Физиотерапевтическое устройство на основе применения упругих волн

Современные способы лечебного и терапевтического воздействия акустическими колебаниями. Разработка физиотерапевтического устройства на основе применения упругих волн, предназначенногое для уменьшения болей, профилактики и лечения различных заболеваний.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 24.11.2010
Размер файла 261,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОДЕРЖАНИЕ

Введение

Анализ современных способов и устройств для лечебного и терапевтического воздействия акустическими колебаниями

2. Анализ технического задания и выбор направления проектирования

3. Разработка электрической схемы устройства

3.1 Разработка стуктурной схемы

3.2 Расчет питающего трансформатора

3.3 Расчет задающего генератора и таймера

3.4 Расчет ГУНа

3.5 Расчет усилителя мощности

4. Выбор функциональных элементов и материалов конструкции

4.1 Выбор функциональных элементов

4.2 Выбор материалов конструкции

5. Обоснование конструкторского исполнения, расчет компоновочных характеристик

5.1 Обоснование конструкторского исполнения

5.2 Расчет компоновочных характеристик

6. Расчет показателей надежности и восстанавливаемости

7. Разработка печатной платы с использованием САПР

7.1 Разработка печатной платы

7.1 Создание и редактирование ПП с помощью применяемого пакета САПР

8. Анализ технологичности конструкции устройства

9. Разработка технологического процесса сборки устройства

10. Технико-экономическое обоснование

11. Охрана труда и экологическая безопасность

Заключение

Список использованных источников

ВВЕДЕНИЕ

Современные тенденции в развитии приборов и аппаратов для научных и клинических исследований базируются как на фундаментальных знаниях биологической и медицинской науки, так и на широком использовании достижений физики, химии, информационной техники, микроэлектронной технологии, новых материалов. Научные основы медицинского приборостроения охватывают обширный комплекс междисциплинарных знаний и методов от микро-нано-механики до рекордно тонких аналитических методов, средств восприятия и компьютерной математической обработки биологических сигналов на предельном энергетическом уровне.

Тенденции развития медицинского приборостроения наиболее полно проявляются в следующих группах приборов и аппаратов, обеспечивающих реализацию наиболее эффективных лечебных и диагностических медицинских методик с использованием современных достижений в различных областях технических наук и технологий:

- системы и аппаратура топической диагностики;

- автоматизированные системы и приборы функциональной диагностики и многопараметрического мониторинга;

- технические средства жизнеобеспечения организма и замещения

внутренних органов, хирургическая аппаратура;

- аппараты и комплексы для терапии;

- приборы и системы лабораторной диагностики.

Обширную группу составляют аппараты и комплексы для терапии. Различают следующие виды терапии: УЗ; СВЧ; УВЧ; индуктотермия; магнитотерапия; СМВ- и ДМВ-терапия; электроаэрозольтерапия; фототерапия ( лечение светом ); аэроионотерапия .

Ультразвуковую терапию стали применять с 1938 года. А сегодня ультразвук с успехом применяется в ряде областей медицины, и в первую очередь - для лечебных целей в физиотерапии. Высокая физиологическая активность ультразвука, проявляющаяся в его заметном влиянии на обмен веществ, регуляторные функции организма, функциональное состояние различных органов и систем, послужила основанием к его широкому лечебному использованию.

Терапевтическое действие ультразвука зависит от правильного подбора следующих параметров: интенсивности, места, площади воздействия, продолжительности, методических приемов проведения процедуры (лабильного или стабильного, контактного или через воду), режима работы (непрерывного или импульсного). Поэтому необходимы устройства, позволяющие обеспечивать оптимальные значения этих параметров.

Устройства ультразвуковой терапии должны быть портативными, пригодными для лабораторных и домашних условий работы, просты и безопасны в обращении.

В данном дипломном проекте будет разработано физиотерапевтическое устройство на основе применения упругих волн, предназначенное для уменьшения ревматических болей, болей в суставах, позвоночнике, при мигрени и других ощущениях; а также для профилактики и лечения таких заболеваний как простатит, трофическая язва, переломы, отеки ушибов, гайморит, бессонница и некоторых других.

1. Анализ современных способов и устройств для лечебного и терапевтического воздействия акустическими колебаниями

С конца 40-х годов ультразвук стал интенсивно использоваться в лечебной практике. Однако вскоре стали поступать сведения о некоторых осложнениях, связанных, как выяснилось, с передозировкой высокочастотного ультразвукового влияния. Нарушения были отмечены со стороны центральной нервной системы, сердечной деятельности и других функций организма. Это обусловило необходимость более глубокого изучения ультразвука во всех аспектах - биологическом, терапевтическом, физико-химическом и других [1].

Звуковые волны принято разделять на следующие диапазоны: 1) инфразвук - до 16 Гц; 2) слышимый звук - 16-20000 Гц; 3) ультразвук - 20 кГц - 1000 МГц; 4) гиперзвук - выше 109 Гц. В физиотерапии обычно применяются ультразвуковые волны частотой 0,8-3 МГц. Большинство серийных ультразвуковых терапевтических аппаратов работают на одной из фиксированных частот этого диапазона, чаще всего - на 0,88 МГц.

Важными физическими характеристиками звуковых колебаний является амплитуда волны, колебательная скорость. Для характеристики затухающих колебаний используются коэффициент затухания, логарифмический декремент и добротность.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление тканей выражается отношением звукового давления к объемной скорости ультразвуковых волн [2].

Механизм терапевтического действия ультразвука сложен и многогранен. Он складывается из местных и общих, нейро-рефлекторных и нейрогуморальных реакций, которые проявляются фазно и отличаются длительным последействием. При адекватно подобранных дозировках ультразвук оказывает болеутоляющее, рассасывающее, противовоспалительное, спазмолитическое, фибролитическое действие. Он ускоряет регенеративные и репаративные процессы, активирует крово- и лимфообращение. нормализует процессы обмена, улучшает функциональное состояние нервной и эндокринной систем. Из перечисленного видно, что диапазон влияний ультразвука на организм широк и это определяет возможность использования его для лечения многих заболеваний [3].

Терапевтическое действие ультразвука зависит от правильного подбора следующих параметров: интенсивности, места, площади воздействия, продолжительности, методических приемов проведения процедуры (лабильного или стабильного, контактного или через воду), режима работы (непрерывного или импульсного).

1. В современной физиотерапии утвердилось деление интенсивностей ультразвука на малые (0,05--0.04 Вт/см2), средние (0,6--0,8 Вт/см2) и большие (1,0--1,2 Вт/см2).

Величина интенсивности тесно связана с общей выходной мощностью энергии ультразвука, и этот показатель должен особо учитываться при работе с аппаратами, имеющими большую площадь ультразвукового излучателя (10см2).

