Влияние эпифиза и его гормонов на функционирование организма

Гормоны. Периферические эндокринные железы. Управляющие эндокринные железы. Анатомия и физиология эпифиза. Влияние эпифиза на различные функции организма. Биологические ритмы организма. Связь эпифиза и психики человека. Влияние эпифиза на старение.

Рубрика Медицина
Вид научная работа
Язык русский
Дата добавления 08.02.2007
Размер файла 286,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

пинеалоциты располгаются группами; различают светлые (менее активные) и тёмные (более активные) пинеалоциты. Светлые и тёмные пинеалоциты, представляют разные функциональные состояния одной клетки.

пинеалоциты образуют аксо-вазальные синапсы с сосудми, поэтому выделяемые ими гормон попадают в кровоток

пинеалоциты синтехируют серотонин и мелатонин, возможно и другие белковые гормоны

эпифиз находится вне гематоэнцефалического барьера, так как пинеалоцитыимеют прямые связи с капиллярами (аксо-вазальные синапсы)

Морфологические проявления секреции шишковидной железы: ядерные пары бледно-базофильные обраования внутри ядер пинеальных клеток, вакуолизация их цитоплазмы, базофильные или оксифильные капли колоида в клетках тканевой коллоид) и в сосудах тиа венул (внутрисосудистый коллоид). Секреториальная активность в эпифизе стимулируется светом и темнотой.

Между секреторными клетками и фенистрированными капиллярами располагаются глиальные клетки. Глиальные клетки преобладают на периферии долек. Их отростки направляются к междольковым соединительнотканным перегородкам, образуя своего рода краевую кайму дольки. Гиальные - мелкие с компактой цитоплазмой, гиперхроными ядрами, многочисленными отростками Глиальные клетки являются астроглией. Они же - интерстициальные клетки - напоминают астроциты (Они не отличаются от астроцитов нервной ткани, содержат скопления глиальных филаментов, располагаются периваскулярно), имеют многочисленные ветвящиеся отростки, округлое плотное ядро, элементы гранулярной эндоплазматической сети и структуры цитоскелета: микротрубочки, промежуточные филамены и множество микрофиламетнтов.

1.4 Физиология

Достоверных морфологических признаков, свидетельствующих о секреторной функции, нет. Однако дольчатость и тесные контакты паренхиматозных клеток с соединительнотканными и нейроглиальными элементами позволяют судить о железистой структуре эпифиза. Изучение ультраструктуры клеток также показывает способность пинеалоцитов к выделению секреторного продукта. Кроме того, в цитоплазме пинеалоцитов обнаружены плотные пузырьки (dens core vesicles) диаметром 30-50нм, свидетельствующие о секреторном процессе. В эндотелии капилляров эпифиза найдены норы диаметром 25 - 4нм. Капилляры с такой ультраструктурой обнаружены в гипофизе, щитовидной железе, паращитовидных и поджелудочной железах, т. е. в типичных органах внутренней секреции. По мнению Wolfe и А. М. Хелимского, поры в эндотелии капилляров являются ещё одним признаком, указывающим на его секреторную функцию. Исследования последних лет установили, что эпифиз - метаболически активный орган. В его ткани обнаруживаются биогенные амины и ферменты, катализирующие процессы синтеза и инактивации этих соединении. Установлено, что в эпифизе происходит интенсивный обмен липидов, белков, фосфора и нуклеиновых кислот. Изучены три физиологически активных вещества, обнаруженных в эпифизе:

серотонин,

мелатонин,

норадреналин.

Есть немало данных и об аптигипоталамическом факторе, который связывает эпиталамо-эпифизарный комплекс с гипоталамо - гипофизарной системой. Так, например, в нем вырабатываются:

аргинин-вазотоцин (стимулирует секрецию пролактина);

эпифиз-гормон, или фактор «Милку»;

эпиталамин -суммарный пептидный комплекс и др.

В эпифизе обнаружены пептидные гормоны и биогенные амины, что позволяет отнести его клетки (пинеалоциты) к клеткам АПУД-системы. Не исключено, что в эпифизе могут также синтезироваться и накапливаться и другие гормональные соединения. Эпифиз участвует в регуляции процессов протекающих в организме циклически (например овариально-менструального цикла), деятельность эпифиза связывают с функцией поддержания биоритма (смена сна и бодрствования). Эпифиз - звено реализации биологических ритмов ритмов, в т.ч. околосуточных.

Пинеалоциты продуцируют мелатонин, производное серотонина, который подавляет гонадотропную секрецию и препятствует раннему половому созреванию. Разрушение этой железы, ее недоразвитие или удаление эпифиза у инфантильных животных в эксперименте имеют следствием наступление преждевременного полового созревания.

Ингибирующее влияние эпифиза на половые функции обусловливается несколькими факторами: пинеалоциты вырабатывают серотонин, который в них же превращается в мелатонин. Этот нейроамин, ослабляет или угнетает секрецию гонадолиберина гипоталамусом и гонадотропинов передней доли гипофиза. В то же время пинеалоциты продуцируют ряд белковых гормонов и в их числе антигонадотропин, ослабляющий секрецию лютропна передней доли гипофиза. Наряду с антигонадотропином пинеалоциты образуют другой белковый гормон, повышающий уровень калия в крови, следовательно, участвующий в регуляции минеарльного обмена. Число регуляторных пепидов продуцируемых пинеалоцитами, приближается к 40. Из них наиболее важны аргинин - вазотоцин, тиролиберин, люлиберин и даже тиротропин.

Эпифиз моделирует активность гипофиза, панкреатических островков, паращитовидных желез, надпочечников, половых желез и щитовидной железы. Влияние эпифиза на эндокринную систему носит в основном ингибиторный характер. Доказано действие его гормонов на систему гипоталамус-гипофиз-гонады. Мелатонин угнетает секрецию гонадотропинов как на уровне секреции либеринов гипоталамуса, так и на уровне аденогипофиза. Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин.

Колебания уровня мелатонина влияют на образование гипофизом ряда гормонов, регулирующих сексуальную активность: лютенизирующего гормона, необходимого для овуляции секреции эстрогена; фолликул-стимулирующего гормона, регулирующего образование спермы у мужчин и созревания яичников у женщин; пролактина и окситоцина, стимулирующих образование молока и проявление материнской привязанности. Ряд исследований показал, что уровень мелатонина у женщин изменяется в зависимости от фазы менструального цикла. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный, анальгезирующий и седативный эффект. Экстракты эпифиза вызывают инсулиноподобный (гипогликемический), паратиреоподобный (гиперкальциемический) и диуретический эффекты. Имеются данные об участии в иммунной защите. Участие в тонкой регуляции почти всех видов обмена веществ.

