Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе

Анализ современных исследований по введению в школьную математику элементов теории вероятностей и математической статистики. Определение содержания и разработка методики проведения факультативного курса "Элементы теории вероятностей" в средней школе.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 12.06.2011
Размер файла 517,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пример 3. Укажите, какие из изображенных на рис.3 событий являются совместными, а какие - несовместными.

Решение. События А и В - совместные (общий исход е3), А и С - совместные (общий исход е1 и е3 ), В иС - несовместные ( нетобщих исходов).

Рис. 3.

Если события А и В несовместные, и при любом исходе испытания наступает одно из этих событий, то события А и В называются противоположными и обозначаются как А= , B=.

Пример 4. Из урны, где лежат шесть пронумерованных подряд шаров с номерами с 1 по 6, наугад извлекают один шар. Изобразите графически события: А - извлекли шар с номером, кратным трем, - событие, противоположное А. Решение. Базовое множество содержит шесть элементов (рис. 4): е1- извлечен шар № 1, е2 - извлечен шар № 2,

е3 - извлечен шар № 3, е4- извлечен шар № 4

е5 - извлечен шар № 5, е6- извлечен шар №6.

Появлению события А благоприятствуют два исхода - е3, е6 , остальные благоприятствуют .

Рис. 4.

2.3 Классическое и статистическое определение вероятности

В рассматриваемом курсе для испытаний со счетным числом исходов можно использовать классическое и статистическое определение вероятности. Однако трудно не согласиться с венгерским математиком А. Реньи, отметившим, что классическое определение вероятности не является определением, а дает лишь метод ее вычисления в простейших случаях. Поэтому в предлагаемом курсе, сначала вводится статистическое определение вероятности, а затем для случаев, когда есть симметрия исходов испытаний, дается ее классическая формула.

В основе статистического определения вероятности лежит закон больших чисел, который в настоящем курсе приводится как факт, подтвержденный многочисленными опытами и наблюдениями. При введении статистического определения вероятности рекомендуется провести лабораторную работу, состоящую в подбрасывании монеты или игрального кубика. В ходе этой лабораторной работы школьники самостоятельно могут убедится в действии этого закона: с увеличением числа подбрасываний значение статистической частоты выбранного для наблюдения исхода (например, выпадение «орла» на монете, или четырех очков на кубике) устойчиво сосредотачиваются возле некоторого числа p, которое и называется вероятностью наблюдаемого исхода или события.

Внимание учащихся следует обратить на то, что на практике статистические испытания и наблюдения являются основным способом оценки вероятностей событий. При этом всегда возникает вопрос о точности такой оценки, поскольку не всегда возможно проведения достаточно большого числа экспериментов и наблюдений. В случае симметрии исходов испытания (подбрасывания симметричной монеты и игрального кубика, урновые испытания) вероятности исходов полагают равными друг другу. Тогда вероятность любого события А равна , где m - число всех исходов испытания, l - число исходов, благоприятствующих появлению события А.

Статистическое определение вероятности удобно для введения аксиом.

1. Вероятность исходов испытаний положительна.

2. Сумма вероятностей всех исходов испытания равна единице e1,e2,...,emp1+p2+...+p3=1. (1)

3. Вероятность случайного события равна сумме вероятностей исходов испытания, благоприятствующих этому событию, т.е. если е1,...,ек - множество всех исходов испытания, благоприятствующих появлению события А, то

P(A)=p1+...+pk. (2)

В качестве оснований для этих утверждений приводятся очевидные факты, связанные со статистическими испытаниями.

1. Статистическая частота исхода испытания положительна.

2. Сумма статистических частот всех исходов испытания в серии из N повторных экспериментов равна единице:

Здесь n1,n2,...,nm - число появлений исходов e1,e2,...,em в проведенной серии испытаний.

3. Статистическая частота случайного события равна сумме статистических частот исходов испытания, благоприятствующих этому событию.

Для закрепления материала необходимо рассмотреть решения следующих типов задач.

Пример 1. В некотором испытании возможны три исхода e1,e23. Вероятность исхода е1 равна 0,3, а исхода е3 - 0,6. Чему равна вероятность появления исхода е2?

Решение.p2=1-p1-p3=1-0,3-0,6=0,1.

Пример 2. В некотором испытании возможны три исхода e1,e23. В 1000 повторных испытаниях исход е1 появляется 350 раз, а исход е2 - в 40% испытаний. Оцените вероятность исходов испытания.

Решение.;

;

p3 1-0,35-0,4=0,25.

Пример 3. В испытании возможны четыре исхода: e1,e234. Их вероятности соответственно равны p1=0,2, p2=0,1, p3=0,4 и p4=0,3. Событию А благоприятствуют исходы e1 и е4, а событию В - исходы e23 ие4. Чему равна вероятность событий А и В и вероятность, что события А и В произойдут в испытании вместе?

Решение. P(A)= p1+ p4=0,2+0,3=0,5;

P(B)= p2+ p3+ p4= 0,1+0,4+0,3=0,8;

P(A,B)= p4=0,3.

Пример 4. Чему равна вероятность извлечь наугад белый шар из урны, в которой лежат четыре белых и пять черных шаров?

Решение. Пусть событие А - извлечение белого шара. Тогда число всех исходов испытания m=9, число исходов испытания, благоприятствующих появлению события А, равно 4 (l=4) и P(A)=

В курсе также рекомендуется рассказать школьникам о так называемом персоналитическом методе оценки вероятности, когда эксперты исходя из своей интуиции, дают личную оценку вероятности событий. Примерами таких оценок являются вероятностные прогнозы исходов соревнований, публикуемые в спортивных изданиях.

Такие прогнозы, как правило, не поддаются проверке, поскольку, например, невозможно провести большое число футбольных матчей между двумя командами в одинаковых условиях.

