Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
Анализ современных исследований по введению в школьную математику элементов теории вероятностей и математической статистики. Определение содержания и разработка методики проведения факультативного курса "Элементы теории вероятностей" в средней школе.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.06.2011 |
Размер файла | 517,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Теперь можно дать классическое определение вероятности случайного события.
Определение.Пусть множество исходов опыта состоит из n равновероятных исходов. Если m из них благоприятствуют событию А, то вероятностью события А называется число p(A)=
4. Решение задач.
Задание 1. Какова вероятность того, что при броске игральной кости выпадет четное число очков?
Решение. В опыте «бросок игральной кости» мы имеем 6 равновероятных исходов: события Q1 , Q2, ..., Q6. Нас интересует вероятность события Qч. Этому событию благоприятствуют три исхода опыта: события Q2, Q4 и Q6. Следовательно n = 6, т = 3, а искомая вероятность
Задание 2. Бросали две монета. Какова вероятность того, что на каждой монете выпал герб?
Решение. Сразу напрашивается множество исходов, состоящее из трех событий (здесь опыт -- фосок двух монет): «на обеих монетах выпал герб» = Г, «на обеих монетах выпала цифра» = Ц и «на одной монете выпал герб, а на другой монете выпала цифра» = А. Но интуитивно ясно, что это не равновероятные события -- событие А имеет больше шансов появиться. Чтобы получать равновероятные исходы, внесем в этот опыт некоторое дополнение, которое не изменит вероятностной структуры задачи. Именно, возьмем одну монету медную, а другую серебряную. Это добавление позволит выделить равновероятные исходы испытания. Ими будут события Г, Ц, А1= «на серебряной монете выпал герб, на медной монете выпала цифра» и А2 = «на серебряной монете выпала цифра, на медной монете выпал герб». Эти четыре события уже равновероятны, поскольку условия опыта относительно них симметричны. Они также образуют множество исходов рассматриваемого опыта. Теперь все подготовлено для того, чтобы можно было обратиться к теории вероятностен {до сих пор мы пользовались условиями задачи для выяснения некоторых основных, исходных вероятностей: в нашем случае это сводилось к выявлению равновероятных исходов испытания). Равновероятных исходов испытания 4, т. е. п= 4. Нас интересует вероятность события Г. Ему благоприятствует только один исход, т. е. т =1. Следовательно, искомая вероятность
Задание 3. Из семи одинаковых билетов один выигрышный. Семь человек по очереди и наугад берут (и не возвращают обратно) по одному билету. Зависит ли вероятность взять выигрышный билет от номера в очереди?
Решение. Опишем математическую модель этого примера. Перенумеруем все билеты, начиная с выигрышного. В результате опыта билеты оказываются распределенными между людьми, которые занимали определенные места в очереди. Этим упорядочивается множество из семи билетов: на первом месте оказывается билет, взятый человеком, стоявшим в очереди первым; на втором месте оказывается билет, взятый человеком, стоявшим в очереди вторым, и т. д. Таким образом, исходом опыта является получение некоторой перестановки из 7 билетов, их число n=7!. Поскольку билеты берутся наугад, то все эти. исходы равновероятны. Нас интересует вероятность события А= «человек, стоявший в очереди на k-м месте, взял выигрышный билет». Этому событию благоприятствуют исходы, при которых получаются перестановки, имеющие на k-м месте выигрышный билет, а остальные 6 мест заняты произвольной перестановкой из оставшихся шести невыигрышных билетов, их число т= 6! Следовательно,
Видим, что вероятность взять выигрышный билет не зависит от номера очереди.
Задание 4.На пяти одинаковых на ощупь карточках написаны буквы: на двух карточках--буква Л и на трех карточках-- буква И. .Выкладываем наугад эти карточки подряд. Какова вероятность того, что выложится слово ЛИЛИИ?
Решение. Опыт в этой задаче состоит в получении наугад некоторого «слова» из имеющихся пяти букв. Нас интересует вероятность события С = «получено слово ЛИЛИИ». Для выявления равновероятных исходов перенумеруем буквы так: Л1, Л2, И1, И2, И3. Теперь в результате опыта мы будем получать слово из нумерованных букв. События «получено слово Л1И1Л2И2И3»и «получено слово Л2И1Л1И3И2» разные, хотя и в том и в другом случае получено слово ЛИЛИИ, т. е. произошло интересующее нас событие С. Выписанные события благоприятствуют событию С. Ясно, что события, выписанные выше, и все возможные аналогичные есть равновероятные исходы нашего опыта. Число их равно числу перестановок в множестве из пяти элементов, т. е. п= 5!=120. Подсчитаем при помощи принципа произведения число исходов, благоприятствующих событию С.
Рассмотрим множество В= {(Л1Л2); (Л2Л1)}, состоящее из двух возможных перестановок нумерованных букв Л, и множество А, состоящее из шести перестановок нумерованных букв И1И2И3. Каждый исход, благоприятствующий событию С, можно получить так: берем элемент множества В и ставим буквы Л (сохраняя их порядок) на первое и третье места в слове. Оставшиеся места занимаем каким-нибудь элементом множества А (не изменяя порядка нумерованных букв И). Таким образом, каждый исход получается как пара: элемент из В и элемент из А. В силу принципа произведения число таких исходов т = 2 * 6 =12. Вероятность же интересующего нас события
5. Итоги урока. Вопросы для повторения:
1) Что такое вероятность, частота события?
2) Сформулируйте классическое определение вероятности?
6. Постановка домашнего задания.
Задание 1. Бросили две игральные кости и сосчитали сумму выпавших очков. Что вероятнее получить в сумме: 7 или 8?
