23.10.2010
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Включать прибор можно в любую сетевую розетку, для чего он снабжается сетевым шнуром с вилкой, входящей, как в обычную розетку, так и в розетку с защитными контактами.

Ограниченное применение изделий второго класса объясняется рядом трудностей конструктивного характера. Применение пластмассового корпуса, обладающего необходимой механической прочностью, ограничено аппаратами небольших габаритов, а защитная изоляция сетевой цепи приводит к увеличению веса и габаритов трансформатора, усложнению технологии его производства. В разрабатываемом портативном аппарате для ультразвукового исследования предусмотрен металлический корпус самого прибора, и пластиковый корпус датчика, соприкасающегося с телом человека.

В зависимости от степени защиты от поражения электрическим током оборудование подразделяется на четыре типа, кроме тех классов по ГОСТ 12.2 025-76:

Н - не имеющие рабочей части, находящиеся вне пределов досягаемости пациента и имеющие нормальную степень защиты;

В - находящиеся в пределах досягаемости пациента, имеющие рабочую часть, предназначенную для непосредственного контакта с пациентом (исключение непосредственный контакт с сердцем), и имеющие повышенную степень защиты;

BF - имеющие повышенную степень защиты и изолированную от доступных для прикосновения рабочих частей, т. е частей подключаемых к пациенту;

СF - имеющие наивысшую степень защиты и изолированную рабочую часть, позволяющую осуществлять непосредственный контакт с сердцем.

Несмотря на перечисленные недостатки и трудности изготовления аппаратуры второго класса, защита от напряжения прикосновения с помощью защитной изоляции в большинстве случаев является наиболее прогрессивным методом, и развитие электромедицинского приборостроения, несомненно, приведет к широкому применению приборов и аппаратов, выполненных по второму классу.

Благодаря тому, что разрабатываемом нами приборе, в процессе его работы не одна из токопроводящих частей не соприкасается не с пациентом, не с медперсоналом, обслуживающем прибор (т.к все рабочие поверхности выполнены из диэлектрического пластика), то при соблюдении элементарных правил по эксплуатации прибора, он не представляет угрозы для окружающих. А ультразвуковое излучение, на которое способен прибор, не имеет медицинских противопоказаний, и используется даже для обследования беременных женщин.

Основные требования к конструкции и изготовлению аппаратуры могут быть сформулированы следующим образом:

необходимо принять особые меры к изолинии сетевой цепи (сетевой шнур - сетевой выключатель - предохранитель - блок питания);

сетевой шнур с вилкой должен иметь единую изоляцию;

ввод сетевого шнура в корпус прибора должен иметь дополнительную изоляцию, допускающую многократные перегибы;

сетевой шнур должен, надежно крепится скобой внутри прибора через дополнительную изоляцию;

сетевой выключатель должен иметь изолированную доступную часть и обозначение положения;

возле ввода сетевого шнура должно быть обозначение класса защиты;

силовой трансформатор блока питания должен иметь пространственно разнесенные первичную и вторичную обмотки, а изоляция между обмотками и корпусом должна испытываться при напряжении 4000В, а емкость между обмотками не более 50 пкФ;

провода сетевой цепи и других цепей не должны проходить в одном жгуте;

необходимо иметь такую конструкцию кожуха, чтобы предотвратить попадание внутрь прибора инородных тел;

заменяемые части рекомендуется размещать таким образом, чтобы можно было легко производить их осмотр и замену.

К специальным средствам зашиты, можно отнести следующие меры:

целесообразно применять изоляцию рабочей части от остальной схемы прибора;

при использовании нескольких приборов в окружности досягаемости пациента и обслуживающего персонала произвести выравнивание потенциалов корпусов путем их соединения с общей точкой (функциональным заземлением). Нельзя соединять корпуса последовательно, так как в этом случае образуется "петля", по которой циркулируют токи утечки.

Учитывая все вредные и опасные факторы необходимо использовать определенные для опасного фактора средства индивидуальной защиты и придерживаться требований охраны труда при технологических процессах.

Таким образом, соблюдение комплексных требований является единственным путем профилактики от вредных воздействий.

