Математические игры, как средство развития логического мышления

Мыслительные процессы, суждение и умозаключение. Усвоение понятий, решение мыслительных задач. Виды мышления, логическое мышление и актуальность проблемы его развития у учащихся. Возможности применения математических игр для развития логического мышления.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 15.06.2010
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рисунок 2

Ученик: Второй игрок может занять либо угловое поле, либо лежащее на стороне доски, и, чтобы не проиграть сразу, он должен поставить нолик.

Учитель: Если выбрано угловое поле а1, что будет делать первый игрок?

Ученик: Первый игрок рисует нолик в противоположной вершине с3 и куда теперь противник ни поставил крестик или нолик, он своим следующим ходом заканчивает соответственно ряд из крестиков или ноликов.

Учитель: Что будет происходить, если второй игрок занимает первым ходом боковое поле а2?

Ученик: То первый ставит нолик на одной линии с двумя имеющимися знаками, то есть на поле с2. У второго игрока нет ничего лучшего, чем поставить еще один нолик на b1, и после ответного, четвертого нолика на b3 он вынужден сдаться (рис 2а). Тем саамы, в этой игре побеждает начинающий.

Так же учитель предлагает еще один вариант игры на доске 3Ч3: Партнеры по очереди ставят на доску три своих крестика или нолика, после чего новые знаки уже не рисуются. Если за это время никто не выстроил три знака в ряд, игра продолжается. Теперь на каждом ходу игроки могут переставить один свой знак на соседнее поле по вертикали или горизонтали. Выигрывает вновь тот, кто раньше выстроит три знака в ряд. Эту игру учитель вы проанализируете дома.

Дети, проанализировав, должны прийти к умозаключению, что как в предыдущей игре, право первого хода является здесь решающим. Начинающий должен поставить свой крестик в центр доски. Если теперь нолик поставлен в углу, например, на поле а2, то первый игрок ставит крестик на b1. Ответ вынужден - b3. На это следует с3, ответ опять единственный - а1. Дебют партии закончен (рис.2б). Двумя следующими ходами первый игрок переставляет крестики с b2 на с2 и с b1 на с1 и выигрывает партию. Если на первом ходу второй игрок займет боковое поле, например b3, то первый играет а1, а второй отвечает с3, тогда первый идет а3, а противник а2. Все знаки выставлены, теперь первый игрок переставляет крестик с а1 сначала на b1, а затем на с1 и берет вверх. Если договориться, чтобы начинающий не занимал первым ходом центральное поле, то при правильной игре обоих партнеров ни один из них не сможет добиться цели, партия заканчивается в ничью.

Учитель: Конечно, в последней игре вместо крестиков и ноликов удобнее пользоваться белыми и черными шашками. Эту игру можно рассматривать как вступление в класс игр, представляющих собой гибрид крестиков-ноликов и шашек. На доске 4Ч4 такая игра называется так-тикль. Об этой игре и другой разновидности крестиков-ноликов я вам просто расскажу, по желанию, можете поиграть в нее дома.

В так-тиль каждая сторона имеет по четыре шашки (рисунок 2в). Игроки по очереди передвигают их на одну клетку по вертикали и горизонтали, и кто первым расположит три шашки в ряд, тот и выигрывает.

Вот примерная партия в так-тиль:

1. с1-с2 d1-c1.

2 b4-b3 b1-b2

3. b3-a3 (грозило 3…а4-а3) 3…а4-b4 4. а1-b1 с выигрышем, так как черные не могут воспрепятствовать маневру

5. d4-d3.

С помощью ЭВМ доказано, что так-тикль ничейная, то есть при точной игре ни одному из партнеров не удается поставить три шашки в ряд.

Дальнейшим обобщением двух последних игр является "мельница", одна из самых древних в истории человечества игр. На рис.3 изображено несколько "мельниц". Первоначальная форма доски (а) до сих пор остается самой популярной. В этом варианте. Называемом простой мельницей, у каждой стороны по девять шашек. В мельнице улитке (б) число шашек увеличивается до 12, а в шестиугольной (в) у противников по 13 шашек.

