Компьютерный анализ изображений позитронно-эмиссионной томографии
Этапы исследования и блоки сканера. Постановка задачи и методы томографирования. Восстановление сечений с использованием Фурье-преобразований. Обратная проекция с фильтрацией сверткой. Итерационный метод наименьших квадратов или одновременная коррекция.
Рубрика | Медицина |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 14.10.2013 |
Размер файла | 3,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
(ФГБОУ ВПО «КубГУ»)
Физико-технический факультет
Кафедра физики и информационных систем
Допустить к защите в ГАК
_____ . ____ . 2013 г.
Заведующий кафедрой
д-р физ.-мат. наук, профессор
_______________Н. М. Богатов
ДИПЛОМНАЯ РАБОТА
КОМПЬЮТЕРНЫЙ АНАЛИЗ ИЗОБРАЖЕНИЙ ПОЗИТРОННО-ЭМИССИОННОЙ ТОМОГРАФИИ
Работу выполнила Приходько Анна Викторовна
Специальность 200402 - Инженерное дело в медико-биологической практике
Научный руководитель
доктор физ.-мат. наук профессор Н.М.Богатов
Нормоконтролёр доцент В. Ф. Савченко
Краснодар 2013
СОДЕРЖАНИЕ
Введение
1. Общие сведения об ПЭТ и перспективы развития
1.1 История развития
1.2 Физические основы ПЭТ
1.3 Этапы исследования и основные блоки сканера
1.4 Аппаратура для ПЭТ
2. Клиническое применение ПЭТ
2.1 ПЭТ в онкологии
2.2 ПЭТ в кардиологии
2.3 ПЭТ в неврологии
2.4 Достоинства и недостатки
3. Постановка задачи и методы томографирования
3.1 Основные определения и постановка задачи томографии
3.2 Восстановление сечений с использованием Фурье преобразований
3.3 Метод обратной проекции
3.4 Обратная проекция с фильтрацией свёрткой
3.5 Итерационные методы восстановления
3.6 Алгебраический метод восстановления (ART) или получевая коррекция
3.7 Итерационный метод наименьших квадратов (ILST) или одновременная коррекция
3.8 Преобразования Радона
4. Методический тест для студентов
4.1 Технологи Клиент-Сервер и Сервер-Word
4.2 Статистический анализ результатов теста среди учащихся
4.3 Преимущества программы «Тест»
Заключение
Список использованных источников
Реферат
Приходько А.В. Алгоритмы обработки сигналов позитронно-эмиссионной томографии. Дипломная работа: 85с., рис33., 25 источников
ПОЗИТРОННО-ЭМИССИННАЯ, ТОМОГРАФИЯ, ЭМИССИЯ, АННИГИЛЯЦИЯ
Объектом разработки данной дипломной работы является радионуклидный томографический метод исследования внутренних органов. Этот метод основан на том, что в ткани вводят особый радиофармпрепарат. В его состав входят радионуклиды, для которых характерен так называемый позитронный бета-распад. После того, как радиофармпрепарат был введен проводится регистрация так называемых «гамма-квантов».
Целью работы является изучение принципа работы ПЭТ - устройства, а также достоинства и недостатки ПЭТ, рассмотрение методов томографии, написание методического теста для обучающихся, написание программы «тест» для студентов, статистический анализ результатов тестирования.
В результате выполнения дипломной работы изучен метод работы ПЭТ, принцип обработки сигналов, также алгебраические и итерационные методы томографии, создан методический тест на проверку знаний для студентов, написана программа «Тест», сделан статистический анализ результатов тестирования.
ВВЕДЕНИЕ
Древняя латинская поговорка гласит: "Diagnosis cetra - ullae therapiaefundamentum" ("Достоверный диагноз - основа любого лечения"). На протяжении многих веков усилия врачей были направлены на решение труднейшей задачи - улучшение распознавания заболеваний человека.
Потребность в методе, который позволил бы заглянуть внутрь человеческого тела, не повреждая его, была огромной, хотя и не всегда осознанной. Ведь все сведения, касающиеся нормальной и патологической анатомии человека, были основаны только на изучении трупов. После того, как в Европе стали широко изучаться вскрытия трупов, врачи смогли изучить строение органов человека, а также изменения, которые они претерпевают при тех или иных заболеваниях. Какую огромную пользу принес бы непосредственный осмотр человеческого организма, если бы он стал вдруг "прозрачным"! И вряд ли кто-нибудь из ученых прошлого мог предположить, что эта мечта вполне осуществима. [20]
Потребность увидеть не оболочку, а структуру организма живого человека, его анатомию и физиологию была столь насущной, что, когда чудесные лучи, позволявшие осуществить это на практике, были наконец открыты, консервативные и часто недоверчивые к новшествам врачи почти сразу поняли, что в медицине наступила новая эра. Уже в первые дни и недели после того, как стало известно о существовании и свойствах этих лучей, врачи различных стран начали применять их для исследования важнейших органов и систем человеческого тела.
В течение первого же года появились сотни научных сообщений в печати, посвященных результатам таких исследований. Количество сообщений в последующие годы нарастало. Выяснялись все новые возможности рентгенологического метода. Появились первые книги, посвященные этому методу. Вскоре эта литература стала необозримой.
В 1946 г. известный советский клиницист и организатор здравоохранения Н.Н. Приоров на заседании, посвященном 50-летию рентгенологии, говорил: "Что стало бы сегодня с физиотерапией и урологией, гинекологией, неврологией и онкологией, хирургией и ортопедией, офтальмологией и травматологией, если бы лишить их того, что дала рентгенология в области диагностики и лечения?" Но процесс науки и техники неудержим.[18]
Не успели врачи полностью освоить возможности рентгеновских лучей в диагностике, как появились другие методы, позволяющие получить изображение внутренних органов человека, дополняющие данные рентгенологического исследования. К ним относятся радионуклеидное и ультразвуковое исследования, тепловидение, ядерно-магнитный резонанс, фотонная эмиссия, позитронно-эмиссионная томография (ПЭТ) и некоторые другие методы, еще не получившие широкого распространения.
Эти способы основаны на использовании близких по своей природе волновых колебаний, для проникновения которых ткани человеческого тела не являются непреодолимым препятствием. Они объединяются и тем, что в результате взаимодействия волновых колебаний с органами и тканями организма на различных приемниках - экране, пленке, бумаге и др. - возникают их изображения, расшифровка которых позволяет судить о состоянии различных анатомических образований. Такими образом, все указанные методы принципиально близки рентгенодиагностике как по своей природе, так и по характеру конечного результата их применения.