Интенсивность ультразвука должна определяться с учетом локализации воздействия. Наименьшие интенсивности используют при воздействиях в области головы, местах скопления симпатических образований (симпатические ганглии, шейный вегетативно-сосудистый пучок и др.). Имеют значение возраст, выраженность подкожного жирового слоя. При лечении детей (в возрасте не менее 2 лет) и людей старшего возраста предпочтительнее использовать ультразвук малой интенсивности.

При необходимости использовать преимущественно разволокняющее влияние ультразвука, особенно при локализации процессов в области конечностей, можно применять интенсивность более высокую 0,8--1 Вт/см2 (контрактура Дюпюитрена, шпоры пяточных костей и др.).

2. Ультразвуковые воздействия проводят на ограниченные части тела (полями): местно - на очаг заболевания (при поражении суставов - обычно на один - два, реже три сустава, вокруг последнего, на фурункул и т. д.), на паравертебральные области (рефлекторно-сегментарные зоны), на зоны проекции - иррадиации боли (при радикулитах, невралгии), на область болевых точек (нейромиозит), на кожную проекцию пораженного органа при внутренней патологии (гастрит). Площадь воздействия (одно поле) в среднем не более 150--250 см2.

При сравнительно большой поверхности воздействия (например, на паравертебральную область и область распространения боли при радикулите) всю зону делят на отдельные поля. Паравертебральные воздействия (в виде продольных полос шириной 8--10 см) проводят на 2 - 3 участка: шейный, грудной, поясничный. Зону воздействия по ходу седалищного нерва делят на следующие участки: ягодица и крестцовая область, задняя поверхность бедра, голень, стопа. Соответственно намечают поля и при шейно-грудном радикулите. Единовременно, в течение одной процедуры, можно подвергать воздействию 4 - 6 полей.

Не следует применять ультразвук на область сердца, выступающие костные поверхности, ткани с тяжелыми нарушениями циркуляторных процессов (отечные).

3. Продолжительность воздействия ультразвуком на одно поле составляет 3 - 10 мин. Его определяют исходя из локализации и площади (количество полей) воздействия, принимая во внимание, что общая продолжительность процедуры не должна превышать 15 мин.

Процедуры можно назначать ежедневно или через день на курс лечения--6--8--10--12 процедур, реже--20. Повторять курс ультразвуковой терапии, целесообразно с промежутками не менее 3 мес.

4. Приемы проведения процедуры могут быть разными. Выбор их зависит от места воздействия (гладкая обширная поверхность спины, конечности или мелкие суставы пальцев руки, контрактура пальцев конечностей и др.) и некоторых клинических особенностей заболевания (гиперестезия, и др.).

Чаще используют контактный способ проведения процедуры, применяя лабильную методику. Ультразвуковой излучатель должен плотно прилегать к поверхности кожи, смазанной вазелиновым маслом, передвижение его совершается медленным круговым движением, скорость передвижения 1 см/с. Перемещение излучателя с одного поля на другое, когда требуется отрыв его от поверхности кожи, производится только при отключении интенсивности. Особенно нежелательно передвигать излучатель по коже, покрывающей подлежащие костные образования. Если контактный способ использовать нельзя (обычно при поражениях конечностей), следует прибегать к воздействию ультразвуком через воду. Для этого в фаянсовую или фарфоровую ванночку наливается вода температуры 30 - 32 0С, и в нее погружают конечность пациента и помещают ультразвуковой излучатель. Этот излучатель можно закрепить у одной из стенок ванночки, и тогда пациент сам делает вращательные движения конечностью перед излучателем или его перемещает вокруг фиксированной конечности медицинская сестра. Расстояние излучателя от поверхности кожи - 1 - 2 см.

В практике ультразвуковой терапии применяются специальные методики, в которых контактная среда (вода или масло) наливается в приспособления определенной формы (глазные ванночки, пластмассовые тубусы для методик ультрафонофореза).

5. Режим воздействия ультразвуком может быть непрерывный или импульсный. Импульсный режим ультразвуковых колебаний считается более щадящим (в нем заметно уменьшается значение теплового компонента) и используется преимущественно в лечении более острых стадий патологического процесса, при выраженности в клинической картине болезни вегетативно-сосудистого компонента, при наличии очагов хронической инфекции, мышечных атрофиях и др. Этот режим (длительность импульсов 2 или 4 мс) предпочтителен в методиках лечения детей, особенно младшего возраста.

Механизм терапевтического действия УЗ изображен на рисунке 1.1.

Терапевтический эффект от применения механической энергии ультразвуковых колебаний достигается двумя путями. Первый основан на непосредственном воздействии ультразвуковой волны, проходящей через биологическую ткань, и связан, помимо теплового эффекта, с интенсификацией метаболизма клетки за счет способствования осмотическим процессам в ее мембране, а также ускорения биологических реакций. Второй путь связан с химиотерапией и заключается в переводе жидких лекарственных препаратов в легко усваиваемое пациентом состояние аэрозоля под воздействием энергии ультразвуковых колебаний активного элемента. Т.е. эффект заключается в выходе параметров внутренней среды организма, органа, ткани или клетки из состояния физиологического равновесия .

Примерами реализации первого пути терапевтического воздействия являются аппараты серии УЗТ, второго - ультразвуковые ингаляторы. Воздействуют ультразвуком обычно методом контактного массажа через вазелиновое масло локально на очаг поражения, на соответствующие рефлексогенные зоны или по ходу болевого симптома направляется непосредственное ультразвуковое воздействие. При торпидных формах боли применяются непрерывные, при острых - импульсные режимы воздействия [4].

Важным свойством ультразвука является его неионизирующая способность, т.е. используемой энергии ультразвука недостаточно для отрыва электронов у атомов.

В медицине с лечебными целями применяется ультразвук небольшой интенсивности, но относительно высокой частоты (800-30000 Гц). Получение такого ультразвука базируется на обратном пьезоэлектрическом эффекте. Некоторые вещества (кварц, тибар и др.) способны под воздействием электрического тока изменять свои линейные размеры. При приложении к такому кристаллу переменного электрического поля он начинает периодически изменять свои размеры. В области непосредственно прилегающей к кристаллу возникают, то разряжение, то сжатие окружающей среды. Это приводит к возникновению ультразвука.

Рисунок 1.1- Механизм терапевтического действия ультразвука

Технические характеристики некоторых приборов для ультразвуковой терапии приведены в таблице 1.1 и 1.2.