6.4 Пожаробезопасность при производстве и эксплуатации ультразвукового прибора

Противопожарная защита - это комплекс организационных и технических мероприятий, направленных на обеспечение безопасности людей, на предотвращение пожара, ограничение его распространения, а также на создание условий для успешного тушения пожара.

Пожарная безопасность обеспечивается системой предотвращения пожара и системой пожарной защиты. Во всех служебных помещениях обязательно должен быть "План эвакуации людей при пожаре", регламентирующий действия персонала в случае возникновения очага возгорания и указывающий места расположения пожарной техники.

Опасный фактор пожара (ОФП) - фактор пожара, воздействие которого приводит к травме, отравлению или гибели человека, а также к материальному ущербу (ГОСТ 12.1 003-81).

Согласно ГОСТ 12.1 004-91 установлены следующие ОФП:

дым;

открытое пламя и искры;

токсичные продукты горения;

пониженная концентрация кислорода;

повышенная температура окружающей среды;

опасные факторы, проявляющиеся в результате взрыва (ударная волна, пламя, обрушение и разлет осколков, образование вредных веществ с концентрацией в воздухе выше ПДК);

последствия: разрушения и повреждения объекта.

Пожары представляют особую опасность, так как сопряжены с большими материальными потерями. Как известно пожар может возникнуть при взаимодействии горючих веществ, окисления и источников зажигания.

Для оценки пожарной опасности проводимых работ необходимо знать, какие огнеопасные вещества или смеси, и в каком количестве используются.

Продолжительность пожара и его температурный режим обуславливаются количеством горючих материалов в помещении, их пожаро - и взрывоопасными свойствами. Особенно разнообразны количественные и качественные показатели опасности пожара в производственных зданиях и помещениях, которые подразделяются по взрывоопасной и пожарной опасности на категории (А, Б, В, Г, Д) согласно СниП 2.09.02-85. Согласно этим категориям производственное помещение, где изготавливается прибор, относится к категории В. В таких помещениях горючими компонентами являются: строительные материалы для акустической и эстетической отделки, перегородки, двери, полы, изоляция кабелей и др.

При включении различных приборов (в том числе и ПЭВМ) в электрическую сеть возможен пожар по следующим причинам:

перегрузка электрической сети вследствие подключения к ней чрезмерно большого количества потребителей энергии;

короткое замыкание проводов;

большое переходное сопротивление в розетках электрической цепи и в разъемах, служащих для подключения шнура электрического питания к прибору.

Шнуры питания электрических приборов должны удовлетворять требованиям ГОСТ 12.206-75, который определяет сечение шнуров и их электрическую прочность в зависимости от мощности потребляемой приборами.

В современных ЭВМ очень высокая плотность размещения элементов электронных схем. В непосредственной близости друг от друга располагаются соединительные провода, кабели. При протекании по ним электрического тока выделяется значительное количество теплоты. При этом возможно оплавление изоляции. Для отвода избыточной теплоты от ЭВМ служат системы вентиляции и кондиционирования воздуха. При постоянном действии эти системы представляют собой дополнительную пожарную опасность.

К средствам тушения пожара, предназначенных для локализации небольших возгораний, относятся пожарные стволы, внутренние пожарные водопроводы, огнетушители, сухой песок, асбестовые одеяла и т.п.

В зданиях пожарные краны устанавливаются в коридорах, на площадках лестничных клеток и входов. Вода используется для тушения пожаров в помещениях программистов, библиотеках, вспомогательных и служебных помещениях. Применение воды в машинных залах ЭВМ, хранилищах носителей информации, помещениях контрольно-измерительных приборов ввиду опасности повреждения или полного выхода из строя дорогостоящего оборудования возможно в исключительных случаях, когда пожар принимает угрожающе крупные размеры. При этом количество воды должно быть минимальным, а устройства ЭВМ необходимо защитить от попадания воды, накрывая их брезентом или полотном.

Для тушения пожаров на начальных стадиях широко применяются огнетушители. По виду используемого огнетушащего вещества огнетушители подразделяются на следующие основные группы.