Внедрение в практику этих методов (наряду с рентгенологией) привело к возникновению новой обширной медицинской дисциплины, получившей за рубежом название диагностической радиологии (от латинского radius - луч), а у нас -лучевой диагностики. Возможности этой дисциплины в распознавании заболеваний человека весьма велики. Ей доступны практически все органы и системы человека, все анатомические образования, размеры которых выше микроскопических.
В отличие от классических медицинских методик (пальпации, перкуссии, аускультации) основным анализатором информации, получаемой способами лучевой диагностики, является орган зрения, при помощи которого мы получаем около 90% сведений об окружающем мире, и притом наиболее достоверных. [3]
Когда широкая сеть медицинских учреждений будет оснащена высококачественной аппаратурой, позволяющей использовать все возможности лучевой диагностики, а врачи, работающие в этих учреждениях, будут обучены обращению с этой сложной аппаратурой и, главное, полноценной расшифровке получаемых с ее помощью изображений, диагностика основных заболеваний человека станет более ранней и достоверной не только в крупных научно-исследовательских и клинических центрах, но и на передовом крае нашего здравоохранения - в поликлиниках и районных больницах. В этих учреждениях работает основная масса врачей. Именно сюда обращается подавляющее большинство больных при возникновении каких-либо тревожных симптомов.
От уровня работы именно этих лечебно-диагностических учреждений в конечном итоге зависит ранняя и своевременная диагностика, а следовательно во многом и результаты лечения подавляющего большинства болезней.[20]
1. ОБЩИЕ СВЕДЕНИЯ ОБ ПЭТ И ПЕРСПЕКТИВЫ РАЗВИТИЯ
1.1 История развития
Методика ПЭТ отображения является комбинацией двух изобретений, представленных к Нобелевской премии - радиоактивного индикатора и принципов томографии.
В период с середины 40-х до начала 1950-х интерес к радиактивным индикаторам был небольшим. Возможно, причиной стало открытие в 1940 Каменом и Рубеном 14С, более универсального и эффективного атома, чем 11С.
История ПЭТ началась в 1950-ых, когда появилась возможность отображения позитрона, испускающего нуклиды: фотоны с высокой энергией, произведенные при уничтожении позитрона, можно использовать для описания физиологического 3D распределения химического состава.
В середине 1950-ых, Терпогосян выдвинул идею, что, несмотря на короткое время полураспада этих радионуклидов, они пригодны для изучения регионального метаболизма.
Первый прототип ПЭТ сканера появился в 1952 году Массачусетском госпитале после 6 месяцев разработки конструкции. Он имел всего лишь два детектора на основе йодистого натрия расположенных друг напротив друга и позволял получать изображения, основанные как на обнаружении совпадения событий, так и на дисбалансе. Дисбаланс одноканальных детекторов использовался для создания изображения на основе регистрации любого дисбаланса между каналами детекторов. Разрешение было низким, но чувствительность устройства все же позволяла обнаружить опухоль и ее пространственное положение относительно срединной линии мозга.[4]
С середины 1950-ых до начала 1970-ых радионуклиды использовались мало. С начала 1970-ых испускающие позитрон радионуклиды стали популярны и интерес к ПЭТ исследованиям возрос. Были созданы сложные алгоритмы реконструкции и усовершенствованы датчики.
Рисунок 1 - Первый клинический позитронно-эмиссионный томограф 70-х
В 1980х ПЭТ стал использоваться для динамических исследований метаболизма человека.
На развитие технологии ПЭТ повлияли три фактора:
1) большинство метаболических процессов в теле происходят достаточно быстро, чтобы следить за ними с помощью короткоживущих радионуклидов;
2) несмотря на короткое время жизни изотопов, стала возможна быстрая радиоактивная маркировка сложных молекул;
3) проникающее излучение, возникающее при уничтожении позитронов, показало, что можно локализовать этих позитроны.
Первые ПЭТ сканеры с множеством детекторов были созданы в начале 1960-ых в нескольких исследовательских центрах и представляли собой системы с кольцом из 32 датчиков и разрешением более 2 см, позволяющие получать единичные срезы. Это позволило повысить чувствительность метода и получить двумерное изображение.[4]
В следующем поколении ПЭТ сканеров, появившемся в 1968 году, был уменьшен размер датчика и добавлены дополнительные кольца, позволяющие одновременно получать несколько срезов с разрешением менее 1 см.
Такие сканеры позволяли получать двумерные изображения срезов головного мозга, третья координата обнаруженных опухолей определялась по положению соответствующего среза.
В 1970 году для обработки полученных данных было предложено использовать алгоритм обратного проецирования. В конце 1970-ых ПЭТ сканеры стали использоваться для проведения коммерческих исследований. Разрабатывались новые сканеры с большим числом датчиков для увеличения чувствительности и разрешения.
После многих лет исследований, в Университете штата Пенсильвания было создано устройство, названное PENN-ПЭТ. Оно состояло из множества позитронных датчиков, расположенных вокруг отверстия для пациента в виде шестиугольника диаметром 50 см. PENN-ПЭТ давал высокую чувствительность и разрешение 5,5 мм и был менее сложен и дорог, чем системы с кольцом детекторов.
Рисунок 2 - современный позитронно-эмиссионный томограф
Дальнейшее усовершенствование ПЭТ-сканеров состоит в повышении пространственного разрешения, чувствительности детекторов, увеличении числа одновременно получаемых срезов, коррекции аттенюации и разработке новых алгоритмов реконструкции изображений.
Хотя в последние 20 лет ПЭТ использовалась преимущественно для научных исследований, ее роль как метода диагностики находится на стадии становления. В настоящее время основными областями клинического применения ПЭТ являются онкология, кардиология, неврология.
1.2 Физические основы ПЭТ
В 1931 году Ворбург обнаружил, что злокачественные опухоли отличаются повышенным уровнем потребления глюкозы. В 1977 году Соколов предложил измерять локальный уровень метаболического потребления глюкозы в мозгу крыс с помощью дезоксиглюкозы меченой радиоактивным изотопом углерода. Фелпс в 1979 году предложил измерять тот же параметр у людей с помощью дезоксиглюкозы меченой радиоактивным изотопом фтора 18F (фтородезоксиглюкозы). [3]
Фтородезоксиглюкоза (ФДГ) является аналогом глюкозы на нескольких этапах ее метаболизма, но, в отличие от глюкозы, метаболизм ФДГ прекращается преждевременно и ее продукт накапливается в тканях. Радиоактивный 18F (T = 109 мин) распадается, испуская позитрон, b+. Эти работы и заложили основы позитронной эмиссионной томографии.