Решение. В этой задаче опыт состоит в том, что бросают две игральные кости и берут сумму выпавших очков. Исходы этого опыта таковы: «в сумме выпало 2», «в сумме выпало 3» и т. д., «в сумме выпало 12». Но это не равновероятные исходы. Действительно, в сумме может получиться 2 только одним способом: 2 = 1 + 1, а в сумме может получиться 4 двумя способами: 4 = 1 + 3 и 4 = 2 + 2, т. е. шансов на то, что в сумме получится 4, больше. Теперь попробуем уточнить выбор исходов опыта и рассмотрим такие события: «на одной кости выпало kочков, а на другой -- р»: k= 1, 2, 3, 4, 5, 6 и р = 1, 2, 3, 4, 5, 6. Но это тоже не равновероятные исходы опыта: интуиция подсказывает, что выпадение одинакового числа очков менее вероятно, чем разного. Чтобы получить равновероятные исходы, внесем в эту задачу некоторый дополнительный элемент, который не меняет вероятностную сторону задачи. Именно, окрасим кости в разные цвета-- красный и синий. Но этот элемент позволит нам, наконец, выявить равновероятные исходы рассматриваемого опыта. Это будут следующие события: «на красной кости выпало kочков, а на синей -- рочков» = (k; p). Поскольку кости отличаются только цветом, то ясно, что указанные события равновероятны и, кроме того, они образуют множество исходов нашего опыта. Остается подсчитать число всех исходов. Их 36, поскольку каждое из 6 очков, которые могут выпасть на красной кости; может быть в паре с любым из 6 очков, которые могут выпасть на синей. Теперь подсчитаем число исходов, благоприятствующих рассматриваемым событиям. Событию «сумма выпавших очков равна семи» = А благоприятствуют следующие 6 исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2) и (6; 1). Следовательно,
Событию «сумма выпавших очков равна 8» = В благоприятствуют следующие 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Следовательно,
Мы видим, что сумма очков 7 есть более вероятное событие, чем сумма очков 8. Интересно отметить, что этот факт был замечен игроками в кости. Попытки его объяснить (и решение ряда задач по страхованию и т. п.) привели к созданию математической теории -- начал теории вероятностей.
Задание 2. В ящике лежат 20 одинаковых на ощупь шаров. Из них 12 белых и 8 черных. Наугад вынимают один шар. Какова вероятность того, что он окажется белым? (Точный смысл выражения «наугад вынимается шар» будет выяснен в процессе решения.)
Решение. В этой задаче рассматривается следующий опыт: из ящика наугад вынимают шар и смотрят его цвет. Сразу напрашивается множество исходов, состоящее из двух событий: Ч= «вынутый шар черный» и Б = «вынутый шар белый». Но эти исходы неравновероятны, так как белых шаров больше и шансов вынуть белый шар больше. Для выявления в этом опыте множества равновероятных исходов внесем в опыт дополнительный элемент, не нарушающий вероятностной структуры задачи, а именно, перенумеруем все шары. Белым шарам поставим в соответствие номера с 1 по 12, а черным -- номера с 13 по 20. События «вынут шар с номером k»=АKуже равновероятны, так как шары на ощупь неотличимы и вынимаются наугад. Кроме того, эти 20 событий образуют множество исходов нашего опыта. Следовательно, п = 20, а интересующему нас событию В благоприятствуют первые 12 исходов, т. е. т =12. Следовательно,
Точный смысл выражения «наугад вынимается шар» состоит в том, что введенные события Akравновероятны.
3.4 Геометрическая вероятность. Урок - семинар
Семинары характеризуются, прежде всего, двумя взаимосвязанными признаками: самостоятельным изучением учащимися программного материала и обсуждением на уроке результатов их познавательной деятельности. На них ребята учатся выступать с самостоятельными сообщениями, дискутировать, описывать свои суждения. Различают уроки - семинары по учебным задачам, источникам получения знаний, формами их проведения и т.д. наибольшее распространение получили семинары, посвященные повторению, углублению и обобщению пройденного материала. Это семинары - развернутые беседы, семинары-доклады, рефераты, творческие письменные работы, поименованное чтение, семинар-диспут, решение задач, конференции. Укажем основные случаи, когда предпочтительно организовать уроки в виде семинаров:
1) при изучении нового материала, если ученики могут его освоить самостоятельно;
2) после проведения вводных, установочных и текущих лекций. На этих семинарах рассматривается дополнительный материал, приобретаются новые знания, рассматриваются исторические сведения и практические приложения изучаемого материала;
3) после обобщения и систематизации знаний и умений учащихся по изучаемой теме;
4) при проведении урока, посвященного различным методам решения задач, выполнение заданий и упражнений.
Цель проведение семинаров состоит в том, чтобы сделать теоретические обобщения, систематизировать изученный материал, отобрать основные методы и способы решения, показать связь математики (теории вероятностей) с жизнью. Проведение семинарских занятий активизирует процесс обучения, учит учащихся выступать, формирует у них познавательные и исследовательские умения, повышают математическую культуру, развивают речь и уровень общения.
Эффективность семинарских занятий в значительной мере зависит от организации его подготовки. На подготовку к семинару необходимо выделить не менее двух недель. Учащимся сообщается тема семинара, основные вопросы теории, по которым будет проведен опрос, указываются задачи, приемами решения которых должны овладеть все учащиеся, дается некоторый набор нестандартных упражнений, в процессе решения которых необходимо проявить элементы творчества. Можно предложить учащимся самим подобрать такие упражнения и показать на семинаре рациональные способы их решения. Распределяются индивидуальные и групповые задания по подготовке сообщений по истории рассматриваемого вопроса, его практических и межпредметных приложений. В процессе подготовки к семинару ученики по рекомендации учителя изучают дополнительную литературу, читают научно-популярные книги. Подготовка к семинару является для учащихся одновременно подготовкой к очередной проверочной работе и к зачету по теме.
