Использование информационных технологий в обучении информационному моделированию учащихся старших классов в рамках элективного курса информатики

Теоретические основы и анализ понятий информационного математического моделирования. Информационные технологии в обучении. Анализ подходов к обучению информационному моделированию в школьном курсе информатики. Элективные курсы в профильном обучении.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 31.03.2011
Размер файла 439,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Дипломная работа

По теме: Использование информационных технологий в обучении информационному моделированию учащихся старших классов в рамках элективного курса информатики.

Содержание

информатика математическое моделирование

Введение

Глава 1. Теоретические основы информационного математического моделирования

§ 1.1 Анализ понятий, связанных с математическим моделированием

§ 1.2 Информационное математическое моделирование: понятие,

цели и этапы

§ 1.3 Различные классификации математических моделей

Глава 2. Методические аспекты обучения информационному моделированию учащихся старших классов в рамках элективного курса информатики

§ 2.1 Психолого-педагогическая характеристика учащихся старших классов

§ 2.2 Информационные технологии в обучении

§ 2.3 Анализ подходов к обучению информационному моделированию в школьном курсе информатики

§ 2.4 Формы и методы обучения информационному моделированию

§ 2.5 Элективные курсы в профильном обучении

Глава 3. Разработка элективного курса "Компьютерное математическое моделирование"

§ 3.1 Содержание и педагогические задачи обучения элективному курсу «Компьютерное математическое моделирование»

Введение

В настоящее время главное направление модернизации Российского образования обеспечить его новое качество. Это можно сделать, в том числе и совершенствуя методическую систему обучения включением актуального содержания и использованием современных средств обучения.

Человечество в своей деятельности постоянно создает и использует модели окружающего мира. Наглядные модели часто используются в процессе обучения. Применение компьютера в качестве нового динамичного, развивающего средства обучения -- главная отличительная особенность компьютерного моделирования.

Курс "Основы информатики и вычислительной техники", введенный в отечественной школе в 1985 г., занял достойное место в системе общего образования (отметим, что его первоначальное название все чаще трансформируется в просто "Информатика", которое ниже и используется). Курс трижды изменял свое название и сейчас это «Информатика и ИКТ». В качестве одной из целей курса выступает формирование информационной культуры учащихся.

Анализу общеобразовательного значения информатики, отбору учебного материала для этой дисциплины посвящены исследования А.П.Ершова, В.Г.Житомирского, А.Г.Гейна, В.А.Каймила, А.А.Кузнецова, М.П.Лапчика, А.Г.Кушниренко, В.М.Монахова, С.А.Бешенкова, И.В.Роберт, И.Г.Семакина и др. Психолого-педагогическое обоснование использования компьютеров в учебном процессе проведено в работах Н.В.Апатовой, П.Я.Гальперина, Б.С.Гершунского, В.В.Давыдова, Е.И.Машбица, Н.Ф.Талызиной, Д.Ш.Матроса, И.В.Роберт, С.Г. Григорьева и др.

Поскольку ядро информатики образуется тремя взаимодополняемыми и относительно самостоятельными частями (по терминологии А.А.Дородницына): hardware (техническими средствами), software (программным обеспечением) и brainware (интеллектуальным обеспечением), - то курс информатики основной школы сочетает в себе введение в фундаментальные основы науки "Информатика" и ее пользовательскую компоненту. Для многих учащихся курс информатики на этом к заканчивается, но для значительной части средних школ (в частности, для всех специализированных по физико-математическому и естественнонаучному профилю), актуализируется вопрос о профильно-ориентированном продолжении подготовки по информатике и примыкающим к ней областям, требующим более специальных знаний. Такие направления уже складываются: программирование, вычислительная математика, информационное моделирование, компьютерная графика, компьютерные телекоммуникации, информационные системы и др.

Роль и место информационных систем, в понимании их как автоматизированных систем работы с информацией, в современном информационном обществе неуклонно возрастают. Методология и технологии их создания начинают играть роль, близкую к общенаучным подходам в познании и преобразовании окружающего мира. Это обусловливает необходимость формирования более полного представления о них не только средствами школьного курса информатики, но и при изучении других предметов, а также во внеклассной работе.