Обобщая все вышеизложенное, можно сказать, что в начале курса учащиеся должны:

1) познакомится с понятиями случайных исходов испытаний, научится определять множество исходов единичных испытаний и исходы, благоприятствующие наступлению конкретных случайных событий;

2) познакомится с понятиями статистической частоты и вероятности, с методом оценки вероятности через статистические испытания;

3) научится вычислять вероятности исходов и событий по формулам (1) и (2).

Далее изучаются серии из двух единичных испытаний: два подбрасывания монеты, последовательное извлечение двух шаров из урны, два выстрела по мишени и т.д. В рассматриваемом курсе серии испытаний называются совместимыми испытаниями, а их результаты - исходами совместных испытаний. Совместные испытания разделяются нанезависимые и зависимые. Эти понятия вводятся на простых примерах урновых испытаний с возвращением и без возвращения шара в урну.

В урне три шара с номерами 1,2 и 3. Из урны последовательно извлекают два шара. Эти испытания можно проводить двумя способами.

Й способ: извлекают первый шар (первое испытание), записывают его номер, шар кладут обратно в урну. Затем шары перемешивают в урне и извлекают второй шар (второе испытание). В этом случае результаты испытаний никак не влияют друг на друга, и такие испытания называются независимыми.

ЙЙ способ: извлекают первый шар, но в урну его не возвращают, а сразу за ним извлекают второй шар. В этом случае исходы второго испытания зависят от того, какой исход имел место в первом испытании. Если, например, в первом испытании извлекли шар №2, то во втором испытании этот шар появится уже не может. Такие испытания называются зависимыми.

Зависимость испытаний друг от друга приводит к зависимости исходов и событий, которые могут произойти в этих испытаниях.

Если проводятся два независимых друг от друга испытания, и в первом испытании возможно наступление события А, а во втором - события В, то события А и В - независимые. В этом случае для них справедлива теорема умножения вероятностей:

P(A,B)=P(A)*P(B). (3)

Для примера снова обратимся к урновым испытаниям, описанным выше, с возвращением шара в урну.

Пусть событие А - первым достали шар №1.Это событие связано с первым испытанием и его вероятность равна

Пусть событие В - вторым достали шар №2. Это событие связано со вторым испытанием и его вероятность также равна

Первое и второе испытания независимые, поэтому события А и В - независимые, и вероятность, что они произойдут вместе, согласно формуле (3), равна

Если же проводятся зависимые испытания, и второе испытания зависит от первого испытания, то событие В зависит от события А. В этом случае для события В вводится условная вероятность и теорема умножения вероятностей принимает вид:

P(A,B)=P(A)* (4)

Таким образом, в урновых испытаниях без возвращения шара в урну событие В(вторым достали шар №2) зависит от события А(первым достали шар №1), а вероятность рассчитывается по формуле (4).

Формулы (3) и (4) позволяют вычислять вероятности исходов совместных испытаний. Эти исходы представляют собой возможные комбинации исходов единичных испытаний, записанные в определенном порядке.

Вероятность любого события, которое может произойти в совместных испытаниях, равна сумме вероятностей всех комбинаций, которые благоприятствуют этому событию. А это означает, что вероятностные задачи на совместные испытания можно сводить к построению множества исходов этих испытаний и вычислению вероятностей исходов по формулам (3) и (4). Если все исходы испытаний и их вероятности известны, то найти вероятность интересующего события не составляет труда. В настоящем курсе учащиеся учатся определять множество исходов совместных испытаний, строя таблицы исходов и вероятностные графы.

Таблицы исходов строятся для независимых испытаний.

Пример 5. Два стрелка независимо друг от друга делают по одному выстрелу в мишень. Вероятность попадения для первого стрелка равна 0,7, а для второго - 0,8. Чему равна вероятность поражения мишени?

Решение. Пусть событие А - мишень поражена, а исход П - попадание в мишень, исход М - промах. Тогда множество исходов двух совместных испытаний (выстрел по мишени каждым из стрелков) содержит четыре элемента (рис.5).

Рис. 5.

Составим таблицу исходов этих испытаний.

В первый столбец таблицы записаны исходы выстрела первого стрелка, а в первую строку - исходы выстрела второго стрелка. Остальные клетки таблицы заполняются комбинациями исходов единичных выстрелов. Вероятность этих комбинаций (исходов совместных испытаний) подсчитывается по формуле (3). Затем определяются, какие комбинации благоприятствуют событию А, и складываются вероятности этих комбинаций:

Р(А)=р(П,М)+р(М,П)+р(П,П)=0,14+0,24+0,56=0,94.

2

1

П

(0,8)

П

(0,2)

П

(0,7)

П, П

(0,7*0,8=0,56)

П, М

(0,7*0,2=0,14)

М

(0,3)

М, П

(0,24)

М, М

(0,06)

Задачи на зависимые совместные испытания решаются построением вероятностных графов.

Пример 6. Из урны, где лежат три белых и четыре черных шара, наугад без возвращения один за другим извлекают два шара. Какова вероятность того, что извлекут разноцветные шары?

Решение. Пусть событие А - извлечение разноцветных шаров, исход Ч - извлечение черного шара, Б - извлечение белого шара.

В урне 7 шаров. (Ч,Ч)

Извлекают (Ч,Б) А

Ч Б первый шар.

В урне 6 шаров. (Б,Ч)

Извлекают второй шар. (Б,Б)

Ч Б Ч Б

Рис. 6.

Р(А)=

Поясним приведенное решение. Стрелки вероятностного графа (рис.6) изображают возможные исходы испытаний, обозначения которых ставятся возле концов стрелок. В нашем случае - это буквы Ч и Б. Рядом со стрелками записываются соответствующие безусловные или условные вероятности. Каждая цепочка стрелок изображает один из исходов совместных испытаний - одну из возможных комбинаций извлечения из урны шаров: (Ч,Ч), (Ч,Б), (Б,Ч), (Б,Ч). По формуле (4) вероятности этих комбинаций получаются перемножением безусловных и условных вероятностей, записанных вдоль цепочек. Извлечению разноцветных шаров благоприятствуют исходы (Ч,Б) и (Б,Ч). сложив их вероятности, найдем искомую вероятность Р(А).