Также обнаружено существенное иммуностимулирующее влияние мелатонина на иммунные процессы. Он стимулирует образование антителообразующих клеток. Введение гормона в организм полностью восстанавливает нарушение иммунных реакций, наблюдающихся после блокады функций эпифиза, вызванной сменой светового режима или блокатором бета-адренергических рецепторов пропанолом. Поскольку блокатор опиоидных рецепторов налтрексон полностью отменяет стимулирующий эффект мелатонина при введении in vivo, предполагается, что опиоидные пептиды могут вовлекаться в реализацию влияния этого гормона на иммунную систему.

1.5 История исследований.

Функции этой железы оставались непонятными многие-многие годы. Кое-кто расценивал железу как рудиментарный глаз, ранее предназначавшийся для того, чтобы человек мог оберегать себя сверху. Но структурным аналогом глаза такую железу - эпифиз можно признать лишь у миног, у пресмыкающихся, а не у нас. В мистической литературе периодически встречалось утверждение о контакте именно этой железы с таинственной нематериальной нитью, связывающей голову с парящим над каждым эфирным телом.

Из сочинения в сочинение перекочевывало описание этого органа, способного якобы восстанавливать образы и опыт прошлой жизни, регулировать поток мысли и баланс интеллекта, осуществлять телепатическое общение. Французский философ Р. Декарт (XVII век) считал, что железа выполняет посреднические функции между духами, то есть впечатлениями, поступающими от парных органов - глаз, ушей, рук. Здесь, в эпифизе, под влиянием "паров крови" формируются гнев, радость, страх, печаль. Фантазия великого француза наделила желёзку возможностью не только двигаться, но и направлять "животные духи" через поры мозга по нервам к мышцам. Это потом уже выяснили, что двигаться эпифиз не в состоянии.

Доказательством исключительности эпифиза ряд лет служило и то, что сердце тоже не имеет пары, а лежит "посреди". Да и существует шишковидная железа, как Декарт ошибочно предполагал, только у человека. В старинных русских медицинских руководствах железа эта называлась "душевной".

В двадцатых годах прошлого века многие специалисты пришли к заключению, что и говорить-то об этой железе не следует, ибо какой-либо значимой функции у предполагаемого рудиментарным органа нет. Появлялись сомнения в том, что эпифиз массой в двести миллиграммов и величиной с горошину функционирует не только в эмбриогенезе, а и после рождения. Все это привело к тому, что на ряд десятилетий из поля зрения исследователей этот "третий глаз" выпал. Правда, были и объективные причины. Среди них сложность изучения, требовавшая новых методов, и топографическое неудобство - уж очень трудно извлечь этот орган. Теософы, в свою очередь, не сомневались, что эпифиз пока большинству не очень нужен, а вот в будущем окажется необходимым для передачи мыслей от одного человека к другому.

В 1965 году в Москве врач В. Юровский представил к защите диссертацию о шишковидной железе. На основании своих анатомических исследований автор опровергал взгляды древних философов о локализации разума в эпифизе. Это исследование можно считать началом объективного, материалистического подхода к изучению этой таинственной железы. Таинственной потому, что никто из последующих исследователей на основании своих работ не смог предложить сколь-нибудь правдоподобной гипотезы о роли шишковидной железы в организме.

Основная информация о физиологическом значении эпифиза была получена наукой в последние десятилетия. Биологи подтверждают, что эволюционно эпифиз оказался в центре головного мозга не сразу. Первоначально он выполнял функцию "затылочного глаза", и только позднее, по мере развития полушарий мозга, эта железа оказалась практически в центре. Еще в эпифизе почти всех взрослых людей обнаружили достаточно прочные неорганические песчинки - мозговой песок - отложения солей кальция. Е.П. Блаватская писала в "Тайной Доктрине": "…этот песок весьма таинственный и ставит в тупик исследования всех материалистов. Только этот знак внутренней самостоятельной активности шишковидной железы не позволяет физиологам классифицировать ее как абсолютно бесполезный атрофировавшийся орган". Так в действительности и было. Например, уже не так давно, рентгенологи предлагали использовать рентгеноконтрастность эпифизарного песка для выявления смещений мозговых структур при внутричерепных объемных процессах. И только после открытия в 1958 году мелатонина ученые снова заинтересовались эпифизом.

Глава 2. Гормоны Эпифиза.

2.1 Серотонин, его строение и синтез.

Серотонин является промежуточным продуктом метаболизма триптофана, образующегося в основном в энтерохромаффинных клетках тонкого кишечника, в серотонинэргических нейронах мозга, в тромбоцитах крови. Почти весь серотонин в циркулирующей крови сконцентрирован в тромбоцитах. Изменение концентрации циркулирующего серотонина наблюдается при хронической головной боли, шизофрении, гипертензии, болезни Хантингтона, мышечной дистрофии Дюшенна и ранней стадии острого аппендицита. Определение уровней сывороточного серотонина имеет большое клиническое значение для диагностической оценки карциноидного синдрома.

Первым этапом биосинтеза в эпифизе является превращение аминокислоты триптофана под воздействием триптофангидроксилазы в 5-окситриптофан. С помощью декарбоксилазы ароматических аминокислот из этого соединения образуется серотонин, часть которого ацетилируется, превращаясь в N-ацетилсеротонин. Заключительный этап синтеза (превращение N-ацетилсеротонина под действием ОНОМТ), специфичен для эпифиза. Неацетилированный серотонин дезаминируется моноаминоксидазой и преобразуется в 5- оксииндолуксусную кислоту и 5-окситриптофол.

Значительное количество серотонина поступает также в нервные окончания, где захватываются гранулами, препятствующими ферментативному разрушению этого моноамина.

Полагают, что синтез серотонина происходит в светлых пинеалоцитах и контролируется норадренергическими нейронами. Холенергические парасимпатические волокна регулируют высвобождение серотонина из светлых клеток и тем самым его доступность для тёмных пинеалоцитов, в которых также имеет место норадренергическая модуляция образования и секреции мелатонина.

Серотонин метаболизируется в организме до 5-гидроксииндолуксусной кислоты, которая затем выводится с мочой.

2.2 Физиологические функции серотонина.

Серотонин играет роль нейромедиатора в ЦНС. Большое количество серотонинергических нейронов найдено в лимбической системе, в гипоталамусе, в триггерной зоне и многих других местах центральной нервной системы.