Рисунок 3

Известны так же мельница-паутина, мельница-сетка, пятиугольная мельница и др. во всех разновидностях игры правила одинаковые. Партия состоит из трех этапов. Первый этап (дебют) заключается в расстановке шашек. Игроки по очереди ставят свои шашки на любые свободные поля доски. Три шашки одного цвета, выставленные в ряд, образуют фигуру, называемую мельницей. Построив ее. Игрок снимает с доски любую шашку противника. Если одним ходом удалось соорудить две мельницы, то с доски снимают две шашки.

Второй этап (миттельшпиль) начинается после расстановки всех шашек. Теперь партнеры по очереди передвигают их вдоль линий на соседние поля. Цель прежняя - выстроить мельницу и снять с доски шашку противника.

Третий этап (эндшпиль) наступает, когда у одного из игроков остается три шашки. Теперь он получает право при очередном ходе переставлять любую из них на произвольное свободное поле доски, не обращая внимания на линии, соединяющие поля. Сооружая мельницу своими тремя шашками, он снимает шашку партнера, который ходит по обычным правилам до тех пор, пока у него не останется три шашки.

Побеждает тот, кто сумеет довести число шашек противника до двух, лишая его возможности построить мельницу. Партия может закончиться и раньше, если в какой-то момент один из партнеров не в состоянии сделать ход, то есть все его шашки зажаты. Если у обоих партнеров осталось мало шашек (например, по три) и ни один из них уже не может соорудить мельницу, партия заканчивается в ничью. Заметим, что запрещается дважды использовать одну и ту же мельницу. Занимать шашками три данных поля доски можно сколько угодно раз, но шашка противника снимается только при первом построении мельницы.

Учитель подводит итог: Мы с вами на этих занятиях рассмотрели игру крестики-нолики. Попытались найти выигрышные стратегии. Дальнейшее анализирование игры вы можете продолжить самостоятельно.

Замечание: Отметим, что для того чтобы провести анализ игры школьники сначала должны были девять способов сделать первый ход объединить в группы по какому-либо признаку (занято первое поле - первая группа, занято угловое поле - вторая группа, занято боковое поле - третья группа), т.е. они должны провести сравнение и классификацию некоторых объектов. Когда школьники переходят от конкретных партий к построению дерева перебора, т.е. учащиеся должны абстрагироваться от поля, крестиков и ноликов и перейти к математической модели. После того, как учитель изменил начальные условия школьники должны были самостоятельно попробовать найти самостоятельную стратегию. Предполагается, что к концу занятия ученики быстрее учатся находить ключевые моменты (первый ход, правила заполнения поля, для того чтобы не проиграть)

2.3 Морской бой (3ч)

Учитель: Многие люди знают игру "морской бой". Несмотря на внешнюю простоту, эта популярная игра и ее различные модификации содержат немало тонкостей. Классический морской бой. Начнем с самого популярного варианта морского боя, распространенного во многих странах. Каждый из двух игроков рисует на клетчатом листе бумаги две доски размером 10Ч10. На первой из них он расставляет свои корабли, а на второй разгадывает расположение кораблей противника. В состав флотилии входит десять кораблей: один линкор (корабль 4Ч1), два крейсера (3Ч1), три эсминца (2Ч1) и четыре катера (1Ч1). Корабли могут занимать любые поля доски, но не должны касаться друг друга ни сторонами, ни углами. После размещения флота игроки начинают по очереди стрелять по неприятельской территории, то есть называть поля доски - а3, б7, и9 и т.д. (горизонтали доски будем обозначать числами от 1 до 10, а вертикали - русскими буквами от а до к) после каждого выстрела игрок получает от партнера следующую информацию: "попал", если выстрел пришелся по полю с кораблем; "убил", а если это последнее поле корабля (по другим полям, занятым им, попадание произошло раньше); и наконец, "мимо", если поле пустое. В первых двух случаях игрок производит еще один выстрел, и так до первого промаха, после чего очередь хода передается партнеру. Побеждает тот, кто потопит все 10 кораблей противника. Таким образом, в данной текстовой игре шифром служит набор прямоугольников, расположенных на доске, а самим тестом - удары по ней. Обычно выстрел в морском бое обозначается точкой, а при попадании в корабль точка превращается в крестик (сам потопленный корабль обводится прямоугольником). Конечно, точка становится и на те поля, про которые уже точно известно, что они не могут входить в состав ни одного из кораблей (лежат наискосок от "подбитых" полей или окружают потопленный корабль).