Построением таблиц и вероятностных графов можно решать и более сложные задачи, когда проводятся три, четыре и даже пять совместных испытаний. Например, до пяти раз подбрасывают монету или из урны без возвращения извлекают три шара. Уровень таких задач достаточно высок для средней школы, и учащиеся, овладевшие алгоритмами построения таблиц и графов, успешно с ним справляются [24].

Школьникам предлагается также решать обратные задачи о нахождении вероятностей гипотез по предварительно заданной информации. Вероятность гипотезы вводится расширением понятия условной вероятности.

Напомним, что условная вероятность была введена для зависимых событий при рассмотрении совместных зависимых событий. Однако при проведении любых испытаний можно сделать предположение (выдвинуть гипотезу) о возможности наступления любого конкретного события А, если заранее известно, что в этих испытаниях наступило (или, наступит), например событие В. Тогда вероятность, что это предположение оправдается (вероятность гипотезы), есть условная вероятность , вычисляемая по формуле

=

В заключение хочется подчеркнуть, что учащимся 5 - 9 классов вполне по силам изучение элементов теории вероятностей на примерах простых испытаний с небольшим числом исходов. Математический аппарат, которым они должны предварительно овладеть - школьный курс арифметики. А предлагаемая аксиоматика, алгоритмы построения таблиц исходов испытаний и вероятностных графов доступны для школьного понимания.

2.4 Алгебра событий

После того как учащиеся познакомятся с элементарными понятиями теории вероятностей: события, достоверные и невозможные события, противоположное событие, несовместные события, независимые события - и научатся вычислять вероятность события на основе классического определения вероятности, полезно потренировать школьников в употреблении терминов, относящихся так называемой алгебре событий. При этом имеет смысл установить связь между алгеброй событий и алгеброй множеств. Понятие множеств учащимся интуитивно ясно. Не вызывает трудности и тренировка в операциях над множествами: включение, объединение, пересечение, дополнение. Представления об этих операциях лежат в основе всей математики и, в частности, в основе теории вероятностей. Достаточно посвятить им одно - два занятия, и учащиеся уже хорошо ориентируются в операциями над множествами. Теоретико-множественные представления можно призвать на помощь при обучении языку алгебры событий [23].

Для того чтобы установить параллель между языком теории множеств и языком алгебры событий, полезно составить вместе с учащимися таблицу, которая приведена ниже.

С помощью таблицы и рисунка целесообразно разобрать с учащимися задания по тематике, описывающей ряд однотипных испытаний. Но сначала необходимо ввести обозначения, которыми будем пользоваться в дальнейшем. Представим себе три одинаковые урны, в каждой из которых лежат неразличимые на ощупь белые и черные шары.

Обозначения

Интерпретация

Теории множеств Теории вероятностей

Щ

Элемент, точка

Исход, элементарное событие

Универсальное множество, т.е. множество всех рассматриваемых точек

Достоверное событие исходов, т.е. множество всех элементарных событий

Ш

Пустое множество

Невозможное событие

A,B

Подмножество универсального множества

Случайное событие

A=B

Подмножества А и В равные

События А и В равносильные

AB

Объединение множеств А и В, т.е. множество точек, входящих или в А, или и В

Событие, состоящее в том, что произошло А или В

A+B

Сумма множеств, т.е. объединение непересекающихся множеств

Событие, состоящее в том, что произошло одно из несовместных событий либо А, либо В

AB;AB

Пересечение множеств А и В, т.е. множество точек, входящих и в А, и в В

Событие, состоящее в том, что одновременно произошли события А и В

AB= Ш

Множество А и В не пересекаются

События А и В несовместны( не могут наступать одновременно)

A\B

Разность множеств А и В, т.е. множество точек, входящих в А, но не входящих в В

Событие, состоящее в том, что произошло А, но не произошло В

A?B

A?B=(A\B)(В\А)

Событие, состоящее в том, что произошло одно из событий А или В, но не оба одновременно

Рассматриваются такие события (гипотезы):

H1 - выбрали первую урну,

H2 - выбрали вторую урну, A - вынули из урны белый шар,

H3 - выбрали третью урну, - вынули из урны черный шар

Задача 1. Запишите с помощью символов следующие события.

1) выбрали либо первую, либо вторую урну;

2) выбрали какую - то одну урну;

3) выбрали не первую урну;

4) белый шар вынули из второй урны;

5) черный шар вынули из третей урны;

6) белый шар вынули не из первой урны;

7) из какой - то урны выбрали черный шар.

Ответ. 1) H1+H2;

2) H1+H2+H3;

3)= H2+H3;

4) A H2;

5) ;

6) A =A(H2+ H3);

7) ( H1+H2+H3).

Задача 2. Дайте словесное толкование следующим событиям:

1. а) AH1; б) H2; в) .

2. а) AH1+AH2+AH3; б) H1+H2+H3.

3. а) (A\H1) (H1\A); б)(\H2) (H2\).

Ответ.1. а) Белый шар вынули из первой урны;

б) черный шар вынули из второй урны;

в) черный шар вынули не из третьей урны

2. а) Белый шар вынули либо из первой, либо из второй, либо из третьей урны;

б) черный шар вынули либо из первой, либо из второй, либо из третьей урны;

3. а) Либо вынули белый шар не из первой урны, либо из первой урны вынули черный шар;

б) либо вынули черный шар не из второй урны, либо из второй извлекли белый шар.

Задача 3.установите, верны ли равенства:

а) H1+H2+H3=;

б) А+ =;

в) А= Ш - и дайте им словесное толкование.

Ответ. Все равенства верны.

а) выбрали либо первую, либо вторую, либо третью урну. По условию испытания это событие достоверное;

б) достоверное, что вынули либо черный, либо белый шар;

в) вынутый шар не может быть одновременно и белым и черным.