Патологическое понижение серотонинергической нейротрансмиссии отмечается при депрессивных состояниях, различных хронических болевых синдромах, при тревожных состояниях, навязчивостях, бессоннице и ряде других психических патологий. При шизофрении отмечается нарушение нормального соотношения серотонина и дофамина в мезолимбической, мезокортикальной областях мозга и в лобных долях коры большого мозга.

Серотонин наряду с дофамином играет важную роль в механизмах гипоталамической регуляции гормональной функции гипофиза. Стимуляция серотонинергических путей, связывающих гипоталамус с гипофизом, вызывает увеличение секреции пролактина и некоторых других гормонов передней доли гипофиза -- действие, противоположное эффектам стимуляции дофаминергических путей.

Серотонин также играет важную роль в процессах свёртывания крови. Тромбоциты крови содержат значительные количества серотонина и обладают способностью захватывать и накапливать серотонин из плазмы крови. Серотонин повышает функциональную активность тромбоцитов и их склонность к агрегации и образованию тромбов. Стимулируя специфические серотониновые рецепторы в печени, серотонин вызывает увеличение синтеза печенью факторов свёртывания крови. Выделение серотонина из повреждённых тканей является одним из механизмов обеспечения свёртывания крови по месту повреждения.

Серотонин также является одним из важных медиаторов аллергии и воспаления. Он повышает проницаемость сосудов, усиливает хемотаксис и миграцию лейкоцитов в очаг воспаления, увеличивает содержание эозинофилов в крови, усиливает дегрануляцию тучных клеток и высвобождение других медиаторов аллергии и воспаления. Местное (например, внутримышечное) введение экзогенного серотонина вызывает сильную боль в месте введения. Предположительно серотонин наряду с гистамином и простагландинами, раздражая рецепторы в тканях, играет роль в возникновении болевой импульсации из места повреждения или воспаления.

Также большое количество серотонина производится в кишечнике. Серотонин играет важную роль в регуляции моторики и секреции в желудочно-кишечном тракте, усиливая его перистальтику и секреторную активность. Кроме того, серотонин играет роль фактора роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбактериозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается.

Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, диареи при химиотерапии злокачественных опухолей. Аналогичное состояние бывает при некоторых злокачественных опухолях, эктопически продуцирующих серотонин.

Большое содержание серотонина также отмечается в матке. Серотонин играет роль в паракринной регуляции сократимости матки и маточных труб и в координации родов. Продукция серотонина в миометрии возрастает за несколько часов или дней до родов и ещё больше увеличивается непосредственно в процессе родов. Также серотонин вовлечён в процесс овуляции -- содержание серотонина (и ряда других биологически активных веществ) в фолликулярной жидкости увеличивается непосредственно перед разрывом фолликула, что, приводит к увеличению внутрифолликулярного давления.

Серотонин участвует в регуляции сосудистого тонуса, вызывает спазм сосудов. Нарушение серотонинергической регуляции сосудистого тонуса является, одной из причин мигрени.

2.3 Синтез и метаболизм мелатонина.

Эпифиз продуцирует в основном индол-N-ацетил-5-метокситриптамин (мелатонин). В отличие от своего предшественника серотонина это вещество синтезируется, исключительно в шишковидной железе. Поэтому его концентрация в ткани, равно как и активность ОНОМТ, служат показателями функционального состояния эпифиза. Подобно другим О-метилтрансферазами ОНОМТ в качестве донора метильной группы использует S-аденозилметионил.

Субстратами метилирования в эпифизе могут служить как серотонин, так и другие 5-оксииндолы, но N-ацетилсеротонин оказывается более (в 20 раз) предпочтительным субстратом этой реакции. Это означает, что в процессе синтеза мелатонина N-ацетилирование предшествует О-метилированию.

Имеются данные о продукции эпифизом не только индолов, ни и веществ полипептидной природы, причём, по мнению ряда исследователей, именно они и являются истинными гормонами шишковидной железы. Так, из неё выделен обладающий антигонадотропной активностью пептид (или смесь пептидов) с молекулярной массой 1000-3000 дальтон. Другие авторы постулируют гормональную роль выделенного из эпифиза аргинин-вазотоцина. Третьи - получили из эпифиза два пептидных соединения, одно из которых стимулировало, а другое ингибировало секрецию гонадотропинов культурой гипофизарных клеток.

Основной путь метаболизма мелатонина варьирует от вида к виду. В печени человека происходит его гидроксиляция и коньюгация с сульфатом (и глюкуронидом) с образованием 6-сульфатоксимелатонина (6-СОМ) - главного метаболита, который выводится с мочой. Его суточная экскреция достоверно отражает продукцию мелатонина. Выявлена очень тесная корреляция между уровнем мелатонина плазмы и уровнями 6-СОМ плазмы и мочи. Лишь незначительная часть мелатонина - около 10% - экскретируется в неизменном состоянии.

2.4 Регуляция синтеза мелатонина.

Активность эпифиза зависит от периодичности освещения. На свету синтетические и секреторные процессы в нём ингибируются, а в темноте усиливаются. Световые импульсы воспринимаются рецепторами сетчатки и поступают в центры регуляции симпатической нервной системы головного и спинного мозга и далее - в верхние шейные симпатические ганглии, дающие начало иннервации шишковидной железы. В темноте ингибиторные нервные влияния исчезают, и активность эпифиза возрастает. Удаление верхних шейных симпатических ганглиев приводит к исчезновению ритма активности внутриклеточных ферментов эпифиза, принимающих участие в синтезе его гормонов. Содержащие норадреналин нервные окончания через клеточные рецепторы повышают активность этих ферментов. Это обстоятельство как будто противоречит данным об ингибирующем влиянии возбуждения симпатических нервов на синтез и секрецию мелатонина. Однако, с одной стороны, показано, что в условиях освещения содержание серотонина в железе снижается, а с другой - обнаружена и роль холинергических волокон в регуляции активности оксиндол-О-метилтрансферазы (ОНОМТ) эпифиза.

Холингерическая регуляция активности эпифиза подтверждается присутствием в этом органе ацетилхолинэстеразы. Источником холинергических волокон также служат верхние шейные ганглии.

2.5 Мелатонин в организме.

Кроме неясной в отношении истинной природы гормона (гормонов) шишковидной железы, существуют разногласия и в вопросе о путях его поступления в организм: в кровь или в цереброспинальную жидкость. Большинство данных свидетельствует о том, что подобно другим эндокринным железам, эпифиз выделяет свои гормоны в кровь. Помимо крови и цереброспинальной жидкости, мелатонин обнаружен в моче, слюне, амниотической жидкости.