Позитроны (b+) - положительно заряженные электроны. Они излучаются из ядра некоторых радиоизотопов, являющихся нестабильными, так как те имеют избыточное число протонов и несут положительный заряд. Некоторые наиболее известные излучатели позитронов представлены на рис.1 (на нем же даны энергии позитронов и максимальное расстояние, которое способен преодолеть позитрон в биологической ткани, пробег).
Рисунок 3 - Радионуклиды - позитронные излучатели, используемые в ПЭТ, и максимальные пробеги испускаемых ими позитронов в биологической ткани
Позитронная эмиссия стабилизирует ядро за счет устранения положительного заряда путем превращения протона в нейтрон. За счет этого, один элемент превращается в другой, атомное число последнего на единицу меньше, чем у исходного. Для изотопов, использующихся при позитронно-эмиссионной томографии, элемент, образующий в результате позитронного распада является стабильным (не радиоактивным).
Все радиоизотопы, использующиеся в ПЭТ распадаются путем позитронной эмиссии. Позитрон (b+), испущенный распадающимся ядром, проходит короткое расстояние прежде чем столкнуться с электроном близлежащего атома.
Позитрон соединяется с электроном близлежащего атома образуя атом позитрония (В зависимости от взаимного расположения спинов электрона и позитрона возникают атомы орто- или парапозитрония. Они живут разное время, но для целей ПЭТ это не существенно, т.к. распадаются «практически мгновенно»).[10]
При распаде атома позитрония электрон и позитрон аннигилируют, преобразуя свою массу два гамма-кванта с энергией 511 КэВ направленных почти на 180 градусов (противоположно) друг от друга. Данные фотоны с легкостью выходят за пределы тела в котором находятся и могут регистрироваться внешними детекторами. Регистрируемые противоположно направленные гамма-лучи, возникающие в результате раздробления позитрония называются линией совпадения (каждая линия регистрирует именно те два гамма-кванта, которые участвовали в акте аннигиляции).
Линии совпадения используются в схеме регистрации для формирования томографических изображений на позитронном томографе. Эти данные реконструируются с тем, чтобы получить карту интенсивности радиоактивного распада внутри объекта (реконструкция пространственного распределения молекулярного зонда). Полученные изображения анализируются специальными методами с целью выявления аномалий в интенсивности радиационного поля. Области повышенной (или пониженной) концентрации позитронного молекулярного зонда свидетельствуют о ненормальном функционировании органа. [13]
Рисунок 4 - Аннигиляция позитрон-электронной пары в диагностической установке ПЭТ
В процессе ПЭТ-исследования позитрон-эмиттирующий радиоизотоп вводится пациенту внутривенно или путем ингаляции. После этого, изотоп циркулирует в кровяном русле и достигает, например ткани головного мозга или сердечной мышцы. Как только происходит аннигиляция, томограф регистрирует локализацию изотопа и вычисляет его концентрацию.
Линия, которая возникает после аннигиляции отражает собой эмиссию двух гамма-лучей, с энергией 511 кэВ направленных приблизительно на 180 градусов (противоположно) друг по отношению к другу. Работа томографа заключается в том, чтобы регистрировать эти лучи, означающие, что позитронная аннигиляция произошла где-то на данной линии совпадения.
Когда гамма-лучи с энергией 511 кэВ взаимодействуют с кристаллами сцинтиллятора сделанными, например из германата висмута они преобразуются в фотоны света. На Рис.5, 6 в схематической форме показано преобразование электронными устройствами томографа фотонов света в электрические сигналы. Процессы конвертации и регистрация происходят практически мгновенно друг за другом, для того чтобы можно было сравнивать события сцинтилляции с противоположных детекторов (вдоль большого количества линий совпадений).[15]
Рисунок 5 - Схема регистрации двух противоположно направленных гамма квантов, одновременно возникших в одной точке пространства
Пространственное и временное распределение эмитирующего позитрон радиоизотопа зависит от того как сканируемый орган реагирует на него биохимически и физиологически. В данном случае отображаются события позитронной аннигиляции и происходящие следствие этого эмиссии гамма-лучей.
Рисунок 6 - Кольцеобразное расположение детекторов вокруг анализируемого объекта
Детекторы кольцеобразно располагаются вокруг исследуемого объекта. Томограф оборудован пятнадцатью (а то и больше) такими кольцами для одновременной томографии нескольких поперечных срезов.
Рисунок 7 - Регистрация совпадений на расходящемся пучке
Каждый детектор может работать режиме регистрации совпадений со множеством расположенных напротив детекторов. Таким образом, существует возможность определения совпадений на нескольких углах (расходящийся пучок). Также, при любом заданном угле, может быть определено множество выборок, что приводит к увеличению «линейной выборки». Это все вносит вклад в качество изображений на выходе.
Рисунок 8 - Линейная выборка в схеме совпадений
Приведенные выше рисунки относятся к случаю отсутствия объекта исследования. При наличии объекта исследования гетерогенной структуры с неоднородным распределением источника позитронного излучения детекторы регистрируют радиационное поле, интенсивность которого изменяется в пространстве и/или времени.
Программное обеспечение томографа получает данные о событиях совпадения, зарегистрированных в угловых и линейных положениях, воссоздает пространственно- временную конфигурацию интенсивности гамма-поля (точнее - дозового поля) вокруг исследуемого объекта, и выдает информацию в виде изображений (одного или нескольких, снятых в последовательные моменты времени). [7]
Рисунок 9 - Реконструкция объекта исследования в плоскости сканирования (одно кольцо)
Компьютер решает обратную задачу - переход от пространственного распределения интенсивности (скорости счета детекторов) гамма-поля к пространственному распределению источников излучения - молекул меченого радионуклидом зонда (сначала - в плоскости сканирования, а затем - во всем пространстве по данным всех пятнадцати колец).
При наличии центров повышенной абсорбции зонда (очагов поражения) осуществляется локализация таких центров (находятся все три пространственные координаты очагов), рассчитываются его размеры и форма и находится концентрация зонда в очаге (в динамических вариантах выдается зависимость количества зонда в очаге от времени).
При наличии нескольких близкорасположенных очагов, заслоняющих друг друга, предпринимаются специальные меры по улучшения пространственного разрешения методики.[10]
В ПЭТ используются соединения, меченые 11С, Т = 20,4 мин.; 13N, T = 10,0 мин.; 15O, T = 2,1 мин.; 18F, T = 109 мин.; 82Rb, T = 1,25 мин. Все они короткоживущие и синтез на их основе меченых веществ представляет собой сложную задачу. Ввиду того, что радионуклид 18F - один из наиболее удобных для клинического использования, то на его основе синтезируется самый обширный класс фармпрепаратов для ПЭТ, среди которых - самое используемое соединение.