Вместе с тем, в силу сложности и объемности информационных систем, учащиеся не могут самостоятельно создавать их. Однако им вполне по силам создание моделей таких систем. При этом деятельность по созданию моделей информационных систем не только углубляет представление о них, но и способствует развитию интеллектуальных умений в области моделирования, позволяет развивать творческие способности учащихся.

Создание информационных систем, как и их моделирование, неизбежно сопровождается процессом их проектирования. Таким образом, моделирование информационных систем естественным путем связывается с использованием метода проектов в обучении.

Среди профильно-ориентированных курсов, продолжающих базовый курс информатики в старших классах полной средней школы, достойное место может занять курс "Компьютерное математическое моделирование" (КММ). Такой курс отличается значительной широтой, максимальным использованием межпредметных связей информатики, с одной стороны, и математики, физики, биологии, экономики и других наук, с другой стороны, причем связи эти базируются на хорошо апробированной методологии математического моделирования, которая делает предмет целостным. Метод математического моделирования является с давних времен одним из фундаментальных методов познания, а появление и развитие ИТ дало новый толчок его совершенствованию. Чтобы получить полноценное научное мировоззрение, развить свои творческие способности, учащиеся должны овладеть основами компьютерного математического моделирования, уметь применять полученные знания в учебной и профессиональной деятельности.

Таким образом, актуальность исследования очевидна.

Основной целью исследования является разработка и теоретическое обоснование содержания и методики обучения информатике в старших классах средней школы в условиях профильной дифференциации на примере курса "Компьютерное математическое моделирование".

Объектом исследования является процесс обучения информатике в старших классах средней школы в условиях введения профильного обучения.

Предмет исследования составляют принципы, содержание, организационные формы и методы профильного обучения информатике на примере элективного курса "Компьютерное математическое моделирование", основанного на изучении моделей из различных областей науки.

Рабочая гипотеза исследования заключается в том, что профильный курс "Компьютерное математическое моделирование" в старших классах средней школы выступает в качестве средства

*повышения интереса учащихся к математическим и естественнонаучным знаниям;

*усиления систематической подготовки учащихся по информатике и информационным технологиям;

профессиональной ориентации учащихся.

Поставленная цель работы и выдвинутая нами гипотеза потребовали решения следующих конкретных задач:

анализ понятий, связанных с компьютерным математическим моделированием;

анализ структуры образовательной области "Информатика", выявление места курса "Компьютерное математическое моделирование" в этой образовательной области, выделение структурных элементов, которые составили бы разрабатываемый элективный курс;

рассмотреть понятие и виды моделей в информатике;

выделение основных знаний и умений, которыми должны овладеть учащиеся после изучения этого курса;

рассмотреть особенности использования компьютерного моделирования при обучении учащихся решению планиметрических задач;

разработка методики обучения проведению исследования объектов (процессов) с построением математической модели и дальнейшим компьютерным экспериментом;

разработка учебно-методических материалов в помощь учителю.

Для решения сформулированных задач применялись такие методы исследования:

а) изучение и анализ философской, педагогической, дидактической, психологической, методической и специальной литературы по теме исследования;

б) анализ проектов образовательных стандартов, программ, учебных пособий и методической литературы по основам информатики и вычислительной техники и математике, смежным школьным предметам;

в) наблюдение за ходом учебного процесса, деятельностью учащихся, анкетирование, тестирование;

г) анализ преподавания основ информатики в школе;

д) педагогический эксперимент.

Теоретическое значение - данная работа вносит вклад в разработку теоретических и практических аспектов изучения использования информационных технологий в обучении информационному моделированию учащихся старших классов в рамках элективного курса информатики.

Практическая ценность состоит в том, что конкретный теоретический и практический материал может быть использован для лекций по методике преподавания информатики, математики и др. дисциплинам для учащихся старших классов.

Структура дипломной работы.