Большая часть выброшенного в кровь гормона связывается с альбумином - основным белком плазмы. Таким способом мелатонин защищается от быстрого распада и транспортируется к клеткам-мишеням. По разным данным, период его полужизни в организме человека составляет от 30 до 50 мин. Свою активность мелатонин теряет в печени, где окисляется системой ферментов, связанных с белком Р-450, а затем выводится из организма.

Несмотря на то, что геометрически эпифиз располагается в самом центре мозга, управляется он, как обычный периферический орган, при помощи вегетативной нервной системы. Зрительная информация от сетчатки через ответвление зрительного нерва попадает в супрахиазмальные ядра (СХЯ), находящиеся в глубине полушарий над зрительным перекрестом. Затем эти сигналы нисходят вниз (через гипоталамус по проводящим путям вдоль ствола головного мозга), в шейный отдел спинного мозга, откуда по симпатическим нервам через отверстия в черепе проникают обратно в головной мозг и, наконец, достигают эпифиза. Ночью, в темноте, когда большинство нейронов супрахиазмальных ядер бездействует, эти нервные окончания выделяют норадреналин, активирующий в клетках эпифиза (пинеалоцитах) синтез ферментов, образующих мелатонин. Эпифиз здорового взрослого человека, имеющий массу немногим более 100 мг, еженощно выделяет в кровь около 30 мкг мелатонина. Яркий свет мгновенно блокирует его синтез, в то время как в постоянной темноте суточный ритм выброса, поддерживаемый периодической активностью СХЯ, сохраняется.

При этом эпифизарный гормон взаимодействует с веществами, модулирующими активность супрахиазмальных ядер: нейромедиаторами (глутамат и серотонин) и нейропептидами (нейропептидтирозин и вещество П). Таким способом в системе внутрисуточной ритмики млекопитающих и человека поддерживается динамический гомеостаз.

Зародыши и новорожденные млекопитающие, включая человека, сами не образуют мелатонина, а пользуются материнским, поступающим через плаценту, а потом - с молоком матери. Секреция гормона начинается лишь на третьем месяце развития ребенка. С возрастом синтез мелатонина в эпифизе резко увеличивается и достигает максимума уже в первые годы жизни (не позднее 5 лет), а затем в течение всей жизни человека постепенно и плавно снижается (резкое падение наблюдается лишь в период полового созревания).

Очевидно, что возрастная динамика мелатонина носит в основном адаптивный характер: ведь по мере ослабления выброса гормонов гипофизом и угасания деятельности периферических эндокринных желез потребность в их периодическом ночном торможении снижается и может вовсе исчезнуть. Недавно аутопсия подтвердила наличие в эпифизе рецепторов половых стероидов. Значит, эпифиз действительно получает обратную информацию о циркулирующих в крови гормонах. Сейчас это явление интенсивно изучается в ряде лабораторий мира.

2.6 Ритм секреции мелатонина.

У всех исследованных животных независимо от времени их активности (ночной, дневной образ жизни) установлен суточный ритм секреции мелатонина.

Ритмичность секреции мелатонина у людей впервые была описана в 1973 г. Pelham и с этого времени неоднократно подтверждалась. Днём его уровни в крови и в других биологических жидкостях низкие, часто неопределяемые.

Ночью наблюдается повышение содержания мелатонина в крови с максимумом около 2 ч.

Установлена первостепенная важность цикла свет-темнота в определении высоты и продолжительности секреции мелатонина. Воздействие интенсивного света в ночное время быстро и резко снижает ночной подъём гормона. Наиболее эффективно подавление секреции мелатонина у человека монохроматическим светом с длинной волны 509 нм, которая активирует родопсин. Предполагается, что родопсин может быть фотопигментом, медиирующим ингибиторные эффекты света на циркадианный ритм мелатонина. Воздействие темноты утром также изменяет мелатониновый ритм. «Навязанная» длина суток - увеличенная или уменьшенная - приводила к частичной десинхронизации суточного ритма секреции мелатонина с циклом сон-бодрствование.

Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, на несколько часов отличающимся от суточного. То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Она возникает у зрячих в тёмный период и может быстро прерываться при воздействии интенсивного света. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.

Нарушения суточного ритма могут возникать при повреждении иннервации эпифиза и периферической адренерической блокаде. У больных с повреждением проводящих нервных путей (при деструкции гипоталамуса опухолью, дегенеративных заболеваниях этой же зоны) описано снижение амплитуды кривой секреции мелатонина, исчезновение ночного подъёма. Аритмичность секреции отмечена и у больных с квадриплегией при травматической перерезке шейного отдела спинного мозга.

Поскольку изменение продолжительности светового дня сказывается на характере кривой мелатониновой секреции, то можно предположить и сезонные колебания у людей, живущих в крайних широтах, Арктике и Антарктике. У них поддерживается циркадианный ритм секреции индола во все четыре сезона с максимумом зимой.

Кроме суточных, существуют и сезонные ритмы колебания уровня мелатонина, причем не только у млекопитающих с сезонным циклом размножения, но и у человека. Посмертные исследования (аутопсия) показали, что у людей, живших в средних широтах Северного полушария и умерших в ноябре-январе, эпифизы достоверно больше по размеру и массе, чем у лиц, соответственно подобранных по возрасту, полу и месту проживания, умерших в мае-июле. Видимо, именно с ритмом эпифизарного мелатонина связаны в конечном счете сезонные изменения общей активности и эмоционального состояния человека (включая так называемые сезонные депрессии).

Глава 3. Влияние Эпифиза на различные функции организма.

3.1 Влияние эпифиза на репродуктивную функцию.

Предположение о возможности секреторной роли эпифиза человека впервые было высказано исходя из его связи с функцией гонад. Невропатолог О. Марбург в 1909 г. описал двух мальчиков с пинеальной опухолью, сочетающейся с преждевременным половым развитием, и допустил, что в норме эпифиз вырабатывает вещество, тормозящее половое созревание. В 1963 г. было обнаружено, что раствор мелатонина может воспроизводить ингибиторные эффекты экстрактов эпифиза на созревание гонад у животных, т.е. предположительно мелатонин является гормоном. Однако последующие экспериментальные попытки доказать гонадоподавляющее действие эпифиза давали неоднозначные результаты. Оказалось, что преждевременное половое созревание у больных с пинеаломой в ряде случаев не связано с дефицитом мелатонина, а связано с продукцией герминативными клетками опухоли хорионического гонадотропина. Установлено также, что помимо мелатонина антигонадотропная активность присуща эпифизарному пептиду аргининвазотоцину.

3.2 Влияние эпифиза на функции гипофиза.