На этом этапе, когда язык алгебры событий учащимися достаточно усвоен, вводятся теоремы сложения и умножения вероятностей, после которых следуют приведенные ниже упражнения.

Задача 4. Известно, что в каждой из трех урн число белых шаров равно числу черных (например, см. рисунок). Подсчитайте указанные ниже вероятности при условии, что шар извлекается наугад из наугад выбранной урны.

1. P(H1), P(H2), P(H3).

2. P(H1+H2+H3).

3. P(A), P().

4. P(AH3),P(H1).

Ответ. 1. P(H1)= P(H2)= P(H3)= - вероятность того, что выбрана первая (вторая, третья) урна.

2. P(H1+H2+H3)= +==1 - вероятность того, что выбрана одна из урн, равна вероятности достоверного события, т.е. 1.

3.P(A)= P()= - вероятность того, что будет вынут белый (черный) шар.

4. P(AH3)=P(H1)= *= вероятность того, что будет извлечен белый шар из третьей урны (черный шар из первой урны).

Следующий этап - изучение условной вероятности, т.е. вероятности события А, если известно, что оно может наступить, если прежде произошло одно из событий H1,H2,H3.

В этом месте также необходимо потренироваться в правильном употреблении терминов и символов.

Задача 5. Запишите словами, в чем состоят указанные ниже события, и вычислите их вероятность.

а) A\H1; б) \H2; в) \.

Ответ. а) выбрали первую урну, а затем из нее извлекли белый шар,

P(A\H1)=

б) выбрали вторую урну, а затем из нее вынули черный шар,

P(\H2)=;

в) выбрали первую либо вторую урну, а затем из какой -то из них достали черный шар,

P(\)=

Изучив понятие условной вероятности, есть возможность перейти к формуле полной вероятности.

Вероятность события А, которое может наступить при условии появления одного из несовместных событий (гипотез) H1,H2,H3, образующих полную систему событий, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Р(А)=P(H1)P(A\H1)+P(H2)P(А\H2)+P(H3)P(А\H3) - формула полной вероятности. Рассмотренная проблематика позволяет связать ее с более сложным вопросом, к которому обычно приступают много позже. Речь идет о формуле Байеса. Объединяя изучения формулы полной вероятности и формулы Байеса, преподаватель достигает настоящего укрупнения дидактических единиц и получает возможность лучше разъяснить ситуации, связанные с обеими формулами. В самом деле, формула полной вероятности употребляется для подсчета вероятности предложения о том, что событие А может наступить, а формула Байеса применяется тогда, когда событие А наступило.

Пусть известно, что:

а) событие А может наступить при условии появления одного из событий H1,H2,H3, образующих полную систему событий;

б) известны условные вероятности P(A\H1), P(А\H2), P(А\H3) события А относительно всех событий Н123.

В результате испытание оказалось, что событие А произошло. Какова вероятность того, что оно наступило вместе с событием Нi, где I=1,2,3. другими словами, найти вероятность P(H1\A), P(H2\ А), P(H3\ А).

Эту задачу решает формула Байеса:

P(H1\A)=,

где I=1,2,3.

Итак, показанная линия изучения основ теории вероятностей на базе средней школы, на этой теме завершается. Материал параграфов 1,2,3 может быть рассмотрен в классе со всеми учащимися, а 4 параграф при более углубленном изучении - на кружке или факультативе.

Глава III Факультативный курс «Элементы теории вероятностей» для 10 - 11 классов

3.1 Внеклассная работа по математике, факультативные занятия

Требования, которые предъявляются программой по математике, сложившимися методами обучения, обращены ко всем учащимся. Но как бы хорошо не был проведен урок, мы находимся в строго ограниченных временных рамках. Внеклассная работа ставит цели: углубить и расширить математические знания, дать учащимся возможность оценить и развить свои способности, удовлетворить любознательность; усовершенствовать умения и навыки в решении задач; научить работать с литературой; творчески использовать свободное время; определять перспективы дальнейшей деятельности, жизни, учебы и работы.

Внеклассная работа - это добровольные необязательные, систематические занятия с учащимися во внеурочное время.

Внеклассная работа для слабого ученика выполняет роль индивидуальных дополнительных занятий. Они ликвидируют пробелы у учащихся, их цель вывести на уровень ОРО. Собирают маленькие группы (3-4 человека). Проводят не чаще одного раза в неделю, сочетая с домашним заданиями. На классных занятиях и к домашним заданиям прилагать карточки по образцу. После обработки вопросов используют контроль. Обязательно использовать линию успеха (хвалить, поощрять, не ругать).

Внеклассная работа с сильными учениками,которые имеют повышенный интерес к математике.

Цели:

1) пробуждение и развитие устойчивого интереса;

2) расширение и углубление знаний по программному материалу;

3) оптимальное развитие математических способностей и привитие учащимся определенных навыков научно-исследовательского характера;

4) воспитание высокой культуры математического мышления;

5) развитие у учащихся умений самостоятельно и творчески работать с учебной литературой, компьютером;

6) расширение и углубление представлений учащихся о культурно-исторической ценности математики, о ее ведущей роли в мировой науке, о прикладной направленности математики;

7) создание актива, способного оказать учителю помощь;

8) установление более тесного делового контакта на основе глубокого изучения математики.

Темы внеклассной работы расширяют и углубляют учебный материал. Содержание внеклассной работы зависит от форм ее проведения: математические кружки, факультативы, викторины и конкурсы, математические вечера и олимпиады, математические школы (очные и заочные), внеклассное чтение, рефераты, доклады и сочинения.

Факультативные занятия -одна из самых распространенных внеклассной работы. История уходит в конец 19-го начало 20-го веков, создавались при гимназиях для успевающих учеников.