Семинар проводится со всеми учащимися класса. Учитель-координатор подготовки и проведения семинара. Он заблаговременно определяет тему, цель и задачи семинара, планирует его проведение, формирует основные и дополнительные вопросы темы, распределяет задания между учащимися с учетом их индивидуальных возможностей, подбирает литературу, проводит консультации, проверяет конспекты. Семинарское занятие начинается вступительным словом учителя, в котором он сообщает тему, план, цель и задачи его проведения, рекомендует на что необходимо обратить внимание, что следует записать, дает другие советы. Далее обсуждаются вопросы семинара - по каждому вопросу учителю необходимо дать комментарии, акцентировать внимание учащихся на главной мысли и математической идее сообщения, делает дополнения и обобщения, отвечает на вопросы учеников. Подводятся итоги, учитель отмечает положительное, анализирует содержание, форму выступлений учеников, указывает на недостатки и пути их преодоления.
Урок - семинар
Тема урока: Геометрическая вероятность.
Цель урока:
1) ввести понятие геометрической вероятности;
2) способствовать развитию логического и пространственного воображения учащихся;
3) воспитать самостоятельность, терпение, усидчивость.
Оборудование: доска, мел, чертежи, набор задач.
Структура урока.
1. Организационный момент.
2. Сообщение темы и цели занятия.
3. Изучение нового материала.
1) Учитель. Теория вероятностей, подобно другим математическим наукам, развилась из потребностей практики.
До конца XVII века наука так и не подошла к введению классического определения вероятности, а продолжала оперировать только с числом шансов, благоприятствующих тому или иному событию. В 30 - е годы XVIII столетия классическое понятие вероятности стало общеупотребимым. Так в трактовке Я. Бернулли “ Искусство предположений “ присутствуют обе концепции вероятности - классическая и статистическая, обе они изложены не очень четко, но существенно то, что они уже введены в рассмотрения и использования.
Однако уже в первой половине XVIII века выяснилось, что классическое понятие вероятности имеет ограниченную область применения и возникают ситуации, когда оно не действует, а потому необходимо его расширение. Таким толчком послужили работы французского естествоиспытателя Ж. Бюффона (1707 - 1788), в которой он сформулировал знаменитую задачу о бросании иглы на разграфленную плоскость и предложил ее решение.
Классического определения вероятности нельзя применить к опыту с бесконечным числом «равновероятных» исходов. К описанию такой ситуации приспособлено геометрическое определение вероятности. Т. о. геометрические вероятности--вероятности попадания точки в область (отрезок, часть плоскости и т. д.).
Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством
Р== Длина l/Длина L. (5)
Для иллюстрации схемы геометрических вероятностей рассмотрим следующие задачи.
2) Ученик. Парадокс Бертрана. Наудачу берется хорда в круге. Чему равна вероятность, что ее длина превосходит длину стороны вписанного равностороннего треугольника?
Решение 1. По соображениям симметрии можно заранее задать направление хорды. Проведем диаметр, перпендикулярный к этому направлению. Очевидно, что только хорды, пересекающие диаметр в промежутке от четверти до трех четвертей его длины, будут превосходит стороны правильного треугольника. Таким образом, искомая вероятность равна
Решение 2.По соображениям симметрии можно заранее закрепить один из концов хорды на окружности. Касательная к окружности в этой точке и две стороны правильного треугольника с вершиной в этой точке образуют три угла по 600. Условию задачи благоприятствуют только хорды, попадающие в средний угол. Таким образом, при этом способе вычисления искомая вероятность оказывается равной
Решение 3.Чтобы определить положение хорды, достаточно задать ее середину. Чтобы хорда удовлетворяла условию задачи, необходимо, чтобы ее середина находилась внутри круга, концентрического данному, но половинного радиуса. Площадь этого круга равна одной четверти площади данного; таким образом, искомая вероятность равна
Причина неоднозначности решения нашей задачи заключается в том, что за решение одной и той же задачи, пользуясь тем, что в условии задачи не определенно понятие проведения хорды на удачу, выдаются решения трех различных задач.
В самом деле, в первом решении вдоль одного из диаметров заставляют катится круглый цилиндрический стержень (рис. 7, а) . Множество всех возможных мест остановки этого стержня есть множество точек отрезка AB длины, равной диаметру. Равновероятными считаются события, состоящие в том, что остановка произойдет в интервале длины h, где бы внутри диаметра ни был расположен этот отрезок.
Во втором решении стержень, закрепленный на шарнире, расположенном в одной из точек окружности, заставляют совершать колебания размером не более 1800 (рис. 7, б). При этом предполагается, что остановка стержня внутри дуги окружности длины h зависит только от длины дуги, но не от ее положения. Таким образом, равновероятным событиям считаются остановки стержня в любых дугах окружности одинаковой длины. Несогласованность определений вероятности в первом и во втором решениях становится совершенно очевидным после такого простого расчета. Вероятность того, что стержень остановится в промежутке от A до x, согласно первому решению равна Вероятность того, что проекция точки пересечения стержня с окружностью во втором решении попадет в тот же интервал, как показывают элементарно - геометрические подсчеты, равна
при
и
при
а) б) в)
Рис. 7.
Наконец, в третьем решении мы бросаем на удачу точку внутрь круга и спрашиваем себя о вероятности попадания внутрь некоторого меньшего концентрического круга (рис. 7, в).
Различие постановок задач во всех трех случаях совершенно очевидно.
3) Ученик.Задача Бюффона. Плоскость расчерчена параллельными прямыми, расстояние между которыми равно 2а. На плоскость наудачу брошена игла длины 2l (l< а). Найти вероятность того, что игла пересечет какую-нибудь прямую.
Решение. Обозначим через x расстояние от центра до ближайшей параллели и через - угол, составленный иглой с этой параллелью. Величины x и полностью определяют положение иглы. Всевозможные положения иглы определяются точками прямоугольника со сторонами a и . Из рис. 8 видно, что для пересечения иглы с параллелью необходимо и достаточно, чтобы
Искомая вероятность в силу сделанных предположений равна отношению площади заштрихованной на рис. 9 области к площади прямоугольника
Заметим, что задача Бюффона является исходным пунктом для решения некоторых проблем теории стрельбы, учитывающих размеры наряда.