В экспериментах на животных установлено, что эпифизарная регуляция репродуктивной функции осуществляется за счёт влияния шишковидной железы на гипоталамо-гипофизарную систему, а не непосредственно на половые железы. Более того, введение мелатонина в III желудочек мозга снижало уровни лютеинизирующего (ЛГ) и фолликулостимулирующего (ФСГ) гормонов и повышало содержание пролактина в крови, тогда как инфузия мелатонина в портальные сосуды гипофиза не сопровождалась изменением секреции гонадотропинов. Одним из мест приложения действия мелатонина в мозге является срединное возвышение гипоталамуса, где продуцируются либерины и статины, регулирующие активность передней доли гипофиза. Однако остается неясным, меняется ли продукция этих веществ под действием самого мелатонина или он модулирует активность моноаминергических нейронов и таким образом участвует в регуляции продукции рилизинг-факторов. Следует подчеркнуть, что центральные эффекты гормонов эпифиза не доказывают их прямой секреции в цереброспинальную жидкость, поскольку они могут попадать туда и из крови.

Кроме того, имеются данные о действии мелатонина и на уровне семенников (где это вещество тормозит образование андрогенов) и других периферических желез внутренней секреции (например, ослабление влияния ТТГ на синтез тироксина в щитовидной железе). Длительное введение мелатонина в кровь снижает массу семенников и уровень тестостерона в сыворотке даже у гипофизэктомированных животных. Опыты показали также, что безмеланиновый экстракт эпифиза блокирует влияние гонадотропинов на массу яичников у гипофизэктомированных крыс.

Таким образом, продуцируемые этой железой биологически активные соединения обладают, не только центральным, но и периферическим действием.

Среди множества разнообразных эффектов этих соединений наибольшее внимание привлекает их влияние на секрецию гонадотропинов гипофиза. Данные о нарушении полового созревания при опухолях эпифиза явились первым указанием на его эндокринную роль. Такие опухоли могут сопровождаться как ускорением, так и замедлением полового созревания, что связывают с разной природой исходящих из паренхиматозных и непаренхиматозных клеток эпифиза новообразований. Основные доказательства антигонадотропного влияния гормонов шишковидной железы получены на животных (хомяках). В темноте, т. е. в условиях активации функции эпифиза) у животных наблюдается выраженная инволюция половых органов и снижение уровня ЛГ в крови. У эпифизэктомированных особей или в условиях перерезки нервов эпифиза темнота не оказывает такого действия. Полагают, что антигонадотропное вещество эпифиза препятствует выделению люлиберина или его действию на гипофиз.

Аналогичные, хотя и менее четкие данные получены на крысах, у которых темнота несколько задерживает половое созревание, а удаление эпифиза приводит к повышению уровней ЛГ и ФСГ в крови. Особенно отчетливо антигонадотропное влияние эпифиза наблюдается у животных с нарушенной функцией гипоталамо-гипофизарно-гонадной системы введением половых стероидов в раннем постнатальном периоде.

Эпифизэктомия у таких крыс восстанавливает половое развитие. Антигонадотропные эффекты шишковидной железы и ее гормонов усиливаются также в условиях аносмии и голодания.

Ингибирующим действием на секрецию ЛГ и ФСГ обладает не только мелатонин, но и его производные -- 5-метокситриптофол и 5-окситриптофол, а также серотонин. Как уже отмечалось, способностью влиять на секрецию гонадотропинов in vitro и in vivo обладают и недостаточно идентифицированные полипептидные продукты эпифиза. Один из таких продуктов (с молекулярной массой 500-1000 дальтон) оказался в 60-70 раз активнее мелатонина в отношении блокады гипертрофии оставшегося яичника у односторонне овариэктомированных мышей. Другая фракция пептидов эпифиза, напротив, обладала прогонадотропным эффектом.

Удаление эпифиза у неполовозрелых крыс приводит к увеличений содержания пролактина в гипофизе с одновременным снижением его уровня в крови.

Аналогичные сдвиги имеют место у животных, содержащихся в условиях постоянного освещения, а противоположные -- у крыс, находящихся в темноте.

Полагают, что шишковидная железа выделяет вещество, препятствующее влиянию пролактинингибирующего фактора (ПИФ) гипоталамуса на синтез и секрецию пролактина в гипофизе, в результате чего содержание гормона в этой железе уменьшается. Эпифизэктомия вызывает противоположные изменения. Активным веществом эпифиза в данном случае является мелатонин, так как его инъекция в III желудочек мозга транзиторно повышала уровень пролактина в крови.

В условиях постоянного отсутствия света замедляется рост животных и значительно уменьшается содержание гормона роста в гипофизе. Эпифизэктомия снимает эффект темноты и иногда сама по себе ускоряет рост. Введение экстрактов эпифиза уменьшает стимулирующее рост влияние препаратов гипофиза. В то же время мелатонин не действует на скорость роста животных.

Возможно, какой-то иной эпифизарный фактор (факторы) тормозит синтез и выделение соматолиберина или стимулирует продукцию соматостатина.

В экспериментах было показано, что влияние эпифиза на соматотропную функцию гипофиза не опосредовано дефицитом андрогенов или тиреоидных гормонов.

У эпифизэктомированных крыс транзиторно возрастает секреция кортикостерона, хотя стрессорная реакция надпочечников после удаления эпифиэа существенно ослабляется. Секреция же кортикостерона повышается в условиях постоянного освещения, которое, как известно, тормозит активность шишковидной железы. Имеются данные о том, что удаление эпифиза ослабляет компенсаторную гипертрофию оставшегося надпочечника после односторонней адреналэктомии и нарушает циркадный ритм секреции глюкокортикоидов. Это указывает на значение эпифиза для осуществления адренокортикотропной функции передней доли гипофиза, что подтверждается изменением продукции АКТГ тканью гипофиза, удаленного у эпифизэктомированных животных.

Относительно действующего начала эпифиза, влияющего на адренокортикотропную активность гипофиза, в литературе нет единого мнения.

Удаление эпифиза повышает содержание меланоцитстимулирующего гормона (МСГ) в гипофизе, тогда как введение мелатонина в III мозговой желудочек снижает его содержание. Уровень последнего в гипофизе крыс, живущих на свету, возрастает, а введение мелатонина блокирует этот эффект. Считают, что мелатонин стимулирует гипоталамическую продукцию меланотропинингибирующего фактора МИФ.

3.3 Влияние эпифиза на функции щитовидной железы.