Позитронно-эмиссионная томография (сокращенно ПЭТ) расширила наше понимание биохимических основ нормальной и патологической работы систем внутри организма и позволила проводить биохимические исследования пациентам одновременно с их лечением.[2]
Возможности позитронно-эмиссионной томографии велики, так как:
- в основе функционирования тканей лежат химические процессы;
- заболевания являются результатами нарушений в химических системах организма, которые вызываются вирусами, бактериями, генетическими нарушениями, лекарственными препаратами, факторами окружающей среды, старением и поведением;
- наиболее избирательной, специфичной и подходящей является терапия, выбранная на основании данных исследования нарушений химических процессов, лежащих в основе заболеваний;[14]
- детекция химических нарушений обеспечивает наиболее раннюю диагностику заболеваний, даже на досимптомных стадиях, еще до того, как израсходованы химические резервы или истощены компенсаторные механизмы головного мозга;
- оценка возможности восстановления химической функции позволяет объективно определять эффективность терапевтических вмешательств для каждого конкретного пациента;
- лучшим способом диагностики нормальности ткани является определение ее биохимических функций.
Ниже приведено несколько слайдов, иллюстрирующих проблему реконструкции изображения в позитронной томографии.
Визуализирующий метод нашел применение в исследовании многих биохимических процессов. Так как в большинстве случаев локализация и протяженность патологического процесса неизвестна, использование эффективного метода диагностики во всем организме является первостепенной задачей. [13]
Визуализация является чрезвычайно эффективным методом для решения этой задачи, так как данные представляются в виде изображений, а именно зрение является наиболее эффективной системой восприятия человека для поиска, определения и описания. Узнавание зависит от типа информации, представленной на изображении; как в плане определения, что оно означает, так и в плане какова его чувствительность для идентификация наличия патологического процесса.
ПЭТ предоставляет возможность визуализировать ход биологических процессов «in vivo». Визуализация реализуется путем интеграции двух методик: анализа кинетики метки и компьютерной томографии. Анализ кинетики метки включает в себя применение меченых радиоактивными изотопами биологически активных веществ (что и является меткой) и математических моделей, описывающих кинетику метки, при ее вовлечении в биологический процесс. [21]
Измерение концентрации метки в ткани, необходимое для математической модели производится ПЭТ сканером. Результатом является трехмерное изображение анатомического распределения исследуемого биологического процесса.
Меченые радиоизотопами метки и метод анализа кинетики метки используются в для количественной оценки таких процессов как кровоток, мембранный транспорт, метаболизм, синтез, лиганд-рецепторные взаимодействия, для картирования аксональных зон проецирования антероградной и ретроградной диффузией, регистрации моментов клеточного деления, маркерного анализа с использованием метода рекомбинантной ДНК, радиоиммунного анализа, исследования взаимодействия препаратов с химическими системами организма. [16]
Методика использования меток продолжает оставаться одной из самых чувствительных и широко используемых для анализа состояния биологических систем. Позитронно-эмиссионная томография позволяет проводить данное исследование на живых организмах, в частности на человеке. ПЭТ связывает воедино точные и клинические науки благодаря общности методов и решаемых задач.
Перенос методов меченых радиоизотопами веществ к использованию на человеке при помощи ПЭТ стал возможным благодаря уникальному классу радиоизотопов, используемых в позитронно-эмиссионной томографии для мечения веществ: 11C, 13N, 15О и 18F.
Эти изотопы являются единственными формами естественных элементов (18F используется как замена водорода) которые излучают радиацию, способную проходить сквозь тело и быть зарегистрованной за его пределами. Естественные вещества, аналоги веществ и препараты могут быть помечены этими радиоизотопами, при этом их химические или биологические свойства не изменяться. [5]
Это позволяет полноценно использовать методы анализа кинетики меток из базисных биологических наук применительно к человеку. При этом необходимы возможности количественных измерений позитронно-эмиссионных томографов.
Помимо человека внешний сканер может быть использован для изучения мозга мелких животных. Как известно, многие болезни человека исследуются на подопытных животных. Поэтому значительное внимание уделяется проблеме использования методов лучевой диагностики в биологической практике.
С этой целью разработан миниатюрный сканер, предназначенный для изучения процессов, происходящих в мозге мелких животных, таких, как мыши, например. Характерно, что это устройство не требует ввода каких-либо электродов и других деталей в череп.[3]
При этом прибор достаточно чувствителен, чтобы обнаружить малейшие изменения в обмене веществ в мозге. Генетически изменённые мыши используются для изучения таких нейрологических заболеваний, как синдромы Паркинсона или Альцгеймера. Ранее для того, чтобы исследовать изменения в мозге, вызванные этими недугами, подопытных мышей приходилось убивать и вскрывать. Позитронная томография (Positron Emission Tomography) позволит обходиться без этого.
1.3 Этапы исследования и основные блоки сканера
Любое ПЭТ исследование состоит из нескольких основных этапов:
1. производство радиоизотопа;
2. маркировка выбранного состава испускающим позитроны радионуклидом и подготовка состава в форме, пригодной для воздействия на людей;
3. транспортировка состава из лаборатории к месту проведения исследования;
4. воздействие радиоактивного индикатора и получение данных ПЭТ;
5. отображение распределения активности позитрона как функции времени, обработка данных;
6. интерпретация результата.[22]
Система производства радиоизотопов состоит из трех основных частей:
- циклотрона (ускорителя частиц);
- биологического синтезатора, присоединяющего радиоизотопы к биологическим молекулам;
- компьютера, контролирующего процесс.
До начала исследования в циклотроне производится радиоактивное вещество, входящее в естественный химический состав тела (атомы кислорода, углерода, азота) и распадающееся с испусканием позитронов.[17]
Циклотрон (циклический ускоритель) состоит из двух полых полукруглых металлических электродов (дуантов), расположенных между полюсами электромагнита и разделеных узким зазором. Вблизи от центра дуантов располагается источник ионов (как правило, электрическая дуга в газе), который служит генератором заряженных частиц.
В момент работы, частицы импульсно генерируются источником ионов. Нить накала, расположенная в источнике ионов создает отрицательный заряд путем присоединения электронов к атому.