Пенные огнетушители, применяются для тушения горящих жидкостей, различных материалов, конструктивных элементов и оборудования, кроме электрооборудования, находящегося под напряжением.

Газовые огнетушители применяются для тушения жидких и твердых веществ, а также электроустановок, находящихся под напряжением.

В производственных помещениях, где установлены ЭВМ, применяются главным образом углекислотные огнетушители, достоинством которых является высокая эффективность тушения пожара, сохранность электронного оборудования, диэлектрические свойства углекислого газа, что позволяет использовать эти огнетушители даже в том случае, когда не удается обесточить электроустановку сразу.

6.5 Защита окружающей природной среды на этапе производства и эксплуатации ультразвукового прибора

Разрабатываемый прибор можно считать экологически чистым, если в процессе его производства, эксплуатации, переработки или уничтожения предотвращена возможность превышения допустимого уровня вредного воздействия на окружающую среду.

При производстве большинства приборов важное место занимает механическая обработка материалов. При обработке металлов, пластмасс и других материалов резанием возникает ряд опасных и вредных производственных факторов, которые могут тем или иным образом влиять на окружающую среду: высокая температура обрабатываемой поверхности, стружка, пыль и вредные аэрозоли обрабатываемых материалов. Не мало важное место занимает этап термической, электрохимической и электрофизической обработки.

Особую опасность при рассматриваемых методах обработки представляют различные токсичные газы и химические вещества, применяемые в качестве электролитов и очищающих растворов.

При производстве печатных плат большинство материалов являются опасными для окружающей среды.

Для придания поверхностному слою детали некоторых специальных свойств, отличных от свойств основного материала, например электропроводности, электроизоляционных свойств, твердости, паяемости, износоустойчивости, применяют защитные гальванические, химические, и лакокрасочные покрытия. Процессы нанесения гальванических и химических покрытий характеризуются многообразием применяемых химических веществ. Все это в большей или в меньшей степени влияет на состояние окружающей среды.

Для нейтрализации вредных факторов, возникающих при производстве компонентов проектируемого прибора необходим ряд ниже перечисленных мер:

для исключения попадания механической пыли в атмосферу необходимо применять в вытяжной вентиляции сухие пылеулавливатели с грубой (для осаждения пыли с размером частиц более 50мкм), средней (от 10 до 50мкм) и тонкой (до 10мкм) структурой;

участки и отделения кислотного и щелочного травления, обезжиривания в органических растворителях необходимо устраивать в отдельных помещениях с местной вытяжной вентиляцией, на выходе которой необходимо устанавливать фильтры газоочистки;

для нейтрализации и поглощения ядовитых газов необходимо применять жидкие абсорбенты и хемосорберы;

для предотвращения сбора вредных веществ на стенах, материалы стен и перекрытий необходимо выкладывать стеклянными или керамическими плитками, а потолки окрашивать светлой краской;

для исключения попадания вредных веществ в почву необходимо полы выполнять из влагонепроницаемых, стойких к кислотам и щелочам, растворителям и другим агрессивным средам материалов;

помещения необходимо оборудовать общеобменной вентиляцией, а также применяется система местной вытяжной вентиляции, на выходе которой обязательно необходимо ставить фильтры или химические нейтрализаторы;

для защиты грунтовых вод от попадания в них ядовитых веществ необходимо применять очистные сооружения с механической очисткой для поглощения взвешенных веществ, физико-химическими и электрохимическими средствами очистки для поглощения растворенных веществ;

хранить растворители в рабочих помещениях необходимо в количестве не больше суточной нормы и в герметически закрытой таре;

вывоз отходов механической обработки материалов необходимо производить в закрытых контейнерах;

вывоз отходов химической обработки материалов необходимо производить в герметичной, нейтральной к агрессивным средам, противоударной таре;

по возможности необходимо применять способы обработки с минимальным выделением ядовитых веществ, либо вовсе без выделения таковых.

При работе с пациентом разрабатываемый аппарат для не вызывает каких-либо побочных эффектов. Кроме того, разрабатываемый прибор соответствует всем современным природоохранным требованиям.

Испарение токсичных веществ, при производстве прибора не превышает предельно допустимых значений.