В физиотерапевтической практике для ультразвуковой терапии используются в основном унифицированные ультразвуковые терапевтические аппараты трех серий:

УЗТ-1 (УЗТ-1-01; УЗТ-1-02; УЗТ-1-03) - аппараты работающие на частотах 880 кГц;

УЗТ-1 (УЗТ-3-01; УЗТ-3-02; УЗТ-3-03) -рабочая частота 2640 кГц;

УЗТ-13 или `Гамма' (УЗТ-13-01; УЗТ-13-02) - генерируют ультразвук на двух частотах 880 и 2640 кГц.

Таблица 1.1

Техническая характеристика УЗ терапевтических аппаратов

Аппарат

Показатели

Максимальная мощность, Вт

Частота ультразвука, кГц

Активная площадь

излучателя, см2

Максимальная интенсивность ультразвука, Вт/см2

1

2

3

4

5

УТС- 1 (СССР)

20

830

10

2

УТП-1 (СССР)

8

830

4

2

УТП-3 (СССР)

12

2950

4

3

Ультразвук-Т5 (СССР)

2 и 8

880

1 и 4

2

ЛОР-3 (СССР)

1,6

880

2 и 0,4

0,8

Стержень-1 (СССР)

1

880

2

0,5

Импульсофон (ФРГ)

15

1000

5

3

Санофон (Италия)

15

800

5

3

Зоностат (ФРГ)

12

870

4

3

Ультратон Д-300 (ПНР)

21

800,2400

7 и 2

3

Современные ультразвуковые аппараты, применяемые в медицине, состоят из генератора электрических колебаний ультравысокой частоты, ультразвуковой головки с пьезоэлементом, соединенным высоковольтным кабелем с колебательным контуром генератора, элементов управления и источника питания.

Отечественные аппараты питаются от сети переменного напряжения в 127 или 220 В. В них предусмотрена возможность работы в непрерывном и импульсном режимах [5]. В отечественных аппаратах частота следования импульса равна 50 Гц, а длительность периода (импульс+пауза) всегда составляет 20 мс. Форма импульса максимально приближена к прямоугольной (рисунок 1.2).

Рисунок 1.2- Схематическое изображение ультразвуковых непрерывного (а) и импульсного сигналов со скважностью 2(б), 5(в) и 10(г)

Работу ультразвукового терапевтического аппарата можно представить в виде функциональной схемы приведенной на рисунке 1.3.

Рисунок 1.3- Блок-схема ультразвукового терапевтического аппарата

Генератор высокочастотный создает немодулированные электрические колебания. Усиление мощности этих колебаний происходит в выходном усилителе. К выходному усилителю подключен излучатель ультразвука, в котором электрические колебания преобразуются в механические. Модулятор необходим для создания импульсного режима [6].

Терапевтические аппараты могут комплектоваться различным набором специализированных ультразвуковых излучателей (типа ИУТ) [2]. Излучатели под маркой ИУТ выпускаются трех форм: карандашеобразный, изогнутый и с боковой излучающей поверхностью.

Таблица 1.2

Основные технические данные аппаратов типа УЗТ

Тип аппарата

Частота колебаний, кГц

Излучатель

Тип

Эффективная площадь, См2

1

2

3

4

УЗТ-101

880

ИУТ-0,88-1-3

1

ИУТ-0,88-4-4

4

УЗТ-102

880

ИУТ-0,88-1-3

1

ИУТ-0,88-1-5

1

ИУТ-0,88-1-6

1

ИУТ-0,88-2-7

2

УЗТ-103

880

ИУТ-0,88-1-3

1

ИУТ-0,88-1-5

1

ИУТ-0,88-4-4

4

ИУТ-0,88-4-8

4

УЗТ-104

880

ИУТ-0,88-0,5-10

0,5

ИУТ-0,88-1-9

1

УЗТ-31

2640

ИУТ-2,64-2-2

2

ИУТ-0,88-0,5-1

0,5

В таблице 1.3 приведены основные технические характеристики излучателей ИУТ.

Таблица 1.3

Технические характеристики излучателей ИУТ

Тип излучателя

Эффективная площадь

излучателя, см2

Частота

преобразованных

колебаний, кГц

Интенсивность УЗ колебаний,

Вт/см2

Подводимое

напряжение,В

Масса, г

ИУТ-0,88-0,5-10

0,5

880

5

110

200

ИУТ-2,64-0,5-1

0,5

2640

5

20

200

ИУТ-0,88-1-3

1

880

2,5

75

200

ИУТ-0,88-1-5

1

880

2,5

75

200

ИУТ-0,88-1-6

1

880

2,5

75

200

ИУТ-0,88-1-9

1

880

2,5

75

50

ИУТ-0,88-2-7

2

880

2,5

40

400

ИУТ-2,64-2-2

2

2640

2,5

16

200

ИУТ-0,88-4-4

4

880

1,25

30

400

ИУТ-0,88-4-8

4

880

1,25

30

400

В последнее время в физиотерапии стали применять низкочастотный ультразвук. Воздействие проводят на двух частотах 22 и 44 кГц. Ультразвук указанных частот обладает высокой биологической активностью, обусловленной механическим, тепловым и физико-химическим действующим фактором.

Озвучивание низкочастотным ультразвуком повышает проницаемость клеточных мембран и гистогематических барьеров, устранению отеков и застойных явлений. Он стимулирует региональное кровообращение и микроциркуляцию, обладает иммуностимулирующим действием. Озвучивание низкочастотным ультразвуком способствует подавлению микробной флоры ран, ускоряет регенераторные процессы, усиливает активность антибиотиков и повышает проникновение лекарственных веществ в поврежденные ткани. Низкочастотному ультразвуку присуще обезболивающее, гемостатическое, спазмолитическое и противовоспалительное действие.

По сравнению с высокочастотным низкочастотные ультразвуковые колебания более глубоко проникает в ткани, обладает более выраженным бактерицидным, противоотечным, разрыхляющим и деполимеризующим действием, сильно изменяет сосудистую и эпителиальную проницаемость, проявляет большую форетическую активность, способен вызывать ковитацию и выраженный противовоспалительный эффект [7].

Для низкочастотной терапии серийно выпускаются аппараты типа `Барвинок':

1) `Барвинок' - Г УЗТН 22/44.02Г - предназначен для лечения гинекологических заболеваний;

2) `Барвинок'- У УЗТН 22/44.01У - рекомендуется для лечения заболеваний урологии.

Эти аппараты работают в повторно-кратковременном режиме с регулируемой амплитудой (2 и 5 мкм) вибрации. Каждый аппарат комплектуется двумя ультразвуковыми излучателями с набором специальных волноводов.

Аппарат `Ультразвук-Т5' снабжен десяти ступенчатым клавишным регулятором мощности, что позволяет непосредственно без дополнительных измерений устанавливать необходимую дозу ультразвука для каждого больного. Возможность работы, как в непрерывном, так и в импульсном режиме позволяет выбрать в зависимости от индивидуальности пациента и характера заболевания наиболее эффективную процедуру. Процедурные часы встроенные в аппарат, автоматически выключает его по истечении заданного времени и выдают звуковые сигналы об окончании процедуры. К аппарату прилагается измеритель мощности для проверки калибровки регулятора мощности [8].