Цели:

1) углубление и расширение знаний по математике;

2) развитие интереса к предмету, развитие математических способностей у учеников;

3) привитие интереса и навыков к исследовательской самостоятельной деятельности;

4) развитие умения учащихся решать более сложные задачи;

5) подготовка к труду, который будет связан с математикой;

6) воспитание инициативы и развитие творчества.

Явное течение началось в 1966 году. Вышло постановление о мерах дальнейшего углубления работы в школе. В течение последних лет в системе проведения факультативных занятий происходили различные изменения и испытания. В 1975 году вышло новое постановление, которое касалось программ и учебных пособий. Программа привязана к учебным темам, определяется время проведения, количество учащихся и оплата.

Программа состоит из двух направлений:

1. дополнительные главы и вопросы курса математики;

2. изучение специального математического курса.

Выделяют два основных направления по содержанию и по целям:

1) факультатив 7-9 классов;

2) факультатив 10-11 классов.

В 10-11 классе подготовительный курс. Цель: подготовить учащихся к продолжению образования и повышения уровня математической культуры. Преподавание строится как углубленное изучение вопросов основного курса. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих логической и операционной культуры. Особое место занимают задачи, требующие применения нестандартных знаний. Это целенаправленная подготовка к выпускным школьным и вступительным вузовским экзаменам. Программа построена на основании линии алгебры и начала анализа, геометрии, теории вероятностей и математической статистики. В данной главе мы рассматриваем методику преподавания факультативных занятий по теме «Элементы теории вероятностей» для 10-11 классов средней школы. Эта методика включает в себя разработку системы уроков по данной теме. Предлагаемая система представляет собой такие формы организации обучения как урок-лекция, уроки-практикумы, урок-семинар, урок-консультация и уорк-игра, которые мы считаем наиболее эффективными при проведении данного факультативного курса по теории вероятностей.

Поурочное планирование факультативного курса по теме «Элементы теории вероятностей» для 10-11 классов

Количество Уроков

Содержание учебного материала

1

Случайные события.

Урок-лекция

2

Классическое определение вероятности.

Лабораторная работа

Практическая работа

1

Геометрическая вероятность.

Урок-семинар

1

Основы теории вероятностей.

Урок-консультация

1

Урок-игра «Восхождение на пик знаний»

Всего 6 уроков

Апробация ниже предложенного факультативного курса «Элементы теории вероятностей» была проведена в школе № 43 ст. НоводеревянковскойКаневского района среди учащихся 10 класса (10 человек), посещающих факультативные занятия. Возраст детей составлял 14-16лет. На уроках широко применялись наглядность, различные формы беседы, дискуссии, опыты, работа с карточками.

Хорошо была организована и самостоятельная работа учащихся. Для этого использовались следующие приемы: краткий конспект лекций, работа с книгой, подготовка докладов и рефератов, работа с карточками, групповая форма работы.

В свою очередь обучаемые показали высокий уровень заинтересованности, а новизна содержания учебного материала помогла развить уже имеющийся познавательный интерес учащихся к математике в процессе изучения основ теории вероятностей.

На каждом уроке осуществлялась промежуточная проверка знаний и умений обучаемых: проводился контроль выполнения домашнего задания, фронтальный опрос по пройденному теоретическому материалу, организовывалась работа учащихся у доски.

Вывод: таким образом обобщенный и систематизированный методический материал и разработанный факультативный курс способствуют достаточно успешному преподаванию теории вероятностей в общеобразовательной школе.

3.2 Случайные события. Урок - лекция

Как показывает опыт преподавания применения лекционно-зачетной системы при изучении ряда тем курса математики позволяет учителю излагать учебный материал крупными порциями и на этой основе высвободить время для повторения, обобщения и систематизации теории и решения задач.

Кроме того, такая организация занятий обеспечивает усиление практической и прикладной направленности преподавания и приобщение учащихся к активной работе с учебной литературой, повышения уровня их подготовки. Применительно к процессу обучения математики возможна следующая структура лекционно-зачетной системы: уроки-лекции, уроки-семинары, уроки-практикумы, уроки-консультации, урок-зачет.

Уроки-лекции: как правило, это уроки, на котором излагается значительная часть теоретического материала данной темы. В зависимости от дидактических задач и логики учебного материала распространены вводные, установочные, текущие и обзорные лекции. По характеру изложения и деятельности учащихся лекция может быть информационной, объяснительной, лекцией-беседой и т.д.

Лекционная форма проведения урока целесообразна в следующих случаях:

1) тема является мало связанной с ранее изученным материалом, то есть является практически новой для учащихся.

2) при подачи информации крупными блоками в плане реализации теории укрупнения дидактических единиц в обучении;

3) при рассмотрении сложного для самостоятельного изучения материала;

4) когда объем теоретического материала велик, а задач к нему недостаточно;

5) при выполнении определенного вида заданий по одному или нескольким разделам, темам;

6) для обобщения и систематизации знаний по данной теме, так и по темам, изучаемым в различных главах, классах, связанных общей идеей;

7) применение математического аппарата к решению прикладных задач.

Тип лекции, ее структура определяется темой и целью урока. Лекция строится на сочетании этапов урока: организации, постановки цели и актуализации базовых знаний, сообщение материала учителем и усвоение его учащимися, постановка домашнего задания. Одна из особенностей школьной лекции заключается в том, что учитель непрерывно следит за процессом усвоения материала непосредственно на уроке, организовывает диалог с учащимися, элементы первичного контроля и дает оценку усвоения учащимися содержания лекции, возможен вызов учащихся к доске - привлечение учащихся к объяснению отдельных этапов. Лекционная форма занятий требует от учителя четкой организации учебной деятельности школьников, привлечение их внимания к содержанию лекции. С целью интенсификации учебного процесса на уроках желательно использовать технические средства обучения, различные таблицы, образцы решений, схемы, таблицы, подручный материал.

В отличии от вузовской практики лекционных форм эта работа проходит при активной роли учащихся.