Дипломная работа состоит из введения, трех глав, заключения и списка литературы. Во введении обоснована актуальность проблемы исследования, сформулированы цель, объект, предмет, и задачи исследования. В первой главе рассматриваются теоретические основы информационного математического моделирования, во второй - методические аспекты обучения информационному моделированию учащихся старших классов в рамках элективного курса информатики, в третьей - дана разработка элективного курса «Компьютерное математическое моделирование». В заключении даны выводы и обобщения по теме. Список литературы состоит из 27 наименований.

Глава 1. Теоретические основы информационного математического моделирования

§ 1.1 Анализ понятий, связанных с математическим моделированием

Б.В.Бирюков, Ю.А. Гастеев отмечают, что моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выявлении или в воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ [2].

Возможности моделирования, то есть перенос результатов, полученных в ходе построения и исследования модели, на оригинал основаны на том, что модель в определенном смысле отображает (воспроизводит, моделирует, описывает, имитирует) некоторые интересующие исследователя черты объекта. Моделирование как форма отражения действительности широко распространено, и достаточно полная классификация возможных видов моделирования крайне затруднительна, хотя бы в силу многозначности понятия «модель», широко используемого не только в науке и технике, но и в искусстве, и в повседневной жизни.

Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Однако методология моделирования долгое время развивалась отдельными науками независимо друг от друга. Отсутствовала единая системa понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется различных сферах человеческой деятельности и имеет множество смысловых значений. В этом разделе мы будем рассматривать только такие модели, которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно, формализация - это замена реального объекта или процесса его формальным описанием.

Основное требование, предъявляемое к моделям - это их адекватность реальным процессам или объектам, которые замещает модель.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность. Многовековой опыт развития науки доказал на практике плодотворность такого подхода. Более конкретно, необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует слишком много времени и средств.

В моделировании есть два различных подхода. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Например, это игрушечный кораблик, домик из кубиков, деревянная модель самолета в натуральную величину, используемая в авиа конструировании и др. Модели такого рода называют натурными.

Модель может, однако, отображать реальность более абстрактно - словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.п. Будем называть такие модели абстрактными.

Классификация абстрактных моделей:

Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются милицейский протокол, правила дорожного движения).

Математические модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), использующих те или иные математические методы. Например, математическая модель звезды будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в
недрах звезды. Другой математической моделью являются, например, математические соотношения, позволяющие рассчитывать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия.

3. Информационные модели - класс знаковых моделей, описывающих информационные процессы (получение, передачу, обработку хранение и использование информации) в системах самой разнообразной природы. Примерами таких моделей могут служить OSI - семиуровневая модель взаимодействия открытых систем в компьютерных сетях или машина Тьюринга - универсальная алгоритмическая модель.

Подчеркнем, что граница между вербальными, математическими и информационными моделями может быть проведена весьма условно. Так, информационные модели иногда считают подклассом математических моделей. Однако, в рамках информатики как самостоятельной пауки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным. Информатика имеет самое непосредственное отношение и к математическим моделям, поскольку они являются основой применения компьютера при решении задач различной природы: математическая модель исследуемого процесса или явления на определенной стадии исследования преобразуется в компьютерную (вычислительную) модель, которая затем превращается в алгоритм и компьютерную программу,

Отметим, что существуют и иные подходы к классификации абстрактных моделей: общепринятая точка зрения здесь еще не установилась.

В прикладных науках различают следующие виды абстрактных моделей:

1. чисто аналитические математические модели, не использующие компьютерных средств;

2. информационные модели, имеющие приложения в информационных системах:

3. вербальные языковые модели;

4. компьютерные модели, которые могут использоваться для:

численного математического моделирования;

визуализации явлений и процессов (как для аналитических, так и для численных моделей);

* специализированных прикладных технологий, использующих компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками и т.п.

Большая часть данного курса связана с прикладными математическими моделями, в реализации которых используются компьютеры. Это вызвано тем, что внутри информатики именно компьютерное математическое и компьютерное информационное моделирование могут рассматриваться как ее составные части.

§ 1.2 Информационное математическое моделирование: понятие, цели и этапы

Начнем с термина «информация».

Во-первых, компьютер информацию в «сыром виде» не обрабатывает, и вообще, такого технического устройства нет.

Во- вторых, об алгоритмах обработки таких вещей можно говорить, лишь в каком-то переносном смысле.