Ультразвуковой настольный терапевтический аппарат TUR US6-1 (ФРГ) по применению и назначению аналогичен терапевтическому аппарату `Ультразвук-Т5'. Он может работать в двух режимах: непрерывном и импульсном. За последние годы создан ряд новых медицинских ультразвуковых приборов и аппаратов. Среди них физиотерапевтический аппарат УЗТ-101 для лечения периферической нервной системы, опорно-двигательного аппарата и других заболеваний. Физиотерапевтический аппарат УЗТ-102 предназначен для лечения стоматологических заболеваний (парадонтоза, глассалгии, ортрозоартритов, височно-нижнечелюстных суставов, коллоидных и послеоперационных рубцов лица и шеи и т.д.). Аппарат ЛОР-3 предназначен для лечения хронических тонзиллитов, гайморитов, ринитов. `Стержень-1' - для лечения урологических и проктологических заболеваний (простатитов, циститов и т.п.). `Байкал' - для разрушения камней при мочекаменной болезни. Семейство `Гамма' - для терапевтического воздействия.

Ультразвуковые аппараты выпускаются под маркой УЗТ с различным индексом:

-УЗТ-31 - для лечения гинекологических заболеваний;

-УЗТ-101 - для лечения нервных и внутренних болезней.

Из западных производителей УЗ терапевтической аппаратуры следует выделить Нидерланды и Германию. Голландская фирма “Энраф Нониус” благодаря своим аппаратам серии “Сонопульс” моделей 434, 463, 464 прочно завоевала мировой рынок. Все аппараты снабжены индикатором акустического контакта, имеют плавный регулятор интенсивности, цифровой таймер, допускают внешнюю или внутреннюю модуляцию [2].

В настоящее время в Германии выпускаются такие терапевтические приборы как - Sonotor 410, Stimutor 200, которые являются портативными. Эти модели обладают преимуществами как традиционного низкочастотного, так и среднечастотного терапевтического воздействия. Данные приборы работают в двух режимах: низкочастотная модуляция и волновая модуляция. Сочетание двух режимов обеспечивает двойной эффект - глубокое проникновение и приятные ощущения.

Биологический эффект при применении ультразвука проявляется, если интенсивность его выше 100 мВт/см2. Действие ультразвука в зависимости от интенсивности можно поделить на повреждающее, угнетающее, стимулирующее и фоновое [9].

Использование воздействия ультразвука малых интенсивностей на внутренние органы при патологических состояниях обусловлено нормализующим или стимулирующе-активизирующим влиянием на функциональное состояние внутренних органов, обмен веществ в них.

Положительный эффект от применения ультразвука получен при лечении таких заболеваний, как бронхиальная астма, хронические неспецифические заболевания легких, силикоз, язвенная болезнь желудка и двенадцатиперстной кишки, гепатита, холецистита, дискинезия желчных путей, хронический колит, хронический пиелонефрит, панкреатит, простатит.

Широкое применение ультразвуковая терапия нашла в лечении кожных заболеваний, офтальмологии, оториноларингологии и стоматологии [11].

Методы лечения можно разделить на два основных типа: внеполостные, представляющие собой наружное воздействие на участке кожного покрова; внутриполостные, при которой излучатель вводится в полость органа и осуществляется непосредственное озвучивание его слизистой оболочки.

В настоящее время терапевтические аппараты имеют интенсивность в пределах 0,05-1,2 Вт/см2. Устройство ультразвукового терапевтического аппарата применяемого в акушерско-гинекологической практике УЗТ-31.Частота ультразвуковых колебаний 2,64 МГц. Интенсивность ультразвука меняется ступенчато: 0,05; 0,2; 0.5; 1.0 Вт/см2, предусмотрены импульсные режимы с длительностью импульсов 2,4 и 10 мс и частотой следования 50 Гц.

В ультразвуковой физиотерапии существует несколько методов лечебного воздействия. Наиболее широко в практике используется лабильная методика воздействия. При этом ультразвуковая головка перемещается со скоростью 1-2 см/с по предварительно смазанной контактной средой поверхности соответствующего отдела тела пациента. Стабильная методика ультразвуковой терапии применяется при лечении тканевых уплотнений и грубых поверхностей, рубцов.

Иногда применяется одновременно стабильная и лабильная методики. Обе эти методики относятся к непосредственному (прямому) воздействию на поверхность тела. Однако когда необходимо воздействовать ультразвуком на неровные поверхности тела - локтевой сустав, кисть стопу, методика прямого воздействия непригодна, поэтому используется субаквальное озвучивание ультразвуком. Для этого конечность помещают в ванну с дегазированной водой при температуре 28-32оС и озвучивают пораженный орган на расстоянии 1-2 см от поверхности кожи.

Импульсный режим ультразвуковой терапии применяется при лечении острых процессов, когда более важным является не тепловое воздействие, а усиление физико-химических сдвигов. При воздействии на мягкие ткани, области суставов, лечение внутренних, кожных, гинекологических заболеваний применяют непрерывный режим ультразвука [13].

Ультразвуком можно воздействовать непосредственно на кожную проекцию органа или сам патологический очаг (прямое озвучивание). Если воздействуют на соответствующий сегмент спинного мозга или рефлексную зону, то такое озвучивание ультразвуком называют косвенным. Иногда прямое и косвенное озвучивание комбинируют.

Противопоказанными к применению ультразвуковой энергии и лекарственного фонофореза при заболеваниях нервной системы с лечебной целью являются: острые инфекции, выраженные эндокринные нарушения, гипертоническая болезнь 2 и 3 стадий, ИБС со стенокардией, частыми приступами, сахарный диабет, злокачественные новообразования, а также беременность. Применительно к заболеваниям центральной нервной системы они распространяются на все формы острых нарушений церебрального кровообращения, нейроонкологические и паразитные заболевания головного мозга, острые нейроинфенкции, склероз и другие.

На основе анализа литературных источников и патентных исследований определен прототип [17] аппарата, который содержит частотно-модулированный генератор. Этот прототип используется как основа для дальнейшего проектирования. В проектируемом устройстве предполагается включить электронный таймер с помощью которого будет задаваться время процедуры. Преимуществами разрабатываемого устройства при проведении физиотерапевтических процедур, по сравнению с существующими приборами, будут схематическая простота при широких функциональных возможностях (генерация сигнала постоянной частоты, частотная модуляция выходного сигнала, частотно-импульсная модуляция), возможность плавной регулировки частоты, малые габаритные массы. Патентная справка представлена в приложении А данного дипломного проекта.

2. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ И ВЫБОР НАПРАВЛЕНИЯ ПРОЕКТИРОВАНИЯ

Анализ современных устройств для лечебного и терапевтического воздействия акустических колебаний показал, что в их состав должны входить следующие блоки: высокочастотный генератор, модулятор, усилитель мощности, блок питания и излучатель. В тоже время проектируемый прибор должен удовлетворять следующим техническим данным:

- диапазон частот акустических колебаний, Гц 20000-66000;

- интенсивность излучения, Вт/см2 0.5-1.2;

- питание, В 22010%;

- масса, кг 1.5;

- габаритные размеры, мм 18012070;

- условия эксплуатации по классу II группа BF по ГОСТ Р 50267.0-92;

- время наработки на отказ, часов 10000;

- коэффициент готовности 0.95.

Исходя из этих требований в состав данного устройства необходимо ввести таймер для дозирования ультразвуковой энергии по времени, блок индикации для визуального контроля частоты и интенсивности колебаний, генератор управляемый напряжением для модуляции и переключатели работ.

Диапазон частот, которые выдает генератор, должен делиться на два поддиапазона: 1. 20-40 кГц, 2.40-66 кГц. Коммутация должна осуществляться переключателем. Кроме этого в каждом из диапазонов должен быть импульсный режим, т.е. частота должна плавно возрастать, затем резко падать и потом опять плавно возрастать, но уже до более высокой частоты и т.д. Для обеспечения таких параметров необходимо использовать схему, функциональная и принципиальная схемы которой приведена в приложении.

Проектируемый прибор должен быть выполнен в портативном исполнении и его масса не должна превышать 1,5 кг. Для получения необходимой мощности на выходе необходимо использовать усилитель мощности и повышающий трансформатор. Трансформатор будет иметь торроидальный сердечник для уменьшения габаритов, массы и снижения потерь.

Выбор рационального конструкторского исполнения конкретной аппаратуры зависит от решения множества вопросов, связанных с поиском оптимального варианта конструктивно-технологического обеспечения комплекса технических, экономических, эксплуатационных, производственных и организационных требований. Поиск оптимального конкретного конструктивно-технологического варианта должен проводиться при минимальных затратах и с учетом современных тенденций развития радиоэлектронной аппаратуры, прежде всего элементной базы и техники монтажа. В соответствии с техническим заданием рассмотрим вопросы общей компоновки, компоновочной совместимости принятой элементной базы и межсоединений, проектирование всех конструктивных элементов изделий с учетом автоматизации процессов проектирования; обеспечение защиты изделия от дестабилизирующих факторов окружающей среды; обеспечение технологичности, удобства эксплуатации и ремонта.

В качестве корпуса будем использовать корпус из алюминиевого сплава АМц. Корпус будет состоять из крышки, лицевой панели и задней панели. Лицевая панель будет выполнена из ударопрочного полистирола. Такой корпус прост, надежен и удобен для быстрого ремонта устройства. Он соответствует условиям эксплуатации по классу II группы BF по ГОСТ Р 50267.0-92.

Разрабатываемое устройство является переносным прибором, к которому с помощью кабеля будут подключаться сменные излучатели. Для обеспечения виброзащиты используются амортизаторы.

Прибор предполагается использовать не только в лечебно-профилактических учреждениях, но и в домашних условиях. Поэтому при разработке прибора должна быть обеспечена электробезопасность. На корпусе необходимо установить сетевой выключатель и обязательно индикацию включения питающего напряжения.

Устройство должно быть просто в обращении. Поэтому на корпусе будут установлены переключатели: выключатель режима работы и переключатель диапазонов, регулировка частоты и времени воздействия на пациента.

Конструкция преобразователя электрических сигналов в механические колебания должна обеспечивать преобразование необходимого диапазона частот. Для этого будет использован пьезоэлектрический преобразователь.

Прибор должен быть надежен в эксплуатации и иметь время наработки на отказ не менее 10000 часов, время восстановления - 1,2 часа, коэффициент готовности - 0,95.

Необходимо, чтобы прибор был технологичен в изготовлении в условиях мелкосерийного производства с программой выпуска до 1000шт/год. Комплексный показатель технологичности должен быть не менее 0,65. Для достижения нормативных данных по технологичности необходимо выполнить ряд мероприятий конструктивного и технологического направления. Во-первых, применить большее число унифицированных сборочных единиц, деталей и элементов, во-вторых, широко использовать микросхемы, применить полу- и автоматическое оборудование для сборки и монтажа прибора.

3. РАЗРАБОТКА ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА

3.1 Разработка структурной схемы

Исходя из анализа современных устройств для лечебного и терапевтического воздействия была разработана структурная схема устройства, которая включает в себя следующие блоки: задающий генератор, электронный таймер реального времени, электронный ключ, дешифратор, формирователь импульсов, генератор управляемый напряжением (ГУН), усилитель мощности (УМ), счетчик, модулятор, блок индикации режима работы, излучатель, совместная работа которых должна обеспечивать технические данные в соответствии с техническим заданием (рисунок 3.1).

Рисунок 3.1-Стуктурная схема физиотерапевтического устройства

Задающий генератор собран на двух логических элементах “ИЛИ-НЕ” микросхемы К561ЛЕ5. Ее реализация обеспечивается последовательным соединением МДП-транзисторов с каналом р-типа и параллельным соединением МДП-транзисторов с каналом n-типа. С его выхода сигнал в форме меандра (рисунок 3.2,а) поступает через электронный ключ на счетчик К561Е16. Сброс счетчика в нуль осуществляется импульсом положительной полярности длительностью не менее 500 нс по входу R. Содержимое счетчика увеличивается по отрицательному перепаду импульса по входу С. Максимальная частота входных импульсов при Uпит=12 В достигает 66 кГц.

Рисунок 3.2 - Эпюры рабочих сигналов устройства

После счетчика сигнал меньшей частоты (рисунок 3.2,б) поступает на формирователь импульсов, который из меандра формирует треугольные импульсы такой же частоты (рисунок 3.2, в). Изменяющееся напряжение с формирователя управляет частотой ГУНа (рисунок 3.2,г), выполненного на микросхеме CD4046. Усилитель мощности, собранный по двухтактной схеме с параллельным включением транзисторов КТ815Г передает сигнал с качающейся частотой в выходной контур и далее - на нагрузку. Время качания частоты задается длительностью импульса, поступающего со счетчика. Данный режим работы применяется обычно в медицинских физиотерапевтических устройствах и при построении исследовательских комплексов, в которых необходимо изменять частоту генерации во всем диапазоне с различной скоростью.