При попадании отрицательных ионов в вакуумную камеру они приобретают энергию благодаря высокочастотному переменному электрическому полю, индуцированному на дуантах. Ионы подвергаются воздействию электрического поля и сильного магнитного поля, генерируемого электромагнитом.[17]
Когда отрицательные ионы долетают до края дуанта и влетают в зазор, РЧ-осциллятор меняет полярность на дуантах и ионы отталкиваются по мере входа в ранее положительно, а теперь отрицательно заряженный дуант.
С каждым проходом зазора, энергия и радиус орбиты частиц возрастают и частицы двигаются по спирали. При достижении максимальных значений на последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу.[16]
Поток отрицательных ионов направляется к первой карусели, расположенной между ускорителями и камерой мишени. Карусели состоят из тонких угольных пластин, которые отделяют оба электрона от ионов Н-, которые становятся ионами Н+ или протонами.
Протоны проходят через пластину, однако, несмотря на смену заряда на противоположный, они все еще находятся под влиянием магнитного поля, двигаются по циркулярной орбите, по касательной к своей прежней траектории, от центра циклотрона.
Этот поток протонов направляется к камере мишени. Разделяющие пластины имеют толщину от 5 до 25 мм и имеют срок службы порядка 100 часов. Протонный пучок из циклотрона влетает в камеру мишени и путем ядерной реакции преобразует стабильный материал мишени (стабильный химический изотоп) в радиоактивный изотоп.
Произведенные на циклотроне радиоизотопы переносятся в биосинтезатор, где они присоединяются к используемым в клинике химическим составам, за распределением которых в теле хотят проследить.
Естественно встречающиеся в органических составах атомы заменяются маркированными (химически и биологически идентичными оригиналу). В ПЭТ маркируемые химические составы, ограничены воображением исследователей и временем полураспада. Чаще всего в роли маркируемого вещества выступает глюкоза.[19]
Вся работа системы производства радиоизотопов, включая циклотрон и биосинтезатор, управляется компьютером. Оператор выбирает из меню на консоли управления требуемый для производства изотоп, а остальные процессы проводятся автоматически.[11]
Для проведения исследования малое количество радиоактивного препарата (радионуклида) внутривенно вводят пациенту, радионуклид поступает в клетки и распределяется в них. Спустя некоторое время его концентрация в тканях измеряется сканером, достаточно чувствительным для обнаружения даже небольшого количества радиоактивного состава.
При распаде радиоактивного вещества происходит выброс (эмиссия) положительных частиц (позитронов), стабилизирующая ядро за счет устранения положительного заряда путем превращения протона в нейтрон. Позитрон проходит короткое расстояние (зависящее от его энергии) перед столкновением с электроном окружающей среды. Происходит объединение позитрона с электроном среды (аннигиляция), частицы «уничтожают» друг друга, и их масса преобразуется в энергию, приводя к эмиссии двух противоположно направленных (180°±0,25°) гамма-лучей (фотонов высокой энергии) с энергией 511 кэВ каждый.[15]
Данные фотоны, испущенные в результате аннигиляции, выходят за пределы тела и регистрируются внешними детекторами. Регистрируемые после аннигиляции гамма-лучи называются линией совпадения и используются для определения локализации и концентрации эмитента позитрона, которая зависит от биохимической и физиологической реакции органа.
Когда гамма-лучи взаимодействуют с кристаллами сцинтиллятора, фотоны света преобразуются электронными устройствами томографа в электрические сигналы. Процессы конвертации и регистрация происходят практически мгновенно друг за другом, для того чтобы можно было сравнивать события сцинтилляции с противоположных детекторов (вдоль большого количества линий совпадений).
А - цилиндрический источник для коррекции аттенюации , В- септа, С- детекторные блоки
Рисунок 10 - Гентри ПЭТ сканера
Основным блоком ПЭТ сканера является гентри, внутри которого расположены детекторы. Множество детекторов образует кольцо диаметром 80-100 см и шириной 10-20 см. Для снижения влияния внешнего излучения, наружная поверхность кольца детекторов имеет свинцовый экран. Большинство сканеров может работать как в посрезовом режиме, когда аксиальная коллимация создается тонкими вольфрамовыми кольцами называемыми септами, так и в трехмерном режиме, когда септа втягивается и совпадение регистрируется между всеми возможными парами детекторов.[16]
Детекторы являются самими важным компонентами ПЭТ сканера. В ряде случаев они похожи на используемые в однофотонном отображении: большие кристаллы йодистого натрия соединенные с фотоумножителями. В коммерческих томографах детекторы конструктивно представляют собой прямоугольную группу кристаллов (блок), т.к. более плотное расположение детекторов позволяет снизить потери пространственного разрешения и регистрации фотонов. Использование множества регистрирующих кристаллов предотвращает оптическую дисперсию света между отдельными элементами блока.
Сцинтилляционные детекторы, используемые в ПЭТ, состоят из сцинтиллятора, фотоэлектронного умножителя и электронной системы.
1 - сцинтиллятор; 2 - фото-катод; 3 - диафрагма; 4 - корпус фотоумножителя; 5 - диноды; 6 - анод; 7- делитель напряжения
Рисунок 11 - Схема сцинтилляционного детектора
Сцинтиллятором называют вещество, благодаря которому возникают флюоресцентные световые вспышки при испускании высокоэнергетического излучения (например, бета- или гамма-лучей). Быстрые заряженные частицы, двигаясь в веществе, теряют свою энергию при столкновении с атомами, причем энергия частиц расходуется на ионизацию и возбуждение атомов среды. Возбуждение атомов снимается в основном путем испускания квантов света характерной для данного вещества частоты. Обычно излучение, возникающее при этом, поглощается в той же среде. Только в люминесцирующих средах часть высвеченной энергии может выйти за пределы среды. Процесс люминесценции может осуществляться двумя путями.[16]
Если переходы из возбужденных энергетических состояний в основное разрешены, испускание света происходит в соответствии со средним временем жизни возбужденного состояния по обычным статистическим законам и называется флуоресценцией. Если переход из возбужденного состояния в основное запрещен, то возникает метастабильное состояние, среднее время жизни которого может быть значительно больше времени жизни обычного возбужденного состояния.
В этом случае для испускания кванта света система должна перейти в более высокое энергетическое состояние, переход из которого в основное разрешен. Такой процесс называют фосфоресценцией.
Основными характеристиками сцинтилляторов являются конверсионная эффективность, спектр излучения и время высвечивания.