Рис. 8. Рис. 9.
Полученная формула была использована для опытного определения приближенного значения числа . Таких опытов с бросанием иглы было проведено довольно много. Мы приведем результаты лишь некоторых из них:
Экспериментатор |
Год |
Число бросаний иглы |
Экспериментательное число |
|
Вольф |
1850 |
5000 |
3,1596 |
|
Смит |
1855 |
3204 |
3, 1553 |
|
Фокс |
1894 |
1120 |
3, 1419 |
|
Лаццарини |
1901 |
3408 |
3, 1415929 |
Так как из полученной нами формулы следует равенство
то при большом числе бросаний n приближенно
где m - число происшедших при этом пересечений.
Заметим, что в результате Фокса и Лаццарини заслуживают малого доверия. Действительно, в опыте Лаццарини значение получилось с шестью точными знаками после запятой. Изменение числа пересечений ( числа m ) на единицу меняет по меньшей мере четвертый десятичный знак, если n меньше 5000. В самом деле ( ).
4) Учитель.В XX веке интерес к геометрической вероятности не ослабел, а вырос, поскольку, помимо чисто математического интереса, они приобрели и серьезное прикладное значение. Схема геометрических вероятностей успешно применяется в астрономии, атомной физике, биологии, кристаллографии.
Современное развитие теории вероятностей характерно всеобщим подъемом интереса к ней и резким расширением круга ее практических применений. За последние десятилетия теория вероятностей превратилась в одну из наиболее быстро развивающихся наук, теснейшим образом связанную с потребностями практики и техники.
5. Итоги урока. Учитель обобщает изученный материал:
Замечание 1. Приведенные определения для вычисления геометрической вероятности в начале урока (формула (5)) являются частными случаями общего определения геометрической вероятности. Если обозначить меру (длину, площадь, объем) области через mes, то вероятность попадания точки, брошенной наудачу (в указанном выше смысле) в область g--часть области G, равна
Р = mesg/mesG.
Замечание 2. В случае классического определения вероятность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно). В случае геометрического определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.
6. Постановка домашнего задания.
Задание. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.
Решение. Площадь кольца (фигуры g) Sg=
Площадь большого круга (фигуры G)
Искомая вероятность Р=
3.5 Основы теории вероятностей. Урок - консультация
На уроках данного типа проводится целенаправленная работа по ликвидации пробелов в знаниях учащихся, концентрируется внимание учащихся на главных и существенных моментах изучаемой темы, вырабатываются умения учиться, обобщается и систематизируется материал. Учитель на таких занятиях анализирует подробно ответы всех учеников, такой анализ повышает интерес школьников к работе, подводит каждого из них к пониманию пробелов или достижений, к необходимости работать над преодолением недостатков. В зависимости от содержания и назначения выделяют тематические и целевые уроки-консультации. Тематические проводятся либо по каждой теме, либо по наиболее значимым, сложным вопросам программного материала. Целевые консультации входят в систему подготовки, подведения итогов самостоятельных и контрольных работ, зачетов, экзаменов. Это могут быть уроки работы над ошибками, уроки анализа какой-то творческой деятельности или подготовки учащихся к семинару. На консультациях сочетаются различные формы работы с учащимися: коллективные, групповые и индивидуальные.
Готовится к урокам-консультациям необходимо как учащимся, так и учителю. Учитель систематизирует затруднения, недочеты, ошибки в устных и письменных ответах учеников. Делает логико-дидактический анализ темы, на этой основе уточняет перечень возможных вопросов, которые будут рассмотрены на консультации. Ребята приучаются в свою очередь готовиться к консультациям - сроки, вопросы и задания которых заранее объявляются.
На первых уроках-консультациях учащиеся затрудняются задавать вопросы, поэтому их нужно заранее приучать к этому. Можно накануне дать задание каждому составить карточки неясных вопросов, поработать с учебником, заново прочитать текст и записать непонятное. Самому же учителю к первым урокам-консультациям необходимо готовить вопросы, прогнозируя на них затруднение у учащихся, ошибки в ответах. Учителю необходимо уточнить перечень возможных вопросов, которые будут рассмотрены на уроке, обобщить в единые блоки по сходственным идеям, отобрать наиболее значимые и существенные, перенеся остальные на другие формы дополнительных занятий с учащимися. Хорошо когда вместо предложенных заданий учитель решает более общую задачу, когда идет поиск ответа на поставленный вопрос и он становится общим делом в деятельности учителя и учеников.
В ходе урока-консультации учитель получает возможность узнать учеников с лучшей стороны, пополнить сведения о желании их продвижения, выявить наиболее любознательных и пассивных, поддержать и помочь тем, кто испытывает затруднения.
Урок-консультация
Тема урока: Основы теории вероятностей.
Цель урока:
1) способствовать устранению пробелов в знаниях учащихся;
2) обобщить и систематизировать изученный материал;
3) способствовать развитию творческой активности, мышления, памяти.
Оборудование: доска, мел, набор задач.
Структура урока.
1. Организационный момент.
2. Сообщение темы и цели занятия.
3. Актуализация базовых знаний. Фронтальный опрос.
1. Вся совокупность событий условно может быть разделена на 3 вида (группы) - какие?
а) случайные, которые могут произойти либо не произойти;
б) невозможные, которые заведомо не могут произойти;
в) достоверные, которые заведомо произойдут при выполнении определенного комплекса условий.
2. Что такое вероятность, частота события?
Теоретически ожидаемое постоянное число, около которого группируется (за редким исключением) частоты при массовых испытаниях, называют вероятностью соответствующего исхода (результат наблюдения). Частота - есть эмпирический прообраз вероятности.
3. Сколько подходов (один или несколько) существует для определения вероятности события?
Классический, статистический и геометрический.
4. Дайте классическое определение вероятности?
Вероятность события A определяется формулой P(A)=
где m -- число элементарных исходов, благоприятствующих А;
n -- число всех возможных элементарных исходов испытания.