И в-третьих, термин «информация», лишаясь при таком подходе каких-то границ, теряет свою познавательную ценность: его можно безболезненно опускать, он ничего не уточняет. Например, трава - это трава и становится она информационным объектом лишь в модельном построении после представления ее в виде текста.

Мы говорим «информация», когда нет нужды явно указывать на ее источник. Если мы говорим «информационная модель», то предполагаем наличие объекта, отражением которого служит модель, то есть отражение объекта средствами конечного алфавита называется его информационной моделью.

В некотором смысле любую информационную модель можно рассматривать как более или менее детализированное, так или иначе специализированное имя объекта. Однако принято именами называть лишь элементарные конструкции, тогда как более сложные называют информационными моделями.

Таким образом, обозначение, наименование объекта - это элементарная процедура, лежащая в основе информационного моделирования.

Информационное моделирование можно разделить на три типа.

Первый тип называется классификационным. На моделях этого типа, которые могут быть как дискретными, так и непрерывными, основана разработка данных, баз знаний, экспертных схем.

Второй тип называется динамическим, широко используется при компьютерном моделировании.

И, наконец, третий тип информационных моделей - языковой. Эти модели моделируют средства моделирования и являются по существу метамоделями [19].

Рассмотрим термин «компьютерная модель». В настоящее время под компьютерной моделью чаще всего понимают:

условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т. д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило случайных, факторов. Такие модели мы будем далее называть имитационными моделями.

Остановимся на информационных моделях, отражающих процессы возникновения, передачи, преобразования и использования информации в системах различной природы. Начнем с определения простейших понятий информационного моделирования.

Экземпляром будем называть представление предмета реального мира с помощью некоторого набора его характеристик, существенных для решения данной информационной задачи (служащей контекстом построения информационной модели). Множество экземпляров, имеющих одни и те же характеристики и подчиняющиеся одним и тем же правилам, называется объектом.

Таким образом, объект есть абстракция предметов реального мира, объединяемых общими характеристиками и поведением.

Информационная модель какой-либо реальной системы состоит из объектов. Каждый объект в модели должен быть обеспечен уникальным и значимым именем (а также идентификатором, служащим ключом для указания этого объекта, связи его с другими объектами модели). Таким образом обозначение, наименование объекта - это элементарная процедура, лежащая в основе информационного моделирования.

Объект представляет собой один типичный (но неопределенный) экземпляр чего-то в реальном мире и является простейшей информационной моделью. Объекты представляют некие “сущности” предметов реального мира, связанные с решаемой задачей.

Большинство объектов, с которыми приходится встречаться, относятся к одной из следующих категорий:

o реальные объекты;

o роли;

o события;

o взаимодействия;

o спецификации.

Реальный объект - это абстракция физически существующих предметов. Например, на автомобильном заводе это кузов автомобиля, двигатель, коробка передач; при перевозке грузов это контейнер, средство перевозки.

Роль - абстракция цели или назначения человека, части оборудования или учреждения (организации). Например, в университете как в учебном заведении это студент, преподаватель, декан; в университете как в учреждении это приемная комиссия, отдел кадров, бухгалтерия, деканат.

Событие - абстракция чего-то случившегося. Например, поступление заявления от абитуриента в приемную комиссию Университета, сдача (или несдача) экзамена.

Взаимодействия - объекты, получаемые из отношений между другими объектами. Например, сделка, контракт (договор) между двумя сторонами, свидетельство об образовании, выдаваемое учебным заведением его выпускнику.

Объекты-спецификации используются для представления правил, стандартов или критериев качества. Например, перечень знаний, умений и навыков выпускника математического факультета, рецепт проявления фотопленки.

Для каждого объекта должно существовать его описание - короткое информационное утверждение, позволяющее установить, является некоторый предмет экземпляром объекта или нет. Например, описание объекта “Абитуриент университета” может быть следующим: человек в возрасте до 35 лет, имеющий среднее образование, подавший в приемную комиссию документы и заявление о приеме.