Конверсионная эффективность - это отношение энергии световой вспышки, к энергии, потерянной заряженной частицей в сцинтилляторе, за висящее от типа и качества сцинтиллятора. Количество света, испускаемое сцинтиллятором, характеризуется световым выходом - отношением энергии среднего числа фотонов люминесценции к энергии, потерянной ионизирующей частицей в сцинтилляторе.[18]
Т.к. световая вспышка сцинтиллятора регистрируется при помощи фотоэлектронного умножителя, область спектральной чувствительности которого лежит в диапазоне длин волн видимого света, то спектр частот, излучаемых сцинтиллятором, должен укладываться в чувствительной области ФЭУ. В большинстве случаев интенсивность вспышки I с течением времени t спадает по экспоненциальному закону:
(1)
Величина ф - время, в течение которого интенсивность падает в е раз, характеризует длительность свечения и называется временем высвечивания сцинтиллятора.
Основные свойства сцинтилляторов определяются механизмом возбуждения и высвечивания. С этой точки зрения удобно разделить все известные сцинтиллирующие вещества на три группы: кристаллофосфоры или неорганические кристаллы (например, ZnS, NaI), органические кристаллы (например, антрацен, стильбен), инертные газы . В медицине чаще всего используются сцинтилляторы в виде таллиевого кристалла, активированного йодидом натрия.[23]
В решетке такого кристалла при взаимодействии атомов и ионов происходит возмущение энергетических уровней внешних электронов, что приводит к образованию чередующихся разрешенных и запрещенных областей. В обычных условиях нижние энергетические зоны кристалла заняты полностью (валентная зона), а более высокие - целиком не заполнены и электроны в них могут свободно перемещаться (зона проводимости), не получая дополнительной энергии. [10]
Самая верхняя валентная зона отделена от наиболее низкой зоны проводимости интервалом в несколько эВ. При возбуждении электроны переходят из валентной зоны в зону проводимости, образуя в валентной зоне электронную вакансию - дырку. При обратном переходе электронов из зоны проводимости в валентную зону возникает излучение с характерным для данного кристалла спектром - собственное излучение.
При наличии в кристалле примесей, в запрещенной зоне могут возникать локальные энергетические уровни, лежащие вблизи валентной зоны. Если эти уровни не заняты, то на них могут попасть электроны, движущиеся в зоне проводимости.
Если переход с этих уровней в валентную зону разрешен (люминесцентные центры), то возникает излучение, длина волны которого больше, чем в спектре поглощения. Таким образом, примеси сдвигают спектр излучения в сторону увеличения длин волн и к увеличению интенсивности свечения. Вместе с этим примеси создают дефекты в кристаллической решетке, и создают дополнительные метастабильные уровни, прямой переход с которых в валентную зону запрещен. Электроны с этих уровней могут перейти в зону проводимости при поглощении ими тепловой энергии колебаний решетки, а затем попасть в люминесцентные центры. Это приводит к замедленному испусканию фотонов (фосфоресценции).[21]
Фотоэлектронный умножитель (ФЭУ) - это фотоэлемент с многократным усилением, основанным на явлении вторичной эмиссии. ФЭУ состоит из фотокатода, фокусирующего устройства, нескольких эмиттеров (динодов) и анода.
В фотоумножителях часто применяется сурьмяно-цезиевый фотокатод, активированный кислородом. Фотокатод нанесен в виде тонкого полупрозрачного слоя на внутреннюю сторону торцовой стенки стеклянного баллона ФЭУ, диаметром 15 мм. Эмиттеры и анод изготовлены из металла. Для увеличения коэффициента вторичной эмиссии у (среднего числа вторичных электронов, выбиваемых одним первичным электроном) эмиттеры покрыты пленкой вещества с малой работой выхода электронов.[18]
В ФЭУ электроны ускоряются и фокусируются с помощью электростатического поля, определяемого конфигурацией электродов и распределением потенциалов в них. Для подачи напряжения на электроды используется делитель, состоящий из омических сопротивлений. К концам делителя приложено напряжение Uk (800-1500 В) от источника высокого напряжения.
Световые кванты, падающие на фотокатод, вызывают фотоэффект. Возникшие при этом фотоэлектроны попадают в электрическое поле, ускоряются и фокусируются на первом эмиттере (диноде). При ударах электроново первый эмиттер происходит вторичная эмиссия. Выбитые электроны ускоряются в следующем межэлектродном промежутке и, попадая на второй эмиттер, вызывают в свою очередь вторичную эмиссию со второго и т.д.
Таким образом, число электронов от эмиттера к эмиттеру лавинообразно нарастает. Электроны с последнего эмиттера собираются на аноде фотоумножителя. Если у - коэффициент вторичной эмиссии на каждом эмиттере, то коэффициент усиления умножителя
(2)
где q<1 - множитель, учитывающий неполное собирание электронов с фотокатода на первый эмиттер;
n- число эмиттеров.
Величина коэффициента вторичной эмиссии у прямопропорционально зависит от напряжения питания ФЭУ и в области больших ускоряющих напряжений имеет вид
(3)
где А и U0 - постоянные, определяемые свойствами материала поверхности эмиттера;
U - ускоряющее напряжение, приложенное между соседними динодами и пропорциональное напряжению на делителе Uk.
Коэффициент усиления умножителя имеет вид:
(4)
Поскольку коэффициент вторичной эмиссии не зависит от числа падающих электронов, то ФЭУ представляет собой линейный прибор, т.е. заряд, приносимый лавиной на анод, пропорционален числу первичных фотоэлектронов, собираемых с фотокатода, и, следовательно, пропорционален интенсивности световой вспышки, попавшей на катод. Если импульсы тока на выходе достаточно велики, линейность может нарушаться за счет искажения поля пространственным зарядом в области анода и последних эмиттеров, а также за счет изменения потенциалов последних эмиттеров и анода.[4]
Оба фактора вызывают дефокусировку и тем самым нарушают линейность, которую полностью устранить нельзя. Расширению области линейности в данном случае способствует только увеличение разности потенциалов между последними эмиттерами и особенно между анодом и предыдущим динодом. Если к ФЭУ предъявляется требование линейности в широком диапазоне интенсивности световых вспышек, то это накладывает ограничение на величину коэффициента усиления. Другой причиной ограничения коэффициента усиления может явиться резкое возрастание шумов ФЭУ.[6]
В сцинтилляционном детекторе свечение сцинтиллятора приводит к эмиссии с фотокатода сотен фотоэлектронов и полезные сигналы по величине в несколько раз превышают шумы. Чаще в сканерах используют германат висмута, который создает около 2500 фотонов света на 511 кэВ фотон и имеет время затухания 300 нс. Один блок содержит матрицу 7Ч8 кристаллов и четыре фотоумножителя. Каждый кристалл имеет сечение 3.3Ч6.25 мм и глубину 30 мм.