Прибор имеет малую мощность излучения. Уровень радиопомех, создаваемых прибором, не превышает значений, указанных в "Общественных нормах допустимых индустриальных помех" (нормы 8-72). Благодаря современным методам утилизации переработку и уничтожение элементов конструкции прибора можно провести с минимальным ущербом для экологии.

В соответствии с выше сказанным можно сделать следующий вывод: портативный аппарат для ультразвукового исследования в процессе его производства, эксплуатации, переработки и утилизации не превышает допустимый уровень вредного воздействия на окружающую среду и полностью соответствует требованиям государственных стандартов. Этот вывод говорит о безопасности и экологичности проектируемого прибора.

Заключение

Целью данного дипломного проекта являлась разработка прибора для измерения кровотока на основе доплеровского эффекта.

В соответствии с целью проекта бы проведен анализ литературных источников (как учебной литературы, так и периодических изданий), в ходе которого была составлена 1-ая глава диплома. В ней приведены причины необходимости измерения скорости кровотока; выявлены заболевания, которые могут быть выявлены в процессе исследования скорости кровотока. Также рассмотрена сущность эффекта Доплера. Проведен анализ методов и аппаратуры, основанных на доплеровском эффекте. Как выяснилось, в настоящее время широко применяются аппараты для измерения кровотока, основанные на эффекте Доплера. Причем существует несколько методов, применяемых в аппаратах. К тому же рассмотрены возможные типы датчиков для данных приборов.

Во второй главе дипломного проекта на основе исследованных схем существующих приборов осуществляется выбор функциональной схемы прибора, а также описание работы прибора на ее основе.

В третьей главе производиться разработка принципиально электрической схемы прибора. Для выбора элементной базы схемы производится расчет основных показателей. После этого рассчитывается надежность схемы, а также среднее время наработки прибора на отказ.

Четвертая глава дипломного проекта посвящена разработке ультразвукового датчика для прибора, в том числе и преобразователя для датчика.

Пятая глава содержит экономическое обоснование разработки нового прибора для измерения кровотока.

Шестая глава направлена на выявление опасных факторов при работе с прибором, а также на разработку мероприятий, которые снижают опасность данных факторов.

Список литературы

1. Энергетическая допплерография - новая диагностическая технология визуализации кровотока. // В сб.: Новые диагностические технологии. Организация службы функциональной диагностики. - Москва. - 1996. - С.32 (соавт.В.П. Куликов).

2. Дуплексное сканирование сосудов с цветным картированием кровотока. // Методические рекомендации для врачей и студентов медицинских ВУЗов. Тип. АОЗТ “Диалог-Сибирь". - г. Барнаул. - 1996. - С.84 (соавт. В.П. Куликов, А.В. Могозов, А.Н. Панов, С.О. Ромашин, Н.В. Устьянцева-Бородихина, Р.В. Янаков).

3. Сравнительная информативность ЦДК и ЭДК. // Новые методы функциональной диагностики (сборник научных трудов) - Барнаул. - 1997. - С.8 (соавт. Е.В. Граф, А.В. Могозов).

4. Диагностика патологии позвоночных артерий при помощи цветного допплеровского картирования и энергетической допплерографии. // В сб.: Новые методы функциональной диагностики. - Барнаул, 1997. - С.13-14 (соавт. А.В. Могозов, Н.Г. Хорев).

5. Шарапов А.А. Построение аппаратуры обработки данных на основе ЦПОС для доплеровского индикатора скорости кровотока. Микроэлектроника и информатика - 97: Часть 1. М.: МГИЭТ (ТУ). 1997. - с.127.

6. Шарапов А.А. Применение "высокочастотных" датчиков в УЗ допплерографии. // "Электроника и информатика - 97". В 2ч. Тезисы докладов.4.1 - М.: МГИЭТ (ТУ), 1997. - с.217, информатизации - 99. Доклады международной конференции Информационные средства и технологии, 19-21 октября 1999г. В 3-х т. т. т.1, с.45 - 49.