Предметы реального мира имеют характеристики (такие, например, как имя, название, регистрационный номер, дата изготовления, вес и т.д.). Каждая отдельная характеристика, общая для всех возможных экземпляров объекта, называется атрибутом. Для каждого экземпляра атрибут принимает определенное значение. Так, объект Книга имеет атрибуты Автор, Название, Год издания. Число страниц.

У каждого объекта должен быть идентификатор - множество из одного или более атрибутов, значения которых определяют каждый экземпляр объекта. Для книги атрибуты Автор и Название совместно образуют идентификатор. В тоже время Год издания и Число страниц идентификаторами быть не могут - ни врозь, ни совместно, так как не определяют объект. Объект может иметь и несколько идентификаторов, каждый из которых составлен из одного или нескольких атрибутов. Один из них может быть выбран как привилегированный для соответствующей ситуации.

Объект может быть представлен вместе со своими атрибутами несколькими различными способами. Графически объект может быть изображен в виде рамки, содержащей имя объекта и имена атрибутов. Атрибуты, которые составляют привилегированный идентификатор объекта, могут быть выделены (например, символом * слева от имени атрибута):

В эквивалентном текстовом представлении это может иметь следующий вид:

Книга (Автор. Название. Год издания. Число страниц).

Привилегированный идентификатор подчеркивается.

Еще одним способом представления объекта информационной модели является таблица. В этой интерпретации каждый экземпляр объекта является строкой в таблице, а значения атрибутов, соответствующих каждому экземпляру, - клетками строки, табл. 1.

Таблица 1. Таблица как представление информационной модели

Автор

Книга

Название

Год издания

Число страниц

Грин А.

Стивенсон Р. П.

Скотт В.

Гончаров И. А.

Бегущая по волнам

Остров сокровищ

Ричард Львиное Сердце

Обрыв

1988

1992

1993

1986

279

269

349

598

Можно классифицировать атрибуты по принадлежности к одному из трех различных типов:

* описательные;

* указывающие;

* вспомогательные.

Описательные атрибуты представляют факты, внутренне присущие каждому экземпляру объекта. Если значение описательного атрибута изменится, то это говорит о том, что некоторая характеристика экземпляра изменилась, но сам экземпляр остался прежним.

Указательные атрибуты могут использоваться как идентификаторы (или часть идентификаторов) экземпляра. Если значение указывающих атрибутов изменяется, то это говорит лишь о том, что новое имя дается тому же самому экземпляру.

Вспомогательные атрибуты используются для связи экземпляра одного объекта с экземпляром другого объекта.

Рассмотрим пример:

Автомобиль

гос. номер

марка

цвет

владелец

Атрибут “цвет” является описательным, атрибуты “гос. номер” и “марка” - указательными, атрибут “владелец” - вспомогательным, служащим для связи экземпляра объекта Автомобиль с экземпляром объекта Автолюбитель. Если значение вспомогательного атрибута изменится, это говорит о том, что теперь другие экземпляры объектов связаны между собой.

В реальном мире между предметами существуют различные отношения. Если предметы моделируются как объекты, то отношения, которые систематически возникают между различными видами объектов, отражаются в информационных моделях как связи. Каждая связь задается в модели определенным именем. Связь в графической форме представляется как линия между связанными объектами и обозначается идентификатором связи.

Существует три вида связи: один-к-одному (рис. 3), один-ко-многим (рис. 4) и многие-ко-многим (рис. 5).

Связь один-к-одному существует, когда один экземпляр одного объекта связан с единственным экземпляром другого. Связь один-к-одному обозначается стрелками и.

Связь один-ко-многим существует, когда один экземпляр первого объекта связан с одним (или более) экземпляром второго объекта, но каждый экземпляр второго объекта связан только с одним экземпляром первого. Множественность связи изображается двойной стрелкой.

Связь многие-ко-многим существует, когда один экземпляр первого объекта связан с одним или большим количеством экземпляров второго и каждый экземпляр второго связан с одним или многими экземплярами первого. Этот тип связи изображается двусторонней стрелкой. Помимо множественности, связи могут подразделяться на безусловные и условные. В безусловной связи для участия в ней требуется каждый экземпляр объекта. В условной связи принимают участие не все экземпляры объекта. Связь может быть условной как с одной, так и с обеих сторон.