Электронная система регистрирует импульсы электрического тока, в которые преобразуется световая вспышка.
Сцинтилляционные детекторы позволяют регистрировать все виды радиоактивного излучения, причем в отличие от газоразрядных счетчиков эффективность регистрации высокоэнергетичных г-квантов может быть всцинтилляционных детекторах очень большой (50 или даже 100%).
Высокая временная разрешающая способность позволяет использовать сцинтилляционные детекторы при высоких скоростях счета и проводить измерения коротких интервалов вплоть до десятых долей секунды. При выборе детекторов производители томографов учитывают такие их свойства как длина аттенюации, эффективность обнаружения, плотность, яркость, время восстановления, коэффициент преломления, цена. [10]
1.4 Реконструкция изображений
Реконструкция изображений производится путем обработки данных, полученных детекторами, расположенными в виде нескольких колец, что позволяет одновременно получать изображения до пятнадцати срезов.
Получение изображения базируется на внешнем обнаружении совпадающих испускаемых лучей в течение 10 нс между двумя датчиками, расположенными на противоположных сторонах сканера. Каждый детектор может работать режиме регистрации совпадений со множеством расположенных напротив детекторов.[13]
Линия, соединяющая центры детекторов, проходит через объект и используется для реконструкции изображения. Таким образом, существует возможность определения совпадений на нескольких углах (расходящийся пучок). Если уничтожение происходит вне объема между этими двумя датчиками, то может быть обнаружен только один фотон, и этот случай отклоняется как не удовлетворяющий условию. Одновременное обнаружение фотона обеспечивает область представления с однородной чувствительностью.
Программное обеспечение томографа получает данные о событиях совпадения, зарегистрированных в угловых и линейных положениях, количественное суммирование которых дает двумерную картину распределения изотопа. Подобно КТ и МРТ, отображение в ПЭТ косвенное и производится с помощью компьютерной реконструкции изображений.
Для реконструкции изображения необходимо получить распределение изотопа g(x1, x2) внутри отображаемого объекта. Если обозначить коэффициент аттенюации тела как f (x1, x2 ) , то интенсивность излучения I , регистрируемая детекторами вдоль прямой линии L, определяется с помощью выражения
(5)
где ф -отрезок вдоль L ;
L(x) - участок L между точкой (x1, x2 ) и детектором.
Коэффициент аттенюации f (x1 , x2) аналогичен коэффициенту поглощения, измеряемому в обычной компьютерной томографии.
Поскольку в ПЭТ источник испускает две противоположно направленные частицы и излучение в обоих направлениях измеряется одновременно, выражение можно переписать как
(6)
где L+ , L - отрезки линии L , разделенной на участки точкой х
Поскольку L+ + L? = L, то выражение (6) приобретает вид
(7)
Поскольку значения I и f (x1 , x2) известны из измерений, основной математической задачей ПЭТ является определение функции g(x1, x2 ) по ее известным линейным интегралам. Эта математическая задача идентична задаче компьютерной томографии, рассмотренной выше.
Отличительной особенностью ПЭТ изображений является их представление по цветной шкале. Цвет или степень яркости каждого пиксела пропорциональны концентрации изотопа в соответствующей точке объекта, что создает более наглядную картину.[13]
2. КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ ПЭТ
2.1 ПЭТ в онкологии
Около 80% клинических ПЭТ исследований проводится в области онкологии, они позволяют дифференцировать злокачественные и доброкачественные образования, определять степень распространения опухолей с чувствительностью, близкой к 100%. Исследования всего тела, занимающие 60-70 минут, позволяют определить метастазы любой локализации. ПЭТ не имеет альтернативы при ранней (через 1-2 недели) оценке результатов химиотерапии.[18]
Опухоли легких
Рисунок 12 - Центральная бронхокарцинома
- диагностика и стадирование опухолей легких
ПЭТ предоставляет невероятные возможности для диагностики и стадирования опухолей легких.
- неинвазивное определение степени злокачественности опухоли
Становится возможным неинвазивное определение степени злокачественности опухоли. Как результат, значительно снижается частота хирургических вмешательств при доброкачественных процессах.
- диагностика медиастинальных и отдаленных метастазов
ПЭТ также является ценной методикой при диагностике медиастинальных и отдаленных метастазов.
Таким образом, становится возможным более точное стадирование онкологического процесса с выбором наиболее оптимальной тактики лечения.
- оценка ответной реакции опухоли на химиолучевое лечение
Поскольку ПЭТ отражает метаболизм глюкозы, становится возможным оценка ответной реакции опухоли на химиолучевое лечение, что при соответствующем изменении тактики лечения также улучшает прогноз и исход заболевания.
Рак молочной железы
Рисунок 13 - Томограммы в трех ортогональных сечениях
Наиболее важным фактором в определении долговременного прогноза при раке молочной железы является оценка поражения подмышечных лимфоузлов. Как правило, таким больным производится биопсия лимфоузлов.[19]
- определение поражения подмышечных лимфоузлов
ПЭТ является альтернативным, неинвазиным и безболезненным скриниговым методом определения поражения подмышечных лимфоузлов. Только при положительных ПЭТ- данных становится необходимым проведение биопсии лимфоузлов. Это позволяет отказаться от биопсии у 75% больных.
- проведение скрининговых обследований
Хотя ПЭТ не позволяет полностью заменить традиционные методы диагностики опухолей молочной железы, однако обладает большими потенциальными возможности при проведении скрининговых обследований, особенно у пациентов из группы риска.
- диагностике отдаленных метастазов
Кроме того, ПЭТ- исследование высоко эффективно в диагностике отдаленных метастазов рака молочной железы.
Рак толстой кишки.
У 2/3 пациентов, прооперированных по поводу рака толстой кишки, в течение 2-х лет диагностируется рецидив опухоли. В этом случае для уточнения характера и выяснения операбельности рецидива производится лапаротомия.
- диагностика рецидива и отдаленных метастазов
По сравнению с КТ, колоноскопией и определением уровня CEA, ПЭТ обладает намного более высокой чувствительностью и специфичностью в диагностике как самого рецидива, так и отдаленных метастазов, что позволяет избежать лапоротомии в случае заведомой неэффективности локальной резекции.
- проведение дифференциальной диагностики
Кроме того, посредством ПЭТ становиться возможным проведение дифдиагностики между рубцовыми изменениями и рецидивом опухоли.[13]
Фронтальный Сагиттальный
Рисунок 14 - Рак толстой кишки без метастазов
Мониторинг эффективности лечения.