4. Решение задач.
Задание 1. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскивают наугад n шаров. Рассмотрим событие С: среди n вынутых шаров окажутся шары ровно m цветов.
Для каждого n от 1 до 9 и каждого m от 1 до 4 определите, какое это событие - невозможное, случайное или достоверное, и заполните таблицу.
Характеристика события С в зависимости от n и m |
|||||
Число расцветок (m) Число шаров (n) |
1 |
2 |
3 |
4 |
|
1 |
Д |
Н |
Н |
Н |
|
2 |
С |
С |
Н |
Н |
|
3 |
С |
С |
С |
Н |
|
4 |
Н |
С |
С |
Н |
|
5 |
Н |
С |
С |
Н |
|
6 |
Н |
С |
С |
Н |
|
7 |
Н |
Н |
Д |
Н |
|
8 |
Н |
Н |
Д |
Н |
|
9 |
Н |
Н |
Д |
Н |
Задание 2. Набирая номер телефона, абонент забыл одну цифру и набрал се наудачу. Найти вероятность того, что набрана нужная цифра.
Решение. Обозначим через А событие--набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
Р (A) ==1/10.
Задание 3. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.
Решение. Обозначим через В событие--набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т. е. . Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
Р(B)=1/90.
Задание 4. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка B (х). Найти вероятность того, что меньший из отрезков ОB и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В (х) попадет на отрезок CD длины L/3. Искомая вероятность
P==(L/3)/L=1/3.
Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошенная точка , может оказаться в любой точке фигуры G, вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством
Р = Площадь g/ Площадь G.
5. Итоги урока. Вопросы для повторения:
1) На какие 3 группы может быть условно разделена вся совокупность событий?
2) Сколько и какие подходы существует для определения вероятности события?
3) Сформулируйте классическое и геометрическое определения вероятности?
6. Постановка домашнего задания: подготовится к уроку-игре»Восхождение на пик знаний» ( повторить теоретический материал и решение задач по изученной теме).
3.6 Урок - игра «Восхождение на пик знаний»
Игра «Восхождение на пик знаний» является многоцелевой, поскольку позволяет решить комплекс дидактических задач. Устные упражнения дают возможность повторить основные понятия, факты, законы, развивают логическое мышление, речь учащихся. Письменные задания представлены на карточках и каждый ученик может выбрать оптимальный путь решения, продемонстрировав умение точно излагать математическую мысль и показать владение материалом.
В конце игры учитель подводит итоги, выставляя оценки отдельным учащимся, награждает призами выигрышную команду.
Урок - игра
Тема урока: Основы теории вероятностей.
Цель урока:
1) повторить изученный материал;
2) расширить кругозор учащихся.
Цель игры:
1) повысить интерес к математике;
2) способствовать развитию внимания, взаимопомощи, чувства товарищества
Оборудование: плакат с указанными маршрутами, набор карточек.
Структура урока.
1.Сообщение темы и цели занятия.
2. Организация учащихся на проведения игры.
Учитель сообщает правила игры: игровое поле представляет собой рисунок с горным пейзажем и 2 маршрутами восхождения, на которых отмечены привалы, пронумерованные от 1 до 3. Перед началом игры формируется 2 команды, выбираются капитаны. Команды находятся на исходных позициях -«базах». В начале игры капитаны команд получают карточки с устными логическими упражнениями, которые решаются коллективно. Выполнив первое задание команда может начать двигаться по маршруту, выбрав себе номер маршрута.
Письменные задания выполняются у доски. Правильное решение задачи у доски одним из членов команды дает возможность продвинутся к «пику знаний». В противном случае она должна оставаться на привале, пока не придут «спасатели» (члены другой команды).
В случае, если команда быстро и успешно продвигается по маршруту от привала к привалу, то учитель может объявить «спуск снежной лавины», предложив команде коллективно решить еще одну задачу.
Выигрывает команда, которая правильно выполнит все задания и достигнет «пика знаний».
3. Организация учащихся на выполнение работы.
Учитель помогает сформировать команды, раздает карточки с заданиями и следит за ходом игры.
Устные логические упражнения
Задание 1 команде. На тетрадный лист бумаги в линейку бросают иглу (расстояние между линейками 1 см). При какой длине иглы событие А: игла пересекла 5 линий
Будет: а) невозможным; б) случайным; в) достоверным?
Ответ. а) меньше 4см;
б) больше 4 см;
в) ни при какой.
Задание 2 команде. Из дома до школы ученик идет пешком от 10 до 15 минут, а едет на троллейбусе - от 2 до 3 минут. При каких интервалах движения троллейбусов событие
А: по пути в школу ученик обгонит хотя бы один троллейбус
Будет: а) невозможным; б) случайным; в) достоверным?
Ответ. а) ни при какой;
б) больше 7 минут;
в) меньше 7 минут.
Задачи для решения на привалах
Привал 1
Задание 1 команде. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскивают наугад n шаров. Рассмотрим событие А: среди вынутых шаров окажутся шары ровно трех цветов. Для каждого n от 1 до 5 определите, какое это событие - невозможное, случайное или достоверное, и заполните таблицу.
Решение.
Число вынутых шаров (n) |
1 |
2 |
3 |
4 |
5 |
|
Характеристика События А |
Н |
Н |
С |
С |
С |
Задание 2 команде. В коробке снова 3 красных, 3 желтых, 3 зеленых шара. Вытаскивают наугад 4 шара. Рассмотрим событие В: среди вынутых шаров окажутся шары ровно m расцветок. Для каждого m от 1 до 4 определите, какое это событие - невозможное, случайное или достоверное, и заполните таблицу.
Решение.
Число расцветок (m) |
1 |
2 |
3 |
4 |
|
Характеристика события В |
Н |
С |
С |
С |
Привал 2
Задание 1 команде. При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей утеряна одна деталь, причем неизвестно какая. Наудачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна стандартная деталь.
Решение.