Во-первых, они не пассивно воспринимают повествование учителя, а разбирают вместе с ним излагаемый материал, могут задать вопрос, попросить повторить непонятное.

Во-вторых, учитель в случае необходимости может организовать самостоятельную работу учащихся, предоставляя им возможность разобрать тот или иной вопрос по учебнику.

В-третьих, провести первичный контроль с целью получения информации об усвоении.

Урок-лекция

Тема урока: Случайные события.

Цель урока:

1) познакомить учащихся с понятием случайного события;

2) развить интерес к теории вероятностей, математики;

3) способствовать развитию логического мышления, воображения.

Оборудование: доска, мел, монетка, кубик, набор задач.

Структура урока.

1. Организационный момент.

2. Сообщение темы и цели занятия.

3. Объяснение нового материала.

Учитель. В теории вероятностей (как ив любой другой науке) жизнь изучается не во всей ее сложности, а только с одной определенной стороны. При этом строится некоторая схема (или модель), которая более или менее полно отражает интересующую нас сторону жизни.

Эта схема и изучается. Например, в геометрии изучаются свойства фигур: точек, прямых и т. п. В реальной жизни таких фигур нет.

Поэтому мы имеем дело с моделями, полученными, как результат моделирования, схематизирования, абстрагирования определенной стороны реальной жизни.

В физике рассматривается материальная точка, идеальный газ и т. п. Это тоже модельное представление определенных сторон реальной жизни -- в природе материальных точек и идеального газа нет.

В теории вероятностей рассматривается следующая модель изучаемых явлений реальной жизни: делается опыт (испытание),в результате происходят случайные события(часто говорят просто -- события).

Например, бросили монету и посмотрели, что выпало, -- это опыт. В результате этого опыта может выпасть герб -- это одно событие, а может выпасть цифра -- это другое событие. Поскольку выпадение герба зависит от случая, то это случайное событие.

События принято обозначать большими латинскими или русскими буквами: А, В, С и т. п.

Например, в опыте с броском монеты событие «выпал герб» естественно обозначить буквой Г. При этом пишут: Г = «выпал герб». Аналогично событие «выпала цифра» обозначают буквой Ц.

Рассмотрим еще один опыт, несколько более богатый событиями, чем опыт с бросанием монеты, -- бросание игральной кости. Этот опыт состоит в следующем. Игральную кость (кубик, на сторонах которого указаны точки: 1, 2, 3, 4, 5 и 6, соответствующие количеству очков) бросают на стол и смотрят (на верхней грани), сколько выпало очков. При этом могут произойти следующие события:

Q1= «выпало 1 очко», Q4 = «выпало 4 очка»,

Q2= «выпало 2 очка», Q5 = «выпало 5 очков»,

Q3= «выпало 3 очка», Q6 = «выпало 6 очков».

Но можно рассматривать и другие события, связанные с опытом бросания игральной кости:

Qnp-«число выпавших очков простое»,

Q3k-«число выпавших очков делится на 3»,

Qч - «число выпавших очков четно»,

Qн - «число выпавших очков нечетно» и другие.

Уже на этих простых опытах мы можем заметить, что события Qч и QH не могут произойти одновременно. Такую особую связь между событиями можно наблюдать в любом опыте, и она носит определенное название.

Определение.

Два события называются несовместными; если они в рассматриваемом опыте не могут произойти одновременно. События, которые в рассматриваемом опыте могут произойти одновременно, называются совместными.

Например, в опыте с броском игральной кости события Q4 и Qnp совместны. Действительно, пусть выпало 2 очка. Число 2 четное, следовательно, произошло событие Q4 . С другой стороны, число 2 простое, следовательно, произошло событие Qпр. Аналогично события Q3 и Qпр тоже совместны. Однако между совместностью пары событий Q3 иQпр и пары событий Qч и Qпр наблюдается существенная разница. Для первой пары из того, что произошло событие Q3, автоматически следует, что произошло и событие Qпр. Для второй же пары этого нет. В самом деле, предположим, что выпало 4 очка, т. е. произошло событие Qч . А событие Qпр при этом не произошло, так как 4 не является простым числом. Таким образом, для второй пары из того, что произошло одно из совместных событий, еще не следует, что автоматически произошло и другое.

Заметим еще одно существенно важное обстоятельство. В опыте с броском игральной кости события Q1 , Q2, ..., Q6 как бы играют особую роль для этого опыта. Сущность этой особой роли состоит в том, что в результате опыта одно из этих событий обязательно происходит, а любые два из них несовместны.

Определение. Множество событий рассматриваемого опыта, одно из которых в результате опыта обязательно происходит, а любые два из них несовместны, называется множеством элементарных событий (или исходов) этого опыта, а каждое событие из этого множества называется элементарным событием рассматриваемого опыта или его исходом.

Так, в опыте с броском игральной кости события Q1 , Q2, ..., Q6образуют множество исходов этого опыта. Подчеркнем, что для одного и того же опыта можно рассматривать разные множества исходов.

Например, для опыта с броском игральной кости можно рассматривать множество из двух исходов -- Qч и Qн. В самом деле, эти события несовместны, ив результате опыта (броска игральной кости) одно из них обязательно происходит. От того, как выбрано множество элементарных событий опыта, зависит большая или меньшая сложность решения поставленной вероятностной задачи: при удачном выборе решение сильно упрощается, а при неудачном или усложняется, или вообще не может быть найдено.

Итак, мы познакомились со случайными событиями и простейшим» видами связей между ними.

4. Первичное закрепление и осмысление материала. Решение задач.

Учитель: Разобранная нами схема а проведения опыта - частный случай, привычные вам задачи, в которых результат действий определен однозначно; однако в задачах по теории вероятностей возможны различные ответы на поставленные вопросы, где учитываются не только статистические закономерности, но и индивидуальные особенности разных людей, предметов.

Задание 1. Сравните между собой на основе жизненного опыта общения по телефону шансы следующих случайных событий определите, какие из них наиболее вероятны.