- оценка ответа опухоли на химиолучевое лечение
ПЭТ дает возможность дать оценку ответа опухоли на химиотерапевтическое лечение и лучевую терапию. Это становится возможно благодаря тому, что при эффективной терапии резко снижается потребление глюкозы опухолевыми клетками, и с помощью ПЭТ этот процесс можно зарегистрировать в течение минут и часов, дав заключение о позитивном или негативном эффекте терапии.
- мониторинг лечения различных опухолей
Метод применим при мониторинге лечения различных опухолей, включая рак молочной железы, легкого, яичников, опухолей головы и шеи, рака щитовидной железы, меланомы и лимфом. [17]
Рисунок 15 - Множественные метастазы мелономы
2.2 ПЭТ в кардиологии
В кардиологии ПЭТ позволяет получать информацию о кровоснабжении миокарда, скорости метаболических процессов, оценить признаки болезни коронарной артерии, контролировать эффективность лечения. Для таких исследований используются ультракороткоживущие изотопы (13N, 18F, 11С). Данные ПЭТ важны при планировании аортокоронарного шунтирования.
- оценка перфузии миокарда
ПЭТ является прекрасной методикой для оценки миокардиального кровотока и перфузии миокарда, для диагностики коронарной болезни сердца. Благодаря высокой энергии позитронов высококачественные изображения удается получать даже у тучных больных.
- оценка жизнеспособности миокарда
В клинике очень часто возникает вопрос об наличии жизнеспособного миокарда в зоне перенесенного инфаркта. В таких случаях при исследовании с фторглюкозой (FDG) определяются участки повышенного потребления глюкозы в зоне сниженной перфузии. Таким образом, появляется возможность прогнозировать результаты реваскуляризации этой области миокарда, тогда как без применения ПЭТу около 20% больных результаты реваскуляризации оказываются отрицательными.
- диагностика коронарной болезни
Изображения ПЭТ демонстрируют участки снижения миокардиального кровотока. Поскольку изотопы ПЭТ имеют очень короткий период полураспада, возможно последовательное проведение исследования покой-нагрузка.
- определение нежизнеспособного миокарда
Посредством ПЭТ удается выявить участки миокарда с пониженным потреблением глюкозы в зоне перенесенного инфаркта - это участки рубцовых изменений с нежизнеспособными кардиомиоцитами.[15]
Рисунок 16 - участки миокарда с пониженным потреблением глюкозы в зоне перенесенного инфаркта
2.3 ПЭТ в неврологии
В неврологии ПЭТ используется для обнаружения неврологических болезней, включая эпилепсию, опухоли, дифференциации психических заболеваний. ПЭТ дает сведения о кровообращении мозга, скорости усваивания кислорода и глюкозы, отображает другие физиологические процессы.[12]
- исследование метаболизма тканей головного мозга
Рисунок 17 - Исследование метаболизма головного мозга
- выявление объемных образований в головном мозге
Глиобластома Астроцитома
Рисунок 18 - Диагностика опухолей головного мозга
- дагностика эпилептогенных фокусов
В настоящее время насчитывается около 2 миллионов больных эпилепсией, из них 80.000 страдают от парциальной эпилепсии, приступы которой плохо поддаются медикаментозному лечению. Методом выбора для лечения таких больных является фокальная резекция эпилептогенного фокуса в головном мозге; однако точно идентифицировать такие фокусы посредством рутинных методик затруднительно.[13] ПЭТ с фторглюкозой позволяет оценить увеличение или уменьшение потребления глюкозы и локализовать эпилептогенные фокусы.
Подобные документы
История развития технологии позитронно-эмиссионной томографии (ПЭТ). Этапы исследования, основные блоки сканера и его аппаратное обеспечение. Реконструкция изображений. Используемые в ПЭТ радионуклиды, ее достоинства и области применения в медицине.
курсовая работа [1,0 M], добавлен 19.05.2013Принцип действия позитронно-эмиссионной томографии. Основные радиофармпрепараты, использующиеся при проведении исследований. Применение компьютерной томографии в кардиологии для диагностики патологии коронарных сосудов. Способы ограничения доз облучения.
практическая работа [542,3 K], добавлен 13.09.2011Принципы осуществления позитронно-эмиссионной томографии. Самый распространённый радиофармпрепарат, используемый при ПЭТ. Характеристика аппаратуры для ее проведения. Показания к использованию. Отличие от компьютерной и магнитно-резонансной томографии.
презентация [457,5 K], добавлен 21.10.2013История развития позитронной эмиссионной томографии, ее прменение для диагностики заболеваний. Производство ПЭТ-радионуклидов и радиофармапрепаратов. Чувствительность и пространственное разрешение ПЭТ-сканера. Алгоритмы реконструкции ПЭТ-изображений.
реферат [2,1 M], добавлен 12.12.2012Изучение радионуклидного томографического метода исследования внутренних органов человека и животного. Анализ распределения в организме активных соединений, меченых радиоизотопами. Описания методики оценки метаболизма глюкозы в сердце, легких и мозге.
реферат [21,3 K], добавлен 15.06.2011Условия достижения эффекта томографии. Основные задачи и направления применения рентгенологического исследования - ангиографии, венографии и лимфографии. История открытия, принцип действия и преимущества использования метода компьютерной томографии.
реферат [156,8 K], добавлен 23.01.2011Компьютерная томография как метод неразрушающего послойного исследования внутренней структуры объекта. Особенности компьютерной томографии головного мозга. Принцип работы компьютерного томографа. Причины назначения компьютерной томографии головного мозга.
контрольная работа [484,4 K], добавлен 21.06.2012Причины коронарной недостаточности, ее формы. Методы диагностики заболевания. Этапы проведения коронарографии. Рентгеновская компьютерная томография. Метод рентгенологического исследования с использованием контрастного вещества (вантрикулография).
презентация [194,7 K], добавлен 21.12.2013Сущность и значение метода магнитно-резонансной томографии, история его формирования и развития, оценка эффективности на современном этапе. Физическое обоснование данной методики, порядок и принципы построения изображений. Определение и выделение среза.
реферат [31,1 K], добавлен 24.06.2014Особенности и фундаментальные основы метода радионуклидной диагностики. Критерии выбора радионуклида. Изотопы и радиофармпрепараты для радионуклидной диагностики и позитронной эмиссионной томографии. Получение изображений с помощью радиоизотопов.
курсовая работа [3,2 M], добавлен 25.06.2014