Все связи в информационной модели требуют описания, которое, как минимум, включает:

* идентификатор связи;

* формулировку сущности связи;

* вид связи (ее множественность и условность);

* способ описания связи с помощью вспомогательных атрибутов объектов.

Дальнейшее развитие представлений информационного моделирования связано с развитием понятия связи, структур, ими образуемых, и задач, которые могут быть решены на этих структурах. Нам уже известна простая последовательная структура экземпляров - очередь. Возможными обобщениями информационных моделей являются циклическая структура, таблица.

Очень важную роль играет древовидная информационная модель, являющаяся одной из самых распространенных типов классификационных структур. Эта модель строится на основе связи, отражающей отношение части к целому: “А есть часть М” или “М управляет А”. Очевидно, древовидная связь является безусловной связью типа один-ко-многим и графически изображена на рис. 6, в. На этом же рисунке для сравнения приведены схемы информационных моделей типа “очередь” (а) и “цикл” (б).

Еще более общей информационной моделью является, так называемая, графовая структура, рис. 7. Графовые структуры являются основой решения огромного количества задач информационного моделирования.

Многие прикладные задачи информационного моделирования были поставлены и изучены достаточно давно, в 50-60-х годах, в связи с активно развивавшимися тогда исследованиями и разработками по научным основам управления в системах различной природы и в связи с попытками смоделировать с помощью компьютеров психическую деятельность человека при решении творческих интеллектуальных задач. Научное знание и модели, которые были получены в ходе решения этих задач, объединены в науке под названием “Кибернетика”, в рамках которой существует раздел “Исследования по искусственному интеллекту”.

Информационная модель типа “граф

Итак, мы выяснили, что второй тип информационного моделирования - динамический, используется при компьютерном моделировании. Исторически случилось так, что первые работы по компьютерному моделированию, или, как говорили раньше, моделированию на ЭВМ, были связаны с физикой, где с помощью моделирования решался целый ряд задач гидравлики, фильтрации, теплопереноса и теплообмена, механики твердого тела и т. д. Моделирование в основном представляло собой решение сложных нелинейных задач математической физики с помощью итерационных схем, за исключением разве тех задач, где использовался метод Монте-Карло, и по существу было оно, конечно, моделированием математическим. Успехи математического моделирования в физике способствовали распространению его на задачи химии, электроэнергетики, биологии и некоторые другие дисциплины, причем схемы моделирования не слишком отличались друг от друга. Сложность решаемых на основе моделирования задач всегда ограничивалась лишь мощностью имеющихся ЭВМ.

Надо заметить, что подобный вид моделирования весьма широко распространен и в настоящее время. Более того, за время развития методов моделирования на ЭВМ при решении задач фундаментальных дисциплин и смежных предметных областей накоплены целые библиотеки подпрограмм и функций, облегчающих применение и расширяющих возможности моделирования. И все же в настоящее время понятие "компьютерное моделирование" обычно связывают не с фундаментальными дисциплинами, а в первую очередь с системным анализом - направлением кибернетики, впервые заявившим о себе в начале 50-х годов при исследовании сложных систем в биологии, макроэкономике, при создании автоматизированных экономико-организационных систем управления.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели. Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему.

Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемых объектов, исследовать отклик физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование требует абстрагирования от конкретной природы явлений, построения сначала качественной, а затем и количественной модели. За этим следует проведение серии вычислительных экспериментов на компьютере, интерпретация результатов, сопоставление результатов моделирования с поведением исследуемого объекта, последующее уточнение модели и т.д.

К основным этапам компьютерного моделирования относятся: постановка задачи, определение объекта моделирования; разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия; формализация, то есть переход к математической модели; создание алгоритма и написание программы; планирование и проведение компьютерных экспериментов; анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. Аналитическими называются модели реального объекта, использующие алгебраические, дифференциальные и другие уравнения, а также предусматривающие осуществление однозначной вычислительной процедуры, приводящей к их точному решению. Имитационными называются математические модели, воспроизводящие алгоритм функционирования исследуемой системы путем последовательного выполнения большого количества элементарных операций.