При втором режиме работы сигнал в форме меандра поступает через электронный ключ на усилитель мощности, а затем на излучатель. Электронный таймер КР1006ВИ1 (времязадающая схема) формирует импульсы напряжения длительностью от нескольких микросекунд до десятков минут. Он предназначен для использования в стабильных датчиках времени, генераторах импульсов, преобразователях напряжения и т.д. Таймер в данной схеме служит для дозирования ультразвуковой энергии по времени, а блок индикации - для визуального контроля частоты и интенсивности колебаний.

Конструкция преобразователя электрических сигналов в механические колебания должна обеспечивать преобразование необходимого диапазона частот. Для этого будет использован пьезоэлектрический преобразователь.

Блок питания состоит из понижающего трансформатора, выпрямителя, сглаживающих фильтров и стабилизатора напряжения. Микросхема КР142ЕН8А представляет собой стабилизатор напряжения с фиксированным выходным напряжением и защитой от перегрузок по току.

3.2 Расчет питающего трансформатора

Схема генератора, чтобы обеспечивать заданные параметры, должна питаться постоянным напряжением 120,5В. Поэтому, учитывая, что напряжение в сети может изменяться на 5%, и зная падение напряжения на выпрямителе, будем использовать трансформатор с напряжением вторичной обмотки ~15В. Трансформатор должен иметь малые габариты и небольшую массу. Он должен быть рассчитан на ток в нагрузке 0,25 А. Но таких, которые удовлетворяли бы вышеуказанным условиям, наша промышленность не выпускает. Исходя из этого, произведем расчет трансформатора по методике изложенной в [18].

1.Определяем напряжение и ЭДС обмоток по формуле:

Е10,95U1,(3.1)

E10.95*220=209 В,

U2(U0+2)/1.1,(3.2)

U2(15+2)/1.1=15.5 B

где U1 и U2 - напряжение первичной и вторичной обмоток соответственно;

U0 - выходное напряжение.

2. Находим ток обмоток:

I2=1.8I0,(3.3)

I2=1.8*0.25=0.45A,

I1,2=1.8*I0U2/U1, (3.4)

I1,2=1.8*0.25*15.5/220=0.032 A

где I1,2 и I2 - токи первичной и вторичной обмоток;

I0 - ток в нагрузке.

I1I2N,(3.5)

N=U2/U1,(3.6)

N=15.5/220=0.07,

I10.450.07=0.03 A

где N - коэффициент трансформации.

3. Определяем габаритную мощность трансформатора:

Pгаб=U1I1=U2I2,(3.7)

Pгаб=15,50,45=6,98 Вт.

4.Выберем магнитопровод. Выбор магнитопровода производится с помощью выражения:

QсQo = Pгаб100/(2,22ВJkckмs),(3.8)

где Qо - площадь окна магнитопровода, приходящаяся на обмотки стержня, см2;

- коэффициент полезного действия трансформатора, =0,82;

s - число стержней несущих обмотки;

kм - коэффициент заполнения окна медью обмотки, kм=0.23;

J - плотность тока в обмотках, А/мм2;

B - магнитная индукция в магнитопроводе, Тл;

- частота питающей сети;

kc - коэффициент заполнения магнитопровода сталью, kс=0.93;

Qс - полное сечение стержня магнитопровода, см2.

QсQo = 6,98100/(2,22501,26,20,820,930,23) = 2,47 см2.

По справочным таблицам выберем магнитопровод Ш10х10 имеющий QсQo=2,5см2; Qc=1см2; Qo=2,5см2; a=b=1см; h=2,5 см; c=1см; lc=8.6см; lм=7,1см; G=0.059 кг.

5. Подсчитаем число витков обмоток:

n1=E104/(4.44BQckc),(3.9)

n1=209104/(4.44501.210.93)=8436

n2=E2n1/E1,(3.10)

n2=8436*15.5/209=626

6. Находим диаметр провода:

d=1.13,(3.11)

d1=1.13=0.081,

d2=1.13=0.3

7. Определяем потери в стали:

Pc=pудG, Вт(3.12)

где pуд - удельные потери в стали, Вт/кг;

G - масса магнитопровода, G=0.059 кг

Pc=1.50.059=0.0885

8. Найдем потери в меди. Для этого определяем сопротивление обмоток:

r=2.210-4lмn/d2,(3.13)

где lм - средняя длина витков обмоток, см

r1=2.210-47.18436/0.062=3660.3 Ом,

r2=2.210-47.1626/0.252=15.6 Ом,

тогда потери в меди Pм равны:

Pм=I12r1+I22r2,(3.14)

Pм=0.03223660.3+0.45215.6=3.04 Вт

Охлаждающую поверхность броневого магнитопровода найдем по формуле:

Sc2[ac+(a+c)(2a+2b+h)],(3.15)

Sc2[11+(1+1)(21+21+2.5)]=28 см2

Для оценки превышения температуры трансформатора определяют удельные охлаждающие поверхности стали sc и меди sм. Если полученные значения sc и sм не менее 20 см2, то превышение температуры можно считать допустимым (40-60?С).

9. Удельную поверхность охлаждения магнитопровода находим по формуле:

sc=Sc/Pc,(3.16)

sc=28/0.0885=316 см2/Вт 20 см2,

т.е. нагрев магнитопровода будет незначительным.

10. Найдим охлаждающую поверхность катушки:

Sм2[(2a+c)(2b+h)+2b(4b+3h)],(3.17)

Sм2[(21+1)(21+2.5)+21(41+32.5)]=64 см2

Удельная поверхность охлаждения обмотки:

sм=Sм/Pм,(3.18)

sм=64/3.04=21 см2 20 см2,

т.е. нагрев катушки будет ниже допустимого.

Таким образом, трансформатор будет иметь следующие габаритные размеры: 50x30x30 мм.

3.3 Расчет задающего генератора и таймера

Расчет задающего генератора проводится в следующей последовательности:

1. Находим частоту модуляции счетчика К561ИЕ16:

fo=1/Т,(3.19)

где Т-период качания частоты, сек.

fo=1/3=0,33 Гц

2. Частота задающего генератора определяется по формуле:

fг=fo2n,(3.20)

где n - разряд счетчика.

fг=0,33214=5,4 кГц

Эта частота является начальной для работы счетчика.

3. Затем находим сопротивление R1 для верхней рабочей частоты задающего генератора, при R2 равному нулю и зададимся С1 равному 540 пФ:

R1=(3.21)

R1=100 кОм

4. Определяем из формулы для fг R2 для нижней рабочей частоты задающего генератора:

fг=(3.22)

R2=4,8 кОм

Расчет электронного таймера проводится по следующей методике:

5. Время работы таймера:

=RC(3.23)

Зададимся С4, равное 220 мкФ, при нижней границе срабатывания =1мин (R6=0).