Влияние эпифиза и его гормонов на другие тропные функции гипофиза менее изучено. Изменение активности периферических эндокринных желез может возникать благодаря непосредственному действию эпифизарных факторов. Так, удаление эпифиза приводит к некоторому увеличению массы щитовидной железы даже в отсутствие гипофиза. Скорость секреции тиреоидных гормонов при этом возрастает очень мало и кратковременно. Однако, по другим данным, эпифиз оказывает ингибиторное влияние на синтез и секрецию ТТГ у неполовозрелых животных.

В большинстве экспериментов подкожное, внутрибрюшинное, внутривенное и даже внутрижелудочковое введение мелатонина приводило к уменьшению йодконцентрирующей функции щитовидной железы.

3.4 Влияние эпифиза на функции надпочечников.

Подсадка эпифиза к надпочечникам, не влияя на состояние пучковой и сетчатой зон коры, почти вдвое увеличивала размеры клубочковой зоны, что свидетельствует о непосредственном действии продуктов эпифиза на клетки, вырабатывающие минералокортикоиды. Более того, из эпифиза было выделено вещество (1-метокси-1,2,3,4-тетрагидро-карболин), стимулирующее секрецию альдостерона и поэтому получившее название адреногломерулотропин. Однако вскоре были получены данные, отрицающие физиологическую роль этого соединения и даже ставящие под сомнение само существование специфического адреногломерулотропного фактора эпифиза.

3.5 Влияние эпифиза на функции околощитовидных желёз.

Имеются сообщения о том, что удаление эпифиза снижает функциональную активность околощитовидных желез. Существуют и противоположные наблюдения.

Результаты исследования влияния эпифиза на эндокринную функцию поджелудочной железы в основном оказываются отрицательными.

В настоящее время остается еще много нерешенных вопросов, касающихся, в частности, характера продуцируемых этой железой соединений. Меньше всего вызывает сомнения влияние эпифиза на секрецию тропных гормонов гипофиза, но нельзя исключить возможность непосредственного его воздействия на периферические эндокринные железы и другие органы. под действием стимулов внешней среды эпифиз продуцирует не одно, а несколько соединений, попадающих преимущественно в кровь. Эти вещества модулируют активность моноаминергических нейронов в центральной нервной системе, контролирующих выработку либеринов и статинов определенными структурами мозга и тем самым влияющих на синтез и секрецию тропных гормонов гипофиза.

Влияние эпифиза на гипоталамические центры носит преимущественно тормозной характер.

3.6 Эпифиз и психика.

Одна из функций эпифиза -- регуляция ритмов в организме. Нарушения последних, например расстройства сна, сочетаются с психическими заболеваниями. Поэтому эпифиз привлекает внимание психиатров.

Исследования показали снижение либо отсутствие ночного подъема уровня мелатонина у больных с депрессией. Одно из звеньев патогенеза этого заболевания предполагает сниженную серотонина и норадренергическую функцию мозга. Оба эти продукта вовлечены в синтез мелатонина: один как предшественник, другой как нейротрансмиттер. Поэтому факт обнаружения низкого уровня мелатонина при депрессии не был неожиданностью.

С другой стороны, многие антидепрессанты стимулируют продукцию мелатонина, воздействуя на уровень норадреналина и серотонина в мозге. Опиоидные пептиды имеют антидепрессантную активность и также контролируют функцию эпифиза на гипоталамическом уровне, повышая выработку мелатонина.

Высокие уровни мелатонина могут обнаруживаться у пациентов с манией. Больные с маниакально-депрессивным синдромом сверхчувствительны к свету даже в период ремиссии. Мелатонин может служить маркером этой патологии -- супрессия секреции мелатонина выявляется у таких больных при воздействии света слабой интенсивности,

недостаточной для подобных изменений у здоровых.

Признается причастность эпифиза к своеобразному психическому расстройству -- синдрому зимней депрессии, или сезонной аффективной болезни, описанной Rosenthal и сотр. (1984). Это рецидивирующая зимняя депрессия, сопровождающаяся сонливостью, тягой к углеводам, увеличением массы тела.

Возможно, что она связана с удлинением темного периода суток. Отмечен быстрый положительный эффект лечения интенсивным светом с целью искусственного снижения уровней мелатонина.

3.7 Эпифиз и сон

В настоящее время участие, по крайней мере косвенное, эпифизарного мелатонина в сезонной и внутрисуточной ритмике, сне-бодрствовании, репродуктивном поведении, терморегуляции, иммунных реакциях, внутриклеточных антиокислительных процессах, старении организма, опухолевом росте и психиатрических заболеваниях - не оставляет сомнений. Это доказано многочисленными исследованиями.

Однако не столь всестороннее до недавнего времени изучение влияния мелатонина на сон млекопитающих давало весьма противоречивые результаты. Известно, что звери по характеру своей активности подразделяются на дневных, ночных и сумеречных (не считая тех, чья активность не связана со сменой освещенности, например, крота-слепыша). У всех животных мелатонин выбрасывается эпифизом в темноте и блокируется на свету, а активность супрахиазмальных ядер подавляется мелатонином. Спрашивается, как может вещество, выделяющееся в одно и то же время, управлять столь непохожими типами поведения у разных видов млекопитающих? Пока окончательного ответа на этот вопрос нет, но очевидно, что мелатонин влияет на поведение косвенно, через какие-то еще не известные механизмы. В этой связи весьма важными представляются следующие недавно полученные данные:

межвидовые различия в распределении областей связывания мелатонина в головном мозге млекопитающих, о чём было сказано выше;

различия в распределении подтипов рецепторов мелатонина внутри областей связывания;

особая роль нейронов в области переднего гипоталамуса, находящейся в непосредственной близости к СХЯ и образующей с ними единый функциональный комплекс. В этой области обнаружены клетки, которые связаны с реальным ритмом активности-покоя у данного животного. Видимо, они преобразуют периодическую активность нейронов СХЯ, адаптируя ее к наиболее адекватному поведенческому ритму.

Было изучено действие небольших (физиологических) доз мелатонина на кроликах, животных с преимущественно сумеречной активностью. Исходя из литературных данных, за рабочую гипотезу приняли, что введение мелатонина в противофазе с суточным ритмом его продукции (т.е. в светлое время суток) должно вызывать обращение суточного хода кривой активности-покоя. Иными словами, ожидалось, что в модели мелатонин лишь немного увеличит время бодрствования и уменьшит медленную и парадоксальную фазу сна.