А. Гультяев [6] отмечает, что принципы моделирования состоят в следующем:

Принцип информационной достаточности. При полном отсутствии

информации об объекте построить модель невозможно. При наличии полной

информации моделирование лишено смысла. Существует уровень информационной достаточности, при достижении которого может быть построена модель системы.

Принцип осуществимости. Создаваемая модель должна обеспечивать достижение поставленной цели исследования за конечное время.

Принцип множественности моделей. Любая конкретная модель отражает лишь

некоторые стороны реальной системы. Для полного исследования необходимо построить ряд моделей исследуемого процесса, причем каждая последующая модель должна уточнять предыдущую.

Принцип системности. Исследуемая система представима в виде совокупности взаимодействующих друг с другом подсистем, которые моделируются стандартными математическими методами. При этом свойства системы не являются суммой свойств ее элементов.

Принцип параметризации. Некоторые подсистемы моделируемой системы могут быть охарактеризованы единственным параметром: вектором, матрицей, графиком, формулой.

Компьютерное моделирование систем часто требует решения дифференциальных уравнений. Важным методом является метод сеток, включающий в себя метод конечных разностей Эйлера. Он состоит в том, что область непрерывного изменения одного или нескольких аргументов заменяют конечным множеством узлов, образующих одномерную или многомерную сетку, и работают с функцией дискретного аргумента, что позволяет приближенно вычислить производные и интегралы. При этом бесконечно малые приращения функции f = f(x, у, z, t) и приращения ее аргументов заменяются малыми, но конечными разностями.

Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т. е. промоделировать на своем специфическом языке закономерности окружающего мира. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т. е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Однако, возможности аналитических методов решения сложных математических задач очень ограничены и, как правило, эти методы гораздо сложнее численных. В нашем курсе доминируют численные методы, реализуемые на компьютерах. Отметим, что понятия «аналитическое решение» и «компьютерное решение» отнюдь не противостоят друг другу, так как

а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований;

б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается наглядного восприятия описываемого ею процесса. Эту формулу (хорошо еще, если просто формулу!) нужно протабулировать, представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется «визуализацией». Очевидно, возможности современных компьютеров наилучшим образом соответствуют этой задаче.

Рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (рис. 8).

Первый этап - определение целей моделирования. Основные из них таковы:

1) Понимание

Модель в этой ситуации нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром.

2) Управление

Модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях;

3) Прогнозирование

Модель используется для того, чтобы прогнозировать прямые и косвенные последствия воздействия на объект заданными способами.

Поясним это на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же произошло, обусловив уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, «вдруг» начинают резко менять численность - и здесь математическое моделирование позволяет (с известной долей достоверности) установить причину явления, или, по крайней мере, опровергнуть определенную гипотезу о его причинах.

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом (в несложных физических системах), так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если относительно легко ответить на вопрос об изменении режима распространения тепла в тонком стержне в зависимости от изменений в составляющем его сплаве, то несравненно труднее проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые из них (входные) через х12,..., хn„; вторые (выходные) через у1, у2,..., уn. Символически поведение объекта или процесса можно представить в виде

уj = Fj1, х2,…, хn) (j = 1,2…k),

где Fj -- те действия, которые следует произвести над входными параметрами, чтобы получить результаты. Хотя запись F(х1, х2,…, хn) напоминает обозначение функции, мы здесь используем ее в более широком смысле. Лишь в простейших ситуациях здесь F есть функция в обычном смысле; чаще всего она выражает лишь наличие некоторой связи между входными и выходными параметрами модели.

Входные параметры хj могут быть известны «точно», т.е. поддаваться (по крайней мере, в принципе) измерению однозначно и с любой степенью точности -- тогда они являются детерминированными величинами. Так, в классической механике, сколь сложной ни была бы моделируемая система, входные параметры детерминированы и, соответственно, детерминирован процесс эволюции такой системы. Однако в природе и обществе гораздо чаще встречаются процессы иного рода, когда значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются вероятностными {стохастическими), и, соответственно, случайным является процесс эволюции системы.