A: вам никто не позвонит с 5 до 6 утра.

B: вам кто - нибудь позвонит с 5 до 6 утра.

C: вам кто - нибудь позвонит с 6 до 9 вечера.

D: вам никто не позвонит с 6 до 9 вечера.

Решение. Поскольку ранним утром звонки вообще бывают очень редко, у события B шансов крайне мало, оно маловероятное, почти невозможное. Но вот у события А очень много шансов, это практически достоверное событие.

Вечерние часы, наоборот, время самого активного телефонного общения, поэтому событие С для большинства людей вероятней, чем событие D. Хотя если человеку вообще звонят редко, событие D может оказаться вероятнее события С.

Задание 2. В игре "Любовь с первого взгляда" трое юношей и три девушки случайно выбирают друг друга. Если выбор какого - нибудь юноши и девушки совпал, то образуется пара. Какие из следующих событий невозможные, случайные, достоверные: A: не образовалось ни одной пары.

B: образовалась одна пара.

C: образовалось две пары.

D: образовалось три пары.

Ответ.Все события случайные.

Задание 3. Три господина, придя в ресторан, сдали в гардероб свои шляпы. Расходились по домам они уже в темноте и разобрали свои шляпы наугад. Какие из следующих событий невозможные, случайные, достоверные: A: каждый надел свою шляпу.

B: все надели чужие шляпы.

C: двое надели чужие шляпы, а один - свою.

D: двое надели свои шляпы, а один - чужую.

Ответ. События A, В , С - случайные, событие D - невозможное.

5. Итоги урока. Вопросы для повторения:

1) Какое событие называется случайным?

2) Какие события называются достоверными, несовместными?

3) Приведите примеры?

6. Постановка домашнего задания.

Задание.

Ученика поручается подбрасывать кубик несколько раз. Cтавятся следующие вопросы. Какие из следующих событий являются возможными (случайными), а какие достоверными:

1) кубик, упав, останется на ребре;

2) выпадет только одно из чисел: 1, 2, 3, 4, 5, 6 ;

3) выпадет число 6;

4) выпадет число 4;

5) выпадет четное число;

6) выпадет нечетное число;

7) выпадет число, которое делится на 5;

8) выпадет число, которое делится на 7;

9) выпадет число, которое делится на 3;

10) не выпадет никакое число.

3.3 Классическое определение вероятности. Уроки-практикумы

Основная цель этих уроков - усиление практической направленности обучения. Они должны быть тесно связанными с изученным материалом и способствовать прочному его усвоению. Основными формами их проведения являются практические и лабораторные занятия, на которых учащиеся самостоятельно упражняются в практическом применении усвоенных теоретических знаний и умений. На лабораторных работах формируются экспериментальные умения, а на практических - конструктивные. На этих уроках закрепляется и углубляется теоретический материал, изложенный в лекции, проводится целенаправленная работа по выработке у учащихся умений и навыков решения основных типов задач. В первую очередь обращается внимание на отработку навыков решения задач из учебника (простейших).

С учащимися обсуждаются подходы к решению опорных (ключевых) задач, их оформление. Образцы выполнения этих задач учащиеся записывают в свои рабочие тетради. К этим урокам подбираются упражнения, составленные по принципу внутрипредметных и межпредметных связей.

Они позволяют параллельно с изучением нового повторить общие подходы к решению задач из ранее изученного материала. Здесь успешно применяются групповые формы работы, используется помощь консультантов из числа успевающих учащихся этого класса. Учащимся, проявляющих повышенный интерес к математике, оказывается достаточно времени для более глубокого изучения вопросов теории. Для них подбираются специальные задания повышенной трудности. Таким образом на практических занятиях проводится дифференцированная работа с учащимися с учетом интересов как сильных учеников, так и более слабых из них.

На этих уроках могут быть использованы различные средства обучения: дидактический материал, таблицы, ТСО, что помогает тому, чтобы время урока расходовалось экономно, с максимальной отдачей учащихся.

Внешне эти уроки не всегда вписываются в традиционные схемы, могут со стороны казаться неинтересными, но они приносят большую пользу учащимся. Здесь идет кропотливая работа по усвоению знаний, овладению умений, ученики получают ответы на невыясненные вопросы, приобретают необходимые общеучебные навыки, усваивают алгоритмы решения задач, готовятся к зачету или контрольной работе.

Полезно планировать проведение на практических занятиях промежуточный контроль, который позволяет своевременно обнаружить пробелы в знаниях и принять меры по их ликвидации.

Очень важным при обучении математики является практикум по решению задач. Эти занятия можно построить таким образом: решение задач по изучаемой теме проводится в два этапа.

Первоначальный этап - это обучение поиску решения задач на основе подробного разбора опорных. Особое внимание при этом уделяется (чертежу)схеме, в процессе создание которой учащиеся осваивают особенности и связи объектов в условии. Так с подробным анализом и обоснованием каждого шага решаются 8-10 задач. Первый этап решения задач можно закончить зачетом.

Второй этап- решение более сложных задач, при этом значительно увеличивается роль самостоятельной работы учащихся, но и здесь учитель направляет пути поиска решения задачи. Завершить можно этот этап тоже зачетом, в который включены задачи уже разобранные, другие - новые, подобные разобранным.

На этих занятиях целенаправленна работа по закреплению умений и навыков.

3.3.1 Лабораторная работа

Тема урока: Классическая и статистическая вероятности.

Цель урока:

1) вывести формулу вероятности;

2) развить творческую активность учащихся;

3) воспитать самостоятельность, взаимопомощь.

Оборудование: доска, мел, карточки, набор монеток и канцелярских кнопок. Структура урока.

1. Организационный момент.

2. Сообщение темы и цели занятия.

3. Организация учащихся на проведение лабораторной работы.

Учитель. Теория вероятностей - это математическая дисциплина, изучающая закономерности, происходящие в массовых случайных явлениях.