Однако на самом деле все оказалось гораздо сложнее: в некоторых сериях опытов мелатонин, действительно, подавлял сон, но в других - не влиял на него или даже увеличивал долю парадоксального сна. По некоторым данным, в ряде случаев он также увеличивал парадоксальный сон у крыс, животных с выраженной ночной активностью. Аналогичное действие обнаружили и у некоторых здоровых испытуемых, когда после приема мелатонина скорее наступал быстрый (парадоксальный) сон и увеличивалась его доля в первых двух ночных циклах. Некоторые пациенты, которым вводили мелатонин по показаниям, отмечали появление необычайно ярких и эмоциональных сновидений.

Причина разнообразного влияния мелатонина на сон не вполне ясна. Можно предположить, что его эффекты возникают вследствие изменения гормонального баланса и отражают взаимодействие с некоторыми важнейшими регуляторными пептидами, такими как соматолиберин, соматостатин, вазоинтестинальный полипептид и кортикотропиноподобный пептид из промежуточной доли гипофиза (CLIP).

В то же время у диурнальных (дневных) млекопитающих, к которым относится человек, выброс мелатонина действительно совпадает с привычными часами сна. Это делает весьма привлекательной гипотезу о наличии и причинно-следственной связи между этими явлениями. У человека, однако, подъем уровня мелатонина не служит обязательным сигналом к началу сна. В различных лабораториях мира, в том числе и в исследованиях сотрудников Сомнологического центра Московской медицинской академии им. И.М.Сеченова, выполненных под руководством недавно ушедшего из жизни академика РАМН А.М.Вейна, прием мелатонина (от 0.3 до 3 мг) у большинства испытуемых вызывал лишь мягкий седативный эффект: способствовал некоторому общему расслаблению, снижал реактивность на обычные окружающие стимулы, что приводило к спокойному бодрствованию и плавному засыпанию. В отличие от сильных снотворных (феназепама, элениума, ивадала, имована и пр.), воздействующих на белки-рецепторы гамма-аминомасляной кислоты в мозге, мелатонин не вызывает ощущения невыносимой усталости и непреодолимой тяги ко сну. При необходимости человек легко преодолевает снотворные свойства мелатонина. Объективные и субъективные характеристики классических снотворных и мелатонина резко отличаются друг от друга.

Исходя из корреляции между субъективно ощущаемым и объективно подтвержденным ежевечерним нарастанием сонливости, с одной стороны, и увеличением концентрации мелатонина в крови, с другой, можно предположить, что он не прямо воздействует на сомногенные структуры головного мозга, а, скорее, создает некоторую “предрасположенность ко сну”, тормозит механизмы бодрствования. Благодаря высокой насыщенности СХЯ и смежных участков преоптической области высокочувствительными рецепторами, мелатонин, наряду с другими физическими (ярким светом) и вышеперечисленными биохимическими факторами, оказывает мощные модулирующие воздействия на активность главного осциллятора в организме млекопитающих, в том числе и человека. Так, при утреннем приеме он вызывает задержку фазы суточного ритма человека, а при вечернем - наоборот, сдвиг фазы вперед, причем не более чем на 30-60 мин/сут. Значит, ежедневно принимая мелатонин, можно сместить суточный цикл активности-покоя на несколько часов в ту или другую сторону. Такая потребность обычно возникает при трансмеридиональных авиаперелетах или сменной работе, когда сон нарушается и количественно, и качественно.

Использование мелатонина для коррекции биоритмов при сменной работе зависит от ее характера, освещенности и особенностей данного субъекта. Вопросы о необходимости приема гормона, его дозы и времени решаются в каждом случае индивидуально с обязательным учетом формы кривой мелатонина (до и после применения). Разработанные в настоящее время весьма чувствительные (от 0.5 пг/мл) методы определения этого эпифизарного гормона не только в плазме крови, но и в моче и слюне, делают его использование вполне возможным.

Несколько лет назад появились многочисленные публикации о “безвредности” и даже необходимости постоянного возмещения возрастной “нехватки” мелатонина. Это якобы должно улучшить общее состояние здоровья пожилых людей и продлить жизнь. Такое совершенно необоснованное с позиций современных знаний представление привело к беспрецедентному в истории фармацевтики явлению: в США гормон человека - синтетический мелатонин - был рекомендован в качестве пищевой добавки. Бесконтрольное по сути использование препарата, повышающее его концентрацию в десятки, сотни и даже тысячи раз по сравнению с естественным ночным уровнем, может не только нарушить суточный ритм и цикл сон-бодрствование, но и вызвать общую эндокринную недостаточность из-за неадекватного и чрезмерного торможения гормонов гипофиза и периферических эндокринных желез тогда, когда в подобном торможении уже нет нужды. Говоря другими словами, чрезмерная еженощная концентрация мелатонина может ухудшить здоровье и укоротить жизнь - т.е. привести к результатам, прямо противоположным тем, которые декларируются адептами “мелатонинового чуда”!

3.8 Эпифиз и канцерогенез.

В литературе обсуждается возможная роль эпифиза в противоопухолевой резистентности организма. В 1929 г. Georgion отметил, что эпифизэктомия у животных тормозила туморогенез, и сделал заключение о стимуляции эпифизом опухолевого роста. Большинство последующих исследований дало обратные результаты. Угнетение функциональной активности эпифиза (избыточным освещением) и эпифизэктомия оказывали стимулирующее воздействие на развитие и рост перевиваемых, индуцированных канцерогенами и спонтанных новообразований молочной железы. С другой стороны, стимуляция функции эпифиза (содержанием животных в темноте), введение экстрактов эпифиза либо мелатонина в ряде случаев обладают противоопухолевым эффектом.

Некоторые больные раком молочной железы демонстрируют малое повышение мелатонина плазмы ночью. Уровни мелатонина были ниже у пациентов с эстроген-рецепторноположительными опухолями. Зарегистрирована отрицательная корреляция между концентрацией эстрогеновых рецепторов в опухоли и мелатонина в плазме.

Обратная корреляция отмечена и для прогестероновых, но не для

глюкокортикоидных рецепторов. Связи прироста уровня мелатонина в крови ночью с концентрацией гормонов -- эстрогена, эстрадиола, прогестерона, ЛГ, ФСГ -- не выявлено. Эти данные предполагают, что отсутствие суточного ритма мелатонина может быть связано и с наличием гормональнозависимого рака молочной железы.

Ряд исследований свидетельствует о снижении амплитуды ночной волны мелатонина и даже о ее отсутствии при других гормональнозависимых опухолях -- раке матки, яичников, предстательной железы. Есть данные, что введение мелатонина либо экстракта эпифиза таким больным дополнительно к традиционному лечению улучшало его результаты.