Извлеченная стандартная деталь, очевидно, не могла быть утеряна; могла быть потеряна любая из остальных 30 деталей (21+10-1=30), причем среди них было 20 стандартных (21-1=20). Вероятность того, что была потеряна стандартная деталь,
P=
Задание 2 команде. При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей утеряна одна деталь, причем неизвестно какая. Наудачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна нестандартная деталь.
Решение.
Среди 30 деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что потеряна нестандартная деталь,
P=
Привал 3
Задание 1 команде. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг квадрата. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга.
Решение.
Введем обозначения: R- радиус круга, а - сторона вписанного квадрата, А - попадание точки в квадрат, S - площадь круга, S1 - площадь вписанного квадрата. Как известно площадь круга S=R2. Сторона вписанного квадрата через радиус описанной окружности выражается формулой , поэтому площадь квадрата S1=2R2. Полагая в формуле Sg=S1, SG=S, находим искомую вероятность
Задание 2 команде. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг правильный треугольник. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга.
Решение.
Введем обозначения: R- радиус круга, а - сторона вписанного равностороннего треугольника, А - попадание точки в треугольник, S - площадь круга, S1 - площадь вписанного равностороннего треугольника. Как известно площадь круга S=R2. Сторона вписанного равностороннего треугольника через радиус описанной окружности выражается формулой , поэтому площадь треугольника S1=. Полагая в формуле Sg=S1, SG=S, находим искомую вероятность
4. Итоги урока:
1) объявляется команда победителей;
2) вручаются похвальных грамоты наиболее активным участникам игры;
3) коллективно разбираются нерешенные задачи или предлагаются другие способы решения задач.
Заключение
В процессе выполнения выпускной квалификационной работы было проведено исследование по совершенствованию методически преподавания школьной стохастики. Исходя из психолого-педагогических и методических особенностей разработан и апробирован факультативный курс «Элементы теории вероятностей» для 10-11 классов общеобразовательной школы, рассчитанный на 6 уроков.
Экспериментальное преподавание проводилось в школе № 43 ст. НоводеревянковскойКаневского района среди учащихся 10 классов, посещавших факультативный курс. Достаточно высокий уровень усвоения знаний учащихся позволяет судить об эффективности факультативных занятий при обучении теории вероятностей в старших классах общеобразовательной школы.
Таким образом в результате выполнения выпускной квалификационной работы поставленная цель достигнута, задачи выполнены.
Перспектива дальнейшего применения материала выпускной квалификационной работы состоит в том, что она может быть использована в качестве дополнительного пособия при ознакомлении с методикой преподавания основ теорией вероятностей в средней школе как студентами и преподавателями вузов, так и учителями общеобразовательных школ при обучении теории вероятностей.
Так как ведущее место среди факторов, определяющих продуктивность дидактического процесса, занимают мотивация учения и интерес к учебному труду, то использование материала приложений (исторической справки, внеклассного мероприятия «По страницам истории») при введении основ теории вероятностей в изучение, поможет учителю не только побудить интерес к теории вероятностей, но и раскроет непосредственную близость теории вероятностей с жизнью, с практикой и другими науками.
Список литературы
1. Абрамова Г.С. Возрастная психология. - М.: Академия, 1999.-235с.
2. Аверьянов Д.И., Алтынов П.И., Баврин И.И. Математика: Большой справочник для школьников и поступающих в вузы. - М.: Дрофа, 1998.-864с.: ил.
3. Антипов И.Н., Виленкин Н.Я., Иващев-Мусатов О.С. Избранные вопросы математики: Факультативный курс 9 класс. - М.: Просвещение,1979.-191с.: ил.
4. Афанасьев В.В. Теория вероятностей в примерах и задачах. - Ярославль: ЯГПУ, 1994.-127с.
5. Баврин И. И., Фрибус Е.А. Старинные задачи. - М.: Просвещение, 1994.
6. Бунимович Е.А., Булычев В.А. Вероятность и статистика для школьников. - М.: Дрофа,2001.-204с.
7. Бунимович Е.А. Вероятностно-статистическая линия в базовом школьном курсе математики.- //Математика в школе.-2002.- № 4.-с.52 -58.
8. Буренок И.И., Туйбаева Л.И., Цедринский А.Д. Психолого-педагогические и методические аспекты урока математики. - Славянск - на - Кубани, 2000.- 72с.
9. Бычкова Л.О., Селютин В.Д. Об изучении вероятностей и статистики в школе. - //Математика в школе. -1991.-№6.-с. 9-12.
10. Гнеденко Б.В. Курс теории вероятностей. - М.: Наука, 1965.-453с.: ил.
11. Гнеденко Б.В. Статистическое мышление и школьное математическое образование. - //Математика в школе.- 1999.-№ 6.-с.2 - 6.
12. Гмурман В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2000.-479с.: ил.
13. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М.: Высшая школа, 2001.-400с.: ил.
14. Министерство образования РФ. Программы для общеобразовательных школ, гимназий, лицеев:Математика 5-11 классов. - М.: Дрофа, 2002.
15. Мотикас В.С. Школьнику о теории вероятностей: Учебное пособие по факультативному курсу для учащихся 8-10 класса. - М.: Просвещение, 1976.-104с.
16. Подласый И.П. Педагогика: Книга 1. - М.: Владос, 2000.-576с.
17. Подласый И.П. Педагогика: Книга 2. - М.: Владос, 2000.-256с.
18. Рослова Л.О. О новых книгах издательства «Дрофа». - //Математика.-1999.- № 21.- с. 38-40.
19. Соловейчик И.Л. Я иду на урок математики: 6 класс. - М.: Первое сентября, 2001.-320с.: ил.
20. Степашев В.Д. Активизация внеурочной работы по математике в средней школе. - М.: Просвещение, 1991.-97с.
21. Столяренко Л.Д. Основы психологии. - Ростов-на-Дону: Феникс, 1999.-672с.