Многолетняя практика проведения статистических исследований показывает, что частота обладает свойством устойчивости: в различных сериях опытов она может быть неодинакова, но при увеличении числа самих опытов она, как правило, стабилизируется.

1) Проведение опыта. Перед изучением «Классического определения вероятности» мы проведем коллективный статистический опыт: одни учащиеся (группа по 2 человека) будут подбрасывать монету, другая половина класса, проведет испытание с канцелярской кнопкой (учащимся раздается материал для проведения опыта-карточки для внесения результатов, монетки, кнопки).

Номер группы

Число испытаний

Герб

Цифра

Номер группы

Число испытаний

Вверх

Вниз

2) Обобщение и систематизация полученных результатов.

Проведя по десять испытаний каждым, объединим полученные сведения и вычислим частоту, соответствующие исходам.

Если опыт повторен n раз, то событие произойдет приблизительно рпраз. При этом, если событие произошло т раз, то частота появления события - число и точность этого равенства будет тем больше, чем больше n. Иначе говоря, связь, которая существует между опытом и событием и характеризуется числом р -- вероятностью события в рассматриваемом опыте, выявляется только при многократном повторении этого опыта.

По полученным в результате опыта данным вычислим частоту выпадения герба и цифры, частота выпадения кнопки острием вверх и вниз.

Учитель. Французский ученый Жорж Луи де Бюффон (1707-1788) подбрасывал монету 4040 раз (табл.2). Английский математик Карл Пирсон (1857-1936) подбрасывал монету 24000 раз (табл.3).

Исходы

Герб

Цифра

Число

Испытаний

2048

1992

Частота

0,5069

0,4931

Таблица 2.

Исходы

Герб

Цифра

Число

Испытаний

12012

11988

Частота

0,5005

0,4995

Таблица 3.

Частота выпадения герба при увеличении числа опытов, как правило, все меньше отличается от числа 0,5. Это вполне объяснимо, если монета недеформированная, «правильная», т. е. ее центр тяжести совпадает с геометрическим центром.

Иначе получается при подбрасывании канцелярской кнопки. Пусть, например, после 10000 подбрасываний кнопки получена таблица частот (табл.4).

Положение

острия кнопки

Вверх

Вниз

Частота

0,595

0,405

Таблица 4.

Практика показывает, что при большом числе опытов частота выпадения кнопки острием вверх, как правило, близко к 0,6, а вниз - к 0,4.

Теоретически ожидаемое постоянное число, около которого группируется (за редким исключением) частоты при массовых испытаниях, называют вероятностью соответствующего исхода (результат наблюдения). Частота - есть эмпирический прообраз вероятности.

Вероятность выпадения герба при подбрасывании монете равна 0,5. Такая же вероятность выпадения цифры, т.е. равна 0,5. Исходы (результаты наблюдений, имеющие равные вероятности, называют равновозможными). Число 0,6 можно применять за вероятность выпадения кнопки острием вверх, а число 0,4 - за вероятность выпадения острием вниз. Эти исходы неравновероятны.

4. Закрепление изученного материала.

Задание.

1. Являются ли равновероятными следующие события:

а) Опыт--бросок монеты; события: «выпал герб» и «выпала цифра».

б) Опыт --бросок неправильной монеты (погнутой); события: «выпал герб» и «выпала цифра».

в) Опыт -- выстрел по цели; события: «промах» и «попадание».

г) Опыт -- бросок двух монет; события: А = «выпало два герба», В= «выпало две цифры» и С = «выпали герб и цифра».

д) Опыт -- бросок игральной кости; события; А == «выпало не менее трех очков» и В = «выпало не более четырех очков».

е) Опыт -- вынимание косточки домино из полного набора 28 косточек; события: А = «вынуто 6», В = «вынуто пусто».

5. Итоги урока. Вопросы для повторения:

1) Что такое вероятность события?

2) Как определяется частота?

3) Какие подходы существуют для определения вероятности?

6. Постановка домашнего задания.

Задания.

1. Приведите пример опыта, в котором можно указать три попарно несовместных события, не образующих множество исходов опыта.

2. Приведите пример опыта и четырех его событий, таких, чтобы эти четыре события не составляли множество исходов опыта, но одно из них в результате опыта происходит обязательно.

3. Приведите пример опыта с тремя исходами.

3.3.2 Практическая работа

Тема урока: Классическое определение вероятности.

Цель урока:

1) закрепить знание формулы;

2) способствовать развитию навыка самостоятельного применения знаний при решении задач, внимания;

3) воспитать усидчивость, терпение.

Оборудование: доска, мел, набор задач.

Структура урока.

1. Организационный момент.

2. Сообщение темы и цели занятия.

3. Изучение нового материала.

Учитель.Изучение понятия вероятности события обычно начинается с самого простого частного случая, -- так называемого классического определения. Оно опирается на понятие равновероятности событий.

Начнем с примеров. В опыте с броском монеты события Г=«выпал герб» и Ц = «выпала цифра» очевидно равновероятны. Это утверждение основано на том, что монета симметрична и однородна. В опыте с броском игральной кости события Q1, Q2, ..., Q6 тоже, очевидно, равновероятны. Это следует из однородности материала кости и ее симметричной формы. Таким образом, равновероятность событий обычно устанавливается исходя из того, что условия опыта симметричны относительно рассматриваемых событий. При этом симметрия понимается в широком смысле этого слова и геометрическая симметрия, и физическая симметрия (например, однородность материала, из которого изготовлена игральная кость или монета) и так далее. То есть для того чтобы можно было начать, решение задачи средствами теории вероятностей, необходимо, чтобы вероятности некоторых событий в задаче уже были указаны. Откуда же эти вероятности берутся?" Их дают те конкретные науки, в рамках которых возникла решаемая вероятностная задача. При этом зачастую основную роль играют соображения не математические, а той науки, в рамках которой возникла задача. Понятие равновероятности событий -- это есть одна из форм указания начальных вероятностей.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.