7. .П. Хоровиц, У. Хилл. Искусство схемотехники, т 2., Москва, "Мир" 1986. (RS232)

8.Р. Кофлин, Ф. Дрискол. Оперционные усилители и линейные интегральные схемы. Москва, "Мир", 1979.

9. Киясбейли А.Ш. "Частотно временные ультразвуковые расходомеры и счетчики" Москва, "Машиностроение", 1984

10. Макс Ж., "Методы и техника обработки сигналов при физических измерениях" В 2-х томах. Пер. с франц. - М.: Мир, 1983

11. Сотсков Б.С. "Расчет надежности" Москва, "Машиностроение", 1984

13. Ультразвуковая допплеровская диагностика в клинике/ Под. Ред. Никитина Ю.М., Труханова А.И. - Иваново: Издательство МИК, 2004.496 с.: ил.

14. Методическое пособие № 3077 "В помощь дипломнику" на тему: "Безопасность и экологичность". Бакаева Т.Н. Непомнящий, Ткачев И.И., ТРТУ, 2001 г.


Подобные документы

  • Применение доплеровского аппарата для исследования кровотока у плода. Циркуляторные нарушения плода, вызванные хронической частичной внутриматочной гипоксией. Гипертензивные нарушения во время беременности, методы предупреждения асфиксии плода.

    статья [21,2 K], добавлен 18.03.2012

  • Ознакомление с действием серотонина (снижение почечного кровотока, нарастание фильтрационной фракции), гистамина (угнетение канальцевой реабсорбции натрия и воды) и простогландинов (смягчение эффекта ангиотензина, увеличение экскреции натрия) на почки.

    реферат [24,2 K], добавлен 09.06.2010

  • Роль нервной системы в регуляция мозгового кровотока. Роль парасимпатической системы в регуляции мозгового кровообращения. Роль ствола мозга в обеспечении адекватного кровотока. Регуляторные контуры: нейрогенный, гуморальный, метаболический и миогенный.

    реферат [16,7 K], добавлен 25.04.2009

  • Электрокардиограмма как прибор для измерения функционального состояния сердечно-сосудистой системы. Технические характеристики прибора электрокардиограф ЭК1Т-03М. Работа с прибором. Запись электрокардиограммы и пульса. Методика метрологических измерений.

    контрольная работа [340,3 K], добавлен 10.02.2009

  • Определение понятия и свойств ферментов. Рассмотрение примеров использования в медицине ферментных препаратов. Исследование принципов энзимодиагностики, измерения разных веществ в крови. Нарушения обмена веществ в основе наследственных энзимопатий.

    презентация [1,5 M], добавлен 21.04.2015

  • Специфика и направления кровообращения в легких. Факторы, влияющие на распределение. Капилляры малого круга, регуляция кровообращения. Гипоксическая вазоконстрикция. Мозговые артерии. Строение нефрона и механизмы поддержания почечного кровотока.

    презентация [3,6 M], добавлен 26.01.2014

  • Эпидемиология катетер-ассоциированных инфекций кровотока, этиология, патогенез. Критерии диагностики КАИК. Алгоритм ведения пациентов с КАИК. Гигиена рук персонала и антисептические мероприятия. Подготовка места пункции. Системная антибиотикопрофилактика.

    презентация [987,5 K], добавлен 24.03.2019

  • Распределение крови в различных отделах сердечно-сосудистой системы. Морфофункциональные особенности системы мозгового кровообращения. Иннервация мозговых сосудов. Обеспечение независимости мозгового кровотока при изменениях артериального давления.

    дипломная работа [1,3 M], добавлен 02.02.2018

  • Современные способы лечебного и терапевтического воздействия акустическими колебаниями. Разработка физиотерапевтического устройства на основе применения упругих волн, предназначенногое для уменьшения болей, профилактики и лечения различных заболеваний.

    дипломная работа [261,3 K], добавлен 24.11.2010

  • Методы измерения объемно-скоростных показателей функции легких. Определение параметров механики дыхания методом вынужденных колебаний. Программное обеспечение и обработка сигналов прибора. Режимы измерений и вычисления параметров механики дыхания.

    реферат [470,1 K], добавлен 10.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.