R5= /C4= 5,1 кОм

6. Находим R6, при верхней границе срабатывания таймера =30 мин:

R6=(3.24)

R6= 100 кОм

3.4 Расчет ГУНа

Расчет ГУНа заключается в определении по специальным номограммам [19], приведенным на рисунке 3.3, частотные характеристики ГУНа: а) зависимость центральной частоты ГУНа f0 от R9 и C8; для частоты сдвига fсдв; зависимость пределов частот от отношения R11/R9.

а)

б)

в)

Рисунок 3.3 - Частотные характеристики ГУНа

Исходными данными являются: R9=R11= 100 кОм, С8=6800 пФ. Определяем по номограммам центральную частоту f0=40 кГц. Выбранную частоту следует сместить (сдвинуть) на величину fсдв=22 кГц, если вывод 12 микросхемы CD4046B и нулевой провод соединить через резистор R11.

При соотношении номиналов R11/R9=1 находим по номограмме (рисунок 3.3, в) отношение fmax/ fmin=3,3.

3.5 Расчет усилителя мощности

Порядок расчета усилителя мощности, собранного по двухтактной схеме с параллельным включением транзисторов, следующий [ ]:

1. Выбираем тип транзистора исходя из заданной мощности по условию:

Pkmax P1(3.25)

25 Вт 15 Вт

Наиболее подходящий, в нашем случае, транзистор КТ815Г.

2. Выбираем напряжение питания из условия:

Е=(0,50,8) Uкдоп,(3.26)

Е= 12 В.

3. Рассчитываем эквивалентное сопротивление нагрузки:

Rэ=,(3.27)

где rвн - сопротивление пьезоэлектрического преобразователя, равное 4,7 кОм.

Rэ==21.4 кОм

4. Определяем амплитуду тока в цепи первичной обмотки трансформатора:

I1=(3.28)

I1=

5. Рассчитываем мощность, потребляемую каскадом:

P0=(3.29)

P0=18,3 Вт

6. Подсчитываем постоянную составляющую тока питания:

I0=(3.30)

I0=1.5

7. Определяем КПД:

=(3.31)

= 0.82

8. По заданной нагрузке рассчитываем входное сопротивление системы:

Rэ=(3.32)

где Сэл - электрическая емкость преобразователя, равная 5 нФ;

0 - резонансная частота, равная 251200 рад/сек.

Rэ=13,37 кОм

9. Определяем коэффициент трансформации выходного трансформатора:

n=(3.33)

n=0.83

Таким образом, были произведены расчеты основных параметров: трансформатора, который будет иметь следующие габаритные размеры 50x30x30 мм и коэффициент трансформации N=0,07; задающего генератора (частоту модуляции счетчика) и таймера; и электрические параметры усилительного выходного каскада. По номограммам были определены центральная частота ГУНа f0=40 кГц и fmax/ fmin=3,3.

4. Выбор функциональных элементов и материалов конструкции

4.1 Выбор функциональных элементов

Проанализировав требования технического задания по электрической принципиальной схеме физиотерапевтического устройства на основе применения упругих волн проведем анализ и выбор элементарной базы.

Так как к разрабатываемому устройству не предъявляется повышенных требований к диапазону рабочих температур и других дестабилизирующих факторов, то можно сделать вывод о применении в приборе дешевых электрорадиоэлементов, имеющих малые габариты и потребляемую мощность.

При разработке электрической принципиальной схемы использовались следующие виды радиоэлементов: микросхемы, транзисторы, диоды, резисторы, конденсаторы, трансформаторы. Электрорадиоэлементы должны быть совместимы по тепловым и энергетическим характеристикам.

Задающий генератор, счетчик, генератор управляемый напряжением и электронный таймер собраны на интегральных микросхемах .

Выбор типа микросхем проведем исходя из следующих соображений:

- соответствие параметров микросхемы электрической принципиальной схеме;

- интегральная микросхема должна иметь минимальный ток потребления;

- низкая себестоимость.

Электрические параметры выбранных микросхем приведены в таблице 4.1.

Таблица 4.1

Электрические параметры микросхем

Серия и тип ИМС

Параметры ИМС

Uпит, В

Iпот, мкА

1

2

3

К561ИЕ16

К561ЛЕ5

CD4046

КР1006ВИ1

16

14

16

15

2

2

3

2

Интегральная микросхема (стабилизатор напряжения), которую необходимо установить в блоке питания, должна обеспечивать необходимое выходное напряжение. Она должна быть рассчитана на мощность не менее 1 Вт. Микросхема КР142ЕН8А удовлетворяет вышеуказанным условиям. Ее параметры: Pрас=1.5 Вт; Uвых=120.27 В [20].

Транзисторы в двухтактном усилителе будем применять средней мощности типа КТ815Г [21]. Они имеют следующие параметры:

- коэффициент усиления h21Э=25-275;

- напряжение UКЭ max=40 В;

- ток коллектора IКmax=1000 мА;

- мощность PКmax=25 Вт.

Они достаточно миниатюрны и дешевы.

Выбор типа диодов проводим исходя из следующих соображений:

- диод должен быть высокочастотным или универсальным;

- должно соблюдаться соответствие электрических параметров диодов схеме электрической принципиальной;

- применение диода по возможности с минимальными типоразмерами.

Исходя из этих требований и величины потребляемой мощности выбираем диодный мост КЦ405Е.

Резисторы будем применять серии С2-23. Элементы этой серии имеют малый размер и недорогие по стоимости. Погрешность их должна быть не больше 10%. Два переменных резистора возьмем серииСП4-1а. Они отличаются простотой использования и дешевой ценой.

Для коммутации сети в приборе используем переключатель типа ПКн-41-1-2П. Его выбор обусловлен простотой крепления, малыми размерами и такой конструктивной особенностью: включенное и выключенное состояние визуально различимы по высоте кнопки. Кнопки переключения режимов возьмем КМП8-4 НАЗ.604.006.

Так как устройство должно быть достаточно надежным и обеспечивать необходимый диапазон частот, то конденсаторы будем использовать типа КМ. Электролитический конденсатор типа К50-35 должен быть рассчитан на напряжение не менее 16 В. Также будут применены конденсаторы К10-17. Погрешность их должна быть не больше 20%.

В физиотерапевтическом устройстве на основе применения упругих волн применен повышающий трансформатор. Работает он на частотах до 66000 Гц. В связи с этим в трансформаторе необходимо использовать торроидальный сердечник. Это уменьшит габариты изделия. Для намотки трансформатора необходимо взять провода ПЭВТЛ-1-0.1 и ПЭВТЛ-1-0.2 так как их параметры наиболее подходят для обеспечения необходимых характеристик трансформатора.