До настоящего времени природа веществ, ответственных за антиканцерогенное действие эпифиза, механизмы их действия окончательно не известны. Каких-либо определенных морфологических изменений эпифиза у больных со злокачественными опухолями не обнаружено. Установлено выраженное тормозящее влияние мелатонина на клеточное деление. Он оказывает ингибирующее действие на некоторые из обменных нарушений, характерных для опухолевого роста: снижает уровень гормона роста в гипофизе и крови, уровень глюкозы, холестерина, неэтерифицированных жирных кислот в крови.

Часть III. Биологические ритмы организма.

Глава 1. Ритмы живых организмов.

1.1 Ритмы вокруг нас.

Мы без труда замечаем ритмические изменения, происходящие в окружающем нас мире: весна, лето, осень и зима образуют привычный цикл; солнце всходит каждый день, движется по небу и садится; луна прибывает и убывает; в океане приливы чередуются с отливами. Задолго до того, как люди узнали о вращении Земли и движении планет вокруг Солнца, они наблюдали эти изменения, задумывались об их смысле, устраивали в их честь церемонии и праздники, приурочивали к ним свою каждодневную деятельность. Популярные в средневековой Европе «часословы» описывали различные виды сезонной и суточной активности и предлагали верующим для каждого случая специальные молитвы.

В организме тоже есть свои ритмы, многие из которых связаны с земными циклами и даже приспособлены к ним. Большинство ритмических изменений мы даже не замечаем - таковы, например, гормональные приливы и отливы, циклы быстрой и медленной активности мозга, циклические колебания температуры тела. Хотя нам мало что известно об отдельных исполнителях, мы определенно знаем, что роль дирижера, управляющего биологическими ритмами, в человеческом организме принадлежит мозгу.

Однако ритмы существуют и у организмов с менее развитым мозгом и даже совсем без мозга. На песчаных пляжах залива Кейп-Код встречается один вид золотистых водорослей. Во время прилива эти одноклеточные организмы находятся в песке, но как только начинается дневной отлив, водоросли продвигаются между песчинками и выбираются на солнце, чтобы подзарядить свой аппарат фотосинтеза. Незадолго до того как волны возвращающегося прилива накроют их, водоросли вновь уходят на безопасную глубину.

Разумеется, приливы не происходят каждый день в одно и то же время. Наши часы отражают 24-часовые солнечные сутки, а цикл приливов и отливов связан с лунными сутками, длина которых 24,8 ч. Поэтому если в понедельник водоросли атлантического побережья северо-востока Соединенных Штатов должны успеть зарыться в песок в 14 ч 1 мин, то во вторник - в 14 ч 57 мин, в среду - в 15 ч 55 мин и т.д.

Зависит ли поддержание столь сложного ритма у этих одноклеточных растений от их реакции на сигналы, поступающие из внешней среды? Чтобы выяснить это, представителей популяции водорослей перенесли с песчаного пляжа в лабораторию и поместили в сосуд, находившийся в условиях постоянного освещения. Приливов - или их имитации - в лаборатории тоже не было. Оказалось, что, несмотря на отсутствие показателей времени - дней и ночей, приливов и отливов, - водоросли упорно карабкались на поверхность, когда на их родном пляже начинался отлив, и вновь зарывались в песок незадолго до того, как подступала вода. Водоросли были настолько пунктуальны, что экспериментаторы всегда могли судить по ним об уровне воды на берегу океана, находившемся на расстоянии более 27 миль. Очевидно, что поведением водорослей управляли биологические часы, установленные по лунному времени.


Подобные документы

  • Влияние гормонов эпифиза на выработку альдостерона в клубочковой зоне надпочечника. Изучение действия щитовидной железы на функцию почек, изменение диуреза под влиянием тиреоидных гормонов. Паратгормон и его действие на канальцевый транспорт электролитов.

    реферат [22,9 K], добавлен 09.06.2010

  • Функции щитовидной железы. Основные группы гормонов. Гипоталамус и эндокринная система. Периферические эндокринные железы. Регуляция секреции гонадотропинов. Гормоны эпифиза, нейрогипофиза, аденогипофиза, гонадотропные гормоны (гонадотропины).

    презентация [2,0 M], добавлен 05.06.2012

  • Функции эпифиза, вырабатывающего гормоны мелатонин, серотонин, норадреналин, пептидные гормоны. Патогенез опухоли эпифиза. Способствование эпифиза в молодом возрасте улучшению памяти и способности к обучению. Важность достаточного ночного сна для детей.

    презентация [709,6 K], добавлен 11.05.2016

  • Расположение и строение эпифиза. Эпифиз как железа внутренней секреции. Признаки эпифизарной недостаточности. Эпифиз как регулятор циркадианных ритмов. Гормоны эпифиза: серотонин и мелатонин. Образование олигопептидных гормонов совместно с нейроаминами.

    реферат [19,3 K], добавлен 26.02.2010

  • Классификация и химическая природа гормонов щитовидной железы. Участие гормонов щитовидной железы в обменных процессах организма. Влияние тиреоидных гормонов на метаболические процессы организма. Проявление дефицита и избытка гормонов щитовидной железы.

    реферат [163,5 K], добавлен 03.11.2017

  • Функции, классификация эндокринной системы человека. Схема желез внутренней секреции. Гормоны: виды, механизмы действия. Гормональные функции, патологии, диагностика, лечение эпифиза (шишковидной железы). Серотонин и мелатонин. Опухоли шишковидной железы.

    презентация [2,4 M], добавлен 18.11.2015

  • Эндокринные функции поджелудочной железы, клеточный состав островков Лангерганса. Контроль секреции инсулина, физиологический эффекты глюкагона. Эндокринные функции половых желез, описание мужских половых гормонов. Метаболические эффекты тестостерона.

    презентация [3,4 M], добавлен 13.09.2019

  • Характеристика желез внутренней секреции и их физиология. Механизм действия гормонов и их свойства. Роль обратной связи в механизме регуляции в функционировании гипоталамуса, гипофиза, эпифиза и щитовидной железы. Сравнительная характеристика гормонов.

    реферат [19,3 K], добавлен 17.03.2011

  • Понятия гормоноподобные и биологически активные вещества, гормоны местного действия. Гормональные рецепторы, классификация и взаимодействие гормонов. Регуляция функций желез внутренней секреции. Регулирующее влияние ЦНС на деятельность эндокринных желез.

    лекция [12,5 M], добавлен 28.04.2012

  • Железы, не имеющие выводных протоков. Эндокринные железы и свойства гормонов. Секреторные ядра гипоталамуса, гипофиз, шишковидная, околощитовидные и надпочечные железы. Эндокринные части поджелудочной и половых желез. Схема желез внутренней секреции.

    практическая работа [1,2 M], добавлен 08.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.