Для стохастической модели выходные параметры могут быть как величинами вероятностными, так и однозначно определяемыми. Например, на перекрестке улиц можно ожидать зеленого сигнала светофора и полминуты, и две минуты (с разной вероятностью), но среднее время ожидания есть величина вполне определенная, и именно она может быть объектом моделирования.

Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). Чаще всего невозможно, да и не нужно учитывать все факторы, которые могут повлиять на значения интересующих нас величин уj. От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить наиболее значимые факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель. Так, опытный учитель знает, что на успех контрольной работы влияет степень знания предмета и психологический настрой класса; однако, влияют и другие факторы -- например, каким уроком по счету идет контрольная, какова в этот момент погода и т.д. -- фактически проведено ранжирование.

Отбрасывание менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить, адекватна ли модель можно только в процессе экспериментов с ней, анализа результатов первоначального моделирования.

На рис. 8 проиллюстрированы две крайние ситуации: а) некоторый параметр хj, очень сильно влияет на результирующую величину уj; б) почти не влияет на неё. Ясно, что если все представляющие интерес величины уj реагируют на хj так, как изображено на рис. 9б, то хj является параметром, который при первом подходе может быть из модели исключен. Если же хотя бы одна из величин уj реагирует на изменение хj так, как изображено на рис. 9а, то хj нельзя исключать из числа значимых параметров.

Следующий этап - поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.

Рис. 8. Варианты степени влияния величины хj на результирующую величину уj

Когда математическая модель сформулирована, нужно выбрать метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. Oт верного выбора метода часто зависит успех всего процесса.

После разработки алгоритма и составления программы для ЭВМ необходимо решить с ее помощью простейшую текстовую задачу (желательно с заранее известным ответом) с целью устранения грубых ошибок. Это лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

3aтем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаются к одному из предыдущих этапов.

§ 1.3 Различные классификации математических моделей

К классификации математических моделей можно подходить с разных позиций, положив в основу классификации различные принципы. Можно классифицировать модели но отраслям наук (математические модели по физике, биологии, социологии и т.д.) и по применяемому математическому аппарату (модели, основанные на использовании обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Далее, если поинтересоваться общими закономерностями моделирования в разных науках (безотносительно к математическому аппарату) и поставить на первое место цели моделирования, то можно прийти к следующей классификации:

дескриптивные (описательные) модели;

оптимизационные модели;

многокритериальные модели;

игровые модели;

имитационные модели.

Остановимся на этой классификации подробнее и поясним ее на примерах.

Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем ситуацию (предсказываем траекторию полета кометы, расстояние, на котором она пройдет от Земли и т.д.), т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить в процессе моделирования.

И оптимизационных моделях мы можем воздействовать на процессы, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т. е. оптимизируем процесс.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс. В этом случае говорят о многокритериальных моделях.

Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план, в каком порядке вводить в бой те или иные части и т.п., учитывая возможную реакцию противника. В современной математике есть специальный раздел - теория игр, изучающий методы принятия решений в условиях неполной информации.

Наконец, бывает, что модель в большой мере подражает реальному процессу, т.е. имитирует его. Например, моделируя динамику численности микроорганизмов в колонии, можно рассматривать совокупность отдельных объектов и следить за судьбой каждого из них, ставя определенные условия для его выживания, размножения и т.д. При этом иногда явное математическое описание процесса не используется, заменяясь некоторыми словесными условиями (например, по истечении некоторого отрезка времени микроорганизм делится на две части, а другого отрезка - погибает). Другой пример - моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения.

Можно сказать, что чаще всего имитационное моделирование применяется в попытке описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда производится на уровне статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента. На вопрос же «зачем это делать?» можно дать следующий ответ: имитационное моделирование позволяет выделить «в чистом виде» следствия гипотез, заложенных в наши представления о микрособытиях, очистив их от неизбежного в натурном эксперименте влияния других факторов, о которых мы можем даже не подозревать. Если же такое моделирование включает и элементы математического описания событий на микроуровне, и если исследователь при этом не ставит задачу поиска стратегии регулирования результатов (например, управления численностью колонии микроорганизмов), то отличие имитационной модели от дескриптивной достаточно условно; это, скорее, вопрос терминологии.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.