22. Тарасов Л.В. Мир, построенный на вероятности: книга для учащихся. - М.: Просвещение, 1984.-153с.
23. Токмазов Г.В. Укрупнение дидактических единиц в задачах по теории вероятностей. - //Математика в школе.-1999.- № 4.- с.81 - 84.
24. Федосеев В.Н. Элементы теории вероятностей для VII - VIII классов средней школы. - //Математика в школе. -2002.- № 4.-с.58 - 64.
25. Федосеев В.Н. Элементы теории вероятностей для IX классов средней школы. - //Математика в школе.-2002.- № 5.- с.34 - 40.
Приложение 1
Внеклассное мероприятие по математике для старших классов на тему: «По страницам истории»
Тема: По страницам истории.
Девизы урока:
О, сколько нам открытий чудных…
Пушкин А.С.
Три пути ведут к знанию:
Путь размышления - самый благородный,
Путь подражания - самый легкий
И путь опыта - это путь самый горький…
Конфуций
Цель урока:
1) Развить творческую активность;
2) показать нестандартные способы решения задач по теории вероятностей;
3) побудить интерес к теории вероятностей, математике.
Учитель объявляет тему урока, зачитывает девизы, подчеркнув лаконичность, целенаправленность, точность народной мудрости и соответствие выбранных изречений задачам урока.
Обращает внимание учеников на то, что математика много дает для умственного развития человека - заставляет думать, соображать, искать простые и красивые решения, помогает развивать логическое мышление, умение правильно и последовательно рассуждать, тренирует память, внимание, формирует многие учебные навыки и умения, закаляет характер. Учитель знакомит учащихся со старинными задачами науки о случайном - показывает связь прошлого с современностью.
Учитель: Еще в глубокой древности появились различные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы (то есть бросание костей из конечностей животных) и игральные кости (кубики с нанесенными на гранях точками). В настоящее время игральные кости иногда изготовляют в виде додекаэдров и икосаэдров. В одной из азартных (слово «азартный» происходит от арабского «азарт» - трудный, то есть редко выпадающие комбинации костей) игр бросали одновременно четыре астрагала и фиксировался результат.
Худший бросок, при котором выпадает более одной единицы, назывался «собакой». Лучшим броском считался бросок «Венера», когда на четырех астрагалах выпадали различные грани. Позднее азартные игры распространились в Средневековой Европе.
В частности, в XIV веке появились игральные карты. В XVII веке азартные игры способствовали зарождению и становлению комбинаторики и науки о случайном (теории вероятностей). Ученые XV-XVII веков много внимания уделяли решению задач о дележе ставки, об игре в кости, лотереях и т. п.
Задачи о дележе ставки.
До середины XVII не было правильных задач о справедливом разделении ставки. В 1654 году между французским математиком Блезом Паскалем и Пьером Ферма возникла переписка по поводу ряда задач. Из переписки Паскаля и Ферма сохранилось лишь 3 письма Паскаля и 4 письма Ферма.
Эти письма впервые были опубликованы в Тулузе. В этой переписки оба ученых, хотя и несколько разными путями, приходят к верному решению, деля ставку пропорционально вероятности выиграть всю ставку, если игра будет продолжена.
Совпадение результатов великих ученых при решении задач о дележе ставки послужило для Паскаля поводом шутливо заметить в первом письме к Ферма от 29 июля 1654 года: «Как я вижу, истина одна:и Тулузе, и в Париже ». Ферма со своей стороны нашел решение и для более сложного случая, когда игра происходит между произвольным числом игроков.
Задачи Блеза Паскаля. Как разделить ставку при игре трех выигрышных партий, если один игрок выиграл две партии, а другой - одну и каждым вложено в игру по 32 пистоля ?
Решение.
Свое решение задачи Паскаль наиболее полно изложил в письме к Ферма от 29 июля 1654 года: « Вот примерно, что я делаю для определения стоимости каждой партии, когда два игрока играют, например, на три партии и каждым вложено в игру по 32 пистоля.
Предположим, что один выиграл две партии, а другой - одну. Они играют еще одну партию, если ее выигрывает первый, то он получает всю сумму в 64 пистоля…; если же эту партию выигрывает второй, то каждый игрок будет иметь две выигранные партии, и, следовательно, если они намерены произвести раздел, каждый должен получить обратно свой вклад в 32 пистоля.
Примите же во внимание, монсеньер, что если первый выиграет, то ему причитается 64; если он проиграет, то ему причитается 32. Если же игроки не намерены рисковать… и хотят произвести раздел, то первый должен сказать : «Я имею 32 пистоля верных, ибо в случае проигрыша я их также получил бы, но остальные 32 пистоля могут быть получены либо мной, либо Вами. Случайности равны. Разделим же эти 32 пистоля пополам, и дайте мне , кроме того, бесспорную сумму в 32 пистоля». Как видно из рассуждений Паскаля, первый игрок должен получить 48 пистолей, а второй - 16».
Как разделить ставку при игре трех выигрышных партий, если один игрок выиграл две партии, а другой - ни одной и каждым вложено в игру по 32 пистоля ?
Решение.
Ответы, предложенные паскалем, таковы: первый игрок должен получить 56 пистолей, а второй - 8. рассуждения при решении подобны тем, которые были проведены при решении предыдущей задачи: если бы первый игрок выиграл еще одну партию, то ему причиталось бы 64 пистоля, если бы проиграл - 48 пистоля, а остаток 16 делится поровну.
Как разделить ставку при игре трех выигрышных партий, если первый игрок выиграл одну партию, а второй- ни одной и каждым вложено в игру по 32 пистоля ?
Решение.
Пусть игроки сыграют еще одну партию. Если ее выиграет первый, то он будет иметь , как и в предыдущем случае, 56 пистолей. Если он ее проиграет, то у обоих окажется по одной выигрышной партии и первому следует получить 32 пистоля. Первый игрок может сказать: «Если вы не хотите играть эту партию, дайте мне мой бесспорный выигрыш в 32 пистоля, а остаток от 56 пистоля разделим поровну…то есть возьмем каждый по 12 пистолей, что с 32 пистолей составит 44 пистоля». Значит, первый игрок должен получить 44 пистоля, а второй - 20 пистолей.