Для изготовления понижающего трансформатора будем использовать провод марки ПЭВ-2 с диаметром d1=0.063 и d2=0.25 мм. Каркас необходимого размера для обмоток понижающего трансформатора изготавливается из электротехнического картона необходимой толщины.

Устройство будет защищено от перегрузок двумя вставками плавкими ВП2Б-1В (на ток 1 А). Для их закрепления можно воспользоваться держателями плавких вставок ДВП4-1Т.

4.2 Выбор материалов конструкции

В качестве корпуса будем использовать корпус из алюминиевого сплава АМц. Корпус будет состоять из крышки, лицевой панели и задней панели. Лицевая панель будет выполнена из ударопрочного полистирола УПМ-0612 Л - 06 рец. 151, 1с ГОСТ 28250-89 белого цвета. Такой корпус прост, надежен и удобен для быстрого ремонта устройства.

Для большей устойчивости корпуса на рабочей поверхности необходимо применить резиновые ножки.

Шурупы для скручивания корпуса, прикручивания сетевого переключателя, переключателя диапазонов, переключателя режимов, крепления платы будем использовать с полукруглой головкой по ГОСТ 1144 - 80 диаметрами 2.5 и 4 мм.

Монтажные провода соединяющие плату и переключатели используем марки НВМ-0.35-4 ГОСТ 17515-22. Трубки изолирующие типа 305 ТВ-40-2 белая, 1с ГОСТ 19034-82.

Плата с элементами крепится к корпусу с помощью четырех втулок винтами М 3-6д10.36.016.

Печатную плату необходимо изготовить из двустороннего фольгированного стеклотекстолита марки СФ2-35-1.5. Для обеспечения необходимой надежности, технологических показателей отверстия целесообразно сделать металлизированными. Плата изготавливается комбинированным позитивным методом с металлизацией отверстий.

Двусторонняя печатная плата выгодна тем, что уменьшаются габариты изделия. Для маркировки печатных плат и элементов на печатной плате выберем краску маркировочную МКЭЧ, черная, ГОСТ 12034-77. Данная краска механически прочная, эластичная, с хорошей адгезией.

Качество паяных соединений (прочность, герметичность, надежность и т.д.) зависят от правильного выбора припоя и флюса. Припой должен обладать хорошей смачивающей способностью, иметь температуру плавления не меньше 160С, быть дешевым. Наиболее подходящим припоем для разрабатываемого прибора является ПОС-61.

При выборе флюса руководствовался следующими соображениями:

- должен обладать хорошей смачивающей способностью;

- химически не должен быть слишком активным;

- должен хорошо удаляться с поверхности платы;

- невысокая цена.

Для флюсования печатной платы физиотерапевтического устройства можно воспользоваться флюсом ФКТ, который хорошо очищает поверхность перед пайкой, не является коррозийно активным и легко удаляется после пайки.

При изготовлении трансформатора после намотки катушки и закрепления выводов на лепестках, катушку необходимо обмотать несколькими слоями хлопчатобумажной ленты для защиты от механических повреждений и для улучшения электрической изоляции. Для придания влагостойкости, монолитности, необходимой механической прочности, катушки после намотки необходимо пропитать лаком ЭД-6.

5. обоснование конструкторского исполнения, расчет компоновочных характеристик

Обоснование конструкторского исполнения

Выбор рационального конструкторского исполнения конкретной аппаратуры зависит от решения множества вопросов, связанных с поиском оптимального варианта конструктивно-технологического обеспечения комплекса технических, экономических, эксплуатационных, производственных и организационных требований. Поиск оптимального конкретного конструктивно-технологического варианта должен проводиться при минимальных затратах и с учетом современных тенденций развития радиоэлектронной аппаратуры, прежде всего элементной базы и техники монтажа.


Подобные документы

  • Механизмы электрического и электромагнитного воздействия на организм человека. Электротерапия как метод лечения, реабилитации и профилактики заболеваний. Методы лечебного применения тока. Показания и противопоказания к применению электротерапии.

    реферат [1,0 M], добавлен 16.04.2019

  • Рассмотрение способов применения иммунобиологических препаратов для профилактики (живые, инактивированные, химические, рекомбинатные, синтетические, ассоциированные вакцины), лечения (иммуноглобулины, бактериофаги) и диагностики инфекционных заболеваний.

    контрольная работа [32,0 K], добавлен 07.04.2010

  • Лечебное применение электромагнитных волн миллиметрового диапазона. Эффект воздействия электромагнитных волн на биологические объекты. Лечение инфаркта миокарда и его осложнений. Применение КВЧ-терапии в лечении сердечно-сосудистых заболеваний.

    реферат [134,8 K], добавлен 16.06.2011

  • Разновидности гингивитов, признаки пародонтита. Виды физиотерапевтического лечения. Основы бальнеотерапии при воспалительных заболеваниях тканей пародонта. Парафинотерапия, лечение грязями. Светолечение, лазерная, аэрозольная терапия при пародонтозе.

    презентация [2,7 M], добавлен 02.07.2014

  • Разработка способа получения моноклональных антител на основе гибридомной технологии. Роль гибридомы в фундаментальной иммунологии. Создание на основе клонально-селекционной теории иммунитета. Методы диагностики заболеваний и злокачественных опухолей.

    презентация [524,5 K], добавлен 21.10.2015

  • Использование в медицине приборов на основе доплеровского эффекта, электроакустические принципы построения. Сущность доплеровского эффекта. Разработка прибора для измерения кровотока на основе доплеровского эффекта с применением ультразвуковых волн.

    дипломная работа [1,9 M], добавлен 23.10.2010

  • Анализ и история применения чаги в лечении и профилактике раковых заболеваний, рецепты приготовления различных лекарственных форм из нее. Особенности применения народной медицины в медикаментозном лечении рака. Характеристика комплексной терапии рака.

    реферат [22,0 K], добавлен 03.05.2010

  • Классификация сердечнососудистых заболеваний, основные способы их лечения лекарственными растениями. Описание и способы применения лекарственных растений с гипотензивным, мочегонным и тонизирующим действием при лечении сердечнососудистых заболеваний.

    реферат [38,5 K], добавлен 09.10.2010

  • Понятие и параметры звука, исследование его воздействия на воду. Негативное влияние громкой музыки на слуховой аппарат и физиологические процессы человека. Принцип резонанса, лежащий в основе звукотерапии. История лечебного применения классической музыки.

    презентация [5,3 M], добавлен 07.06.2012

  • Физиотерапевтические методы лечения. Сущность светофототерапии, магнитотерапии и электростимуляции. Источники теплового воздействия на организм. Основные принципы применения физиотерапии в комплексном лечении и профилактике заболеваний уха, горла и носа.

    презентация [958,1 K], добавлен 27.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.