Для случая, когда первый игрок выиграл одну партию, а второй - ни одной, Паскаль приводит формулу W=A+A*(1*3*5*...*(2n-1))/(2*4*6*...2n), где А - ставка каждого игрока, а W - ожидание выигрыша первого игрока.
Как видно, во всех случаях Паскаль делит ставку пропорционально вероятности выигрыша при продолжении игры. Оригинальный метод Паскаля трудно применить к более сложным случаям.
Задачи Пьеро Ферма. Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В - трех. Как справедливо разделить ставку, если игра прервана?
Решение. Письмо Ферма , в котором он излагает свой метод решения, не сохранилось, но его можно восстановить из ответного письма Паскаля от 24 августа 1654 года. Рассуждение Ферма сводится к следующему. Игра может быть продолжена максимум еще 4 партии. Для перебора всех возможных случаев Ферма составляет таблицу, где выигрыши партий игроками А и В обозначены соответственно буквами а и в. Из 16 возможных исходов первые 11 благоприятны для выигрыша игроком А всей встречи, а остальные 5 исходов благоприятны для игрока В. следовательно, 11/16 ставки должен получить игрок А, а игрок В - 5/16. Как видно, Ферма предлагает разделить ставку пропорционально вероятностям выигрыша всей встречи.
Паскаль решает эту задачу на основе изучения свойств арифметического треугольника, приведенного в его «Трактате об арифметическом треугольнике», опубликованном посмертно в Париже в 1665 году. Он складывает количество партий, недостающих игрокам А (2) и В (3) берет ту строку треугольника (рис. 1), в котором количество членов равно найденной сумме, то есть пятую.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Рис. 1.
Тогда доля игрока А будет равна сумме членов найденной строки, начиная от единицы, причем количество слагаемых равно числу партий, недостающих игроку В (3), а доля игрока В равна такой же сумме, но с количеством слагаемых, равном числу партий, недостающих игроку А (2). Выписываем строку, в котором находятся пять чисел. Это будет 1, 4, 6, 4, 1. следовательно, ставку нужно разделить в отношении 11:5. при таком решении ставка делится пропорционально вероятностям выиграть всю ставку для игроков А и В.
То есть, правило Паскаля состоит в следующем : пусть игроку А до выигрыша всей игры не хватает m партий , а игроку В - n партий, тогда ставка должна делиться между игроками в отношении .
Пусть до выигрыша всей встречи игроку А недостает одного очка, а двум другим (В и С) недостает по два очка. Как справедливо разделить ставки?
Решение. Перебор всех возможных случаев можно представить таблицей.
При рассмотрении такой таблицы Паскаль допустил неточность в рассуждениях, считая, что из 27 возможных исходов бесспорно благоприятствуют игроку А лишь 13, а исходы пятого, одиннадцатого, девятнадцатого столбцов благоприятствуют сразу и игроку А и игроку В (аналогичные исходы девятого, пятнадцатого, двадцать четвертого столбцов благоприятствуют игроку А и игроку С). Поэтому доли игроков в этих случаях следует брать с половинным весом. В результате Паскаль ошибочно предлагал делить ставку в отношении 16: вместо 17:5:5.
Подобные документы
Общее представление о теории вероятностей. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы). Анализ эксперимента. Констатирующий, методический, контрольный эксперимент.
дипломная работа [107,0 K], добавлен 19.04.2002Об актуальности, основных проблемах и резервах введения курса теории вероятностей в школьный курс математики. Методика изложения теории вероятностей в школе. Знакомство школьников с миром вероятностей. Методические элементы введения комбинаторики.
дипломная работа [353,1 K], добавлен 11.01.2011Процесс подготовки учителя к обучению школьников элементам теории вероятностей. Изучение характеристик случайных величин. Методика работы при использовании элементов теории вероятностей на уроках математики. Основные понятия о факультативном курсе.
курсовая работа [118,3 K], добавлен 26.01.2011Профильная школа и модернизация образования. Значение элективных курсов в современной школе, их отличие от факультативов. Методика преподавания теории вероятностей и математической статистики для спортсменов, разработка элективного курса по данной теме.
дипломная работа [277,1 K], добавлен 24.06.2009Аспекты обучения основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы. Структура и содержание курса «Основы комбинаторики, теории вероятностей и математической статистики» в профилях различных направлений.
дипломная работа [362,8 K], добавлен 28.05.2008Развитие комбинаторики и теории вероятностей. Основные комбинаторные понятия. Методика работы над заданиями с элементами теории вероятностей в начальной школе. Разработка внеклассного мероприятия "Решение задач комбинаторного и стохастического характера".
курсовая работа [273,0 K], добавлен 20.01.2013О подготовке учителей к обучению школьников стохастике. выводы содержательно-методического характера по реализации стохастической линии в основной школе. Методика изучения стохастики в основной школе.
дипломная работа [152,4 K], добавлен 08.08.2007Роль и основные функции задач в обучении математике. Основные понятия теории графов. Роль факультативных занятий как формы обучения математике. Методика проведения занятий по решению задач на факультативных занятиях по теме "Элементы теории графов".
курсовая работа [752,1 K], добавлен 08.06.2014Принципы и этапы разработки заданий по статистике и теории вероятностей, их содержание и методика разрешения. Расчет основных статистических характеристик: среднее арифметическое, медиана, мода. Формирование и порядок решения комбинаторных задач.
презентация [155,3 K], добавлен 09.12.2014Изучение основных принципов факультативного обучения. Анализ современных методов и средств проведения факультативных занятий. Организация факультативных занятий в школе. Обоснование целесообразности реализации факультативных курсов по английскому языку.
курсовая работа [50,7 K], добавлен 13.10.2014