Рисунок 4

Вот рассказаны правила игры, теперь можете поиграть. Разбейтесь на пары, на розданных листах, с начерченными полями рисуйте корабли и начинайте игру.

После того как партии сыграны, учитель вместе с учениками сравнивают сыгранные партии и в целом анализируют игру.

Учитель замечает: Успех в этой игре в какой-то мере зависит от везения. Можно беспорядочно наносить удары по неприятельской территории и при этом без промаха уничтожить все его корабли. Но вряд ли на это стоит рассчитывать. Если говорить об искусстве игры в морской бой, возникают два вопроса:

1) как стрелять, чтобы повысить вероятность попадания в неприятельские корабли;

2) как расставлять собственные корабли, чтобы противнику было труднее их потопить? Предположим, мы хотим попасть в неприятельский линкор. Как мы должны стрелять, чтобы сделать это как можно быстрее?

Ученики предлагают различные варианты ответа: Можно стрелять последовательно сначала по полям первой горизонтали (слева на право), затем по полям второй и т.д.

Учитель: А давайте определим после какого удара мы точно попадем в линкор?

Школьники считают и делают вывод: В худшем случае это будет на 97-ом ударе (если корабль занимает поля с ж10 по к10).

Учитель: А давайте подумаем, как делать ходы, чтобы сделать это быстрее.

Дети анализируют сыгранные партии и приходят к умозаключению: Оптимальным вариантом будет, если делать ходы так, как показано на рисунке 5а или 5б.

Учитель: Сколько максимально может быть ходов?

Ученик: Это произойдет не позднее 24-го удара (24 крестика следуют друг за другом через три поля вдоль каждой вертикали и горизонтали).

Рисунок 5

Рисунок 6

Учитель: А давайте рассмотрим более общий случай. Предположим, что на доске nЧn расположен один-единственный корабль kЧ1 (k-мино). Совокупность выстрелов, гарантирующих нам попадание в этот корабль, назовем стратегией. Стратегию, содержащую минимальное число выстрелов, назовем оптимальной; число выстрелов в ней обозначим через . Для начала рассмотрим доску 4Ч4 и корабль размером 4Ч1. Сколько будет равна ?

Школьники анализируют и приходят к умозаключению: . Все семь оптимальных стратегий для доски 4Ч4 представлены на рисунке 8 (стратегии, которые совпадают при поворотах и зеркальных отражениях доски, мы не различаем). Сдвигая все выстрелы на четыре поля по вертикали и горизонтали, получаем семь стратегий на доске 10Ч10. Однако две из них являются оптимальными (рисунок.5а и 5б), причем .

Учитель: А как же будет в общем случае, для попадания в корабль kЧ1, расположенный на доске nЧn?

Школьники, подумав, вновь выдвигают гипотезу: Выстрелы должны отстоять друг от друга на k полей по вертикали и горизонтали. Это означает, что на каждой линии содержится примерно по выстрелов оптимальной стратегии, и мы получаем приближенную формулу .

Учитель подводит итог: Опытные игроки обычно действуют следующим образом. Сначала, пользуясь одной из стратегий на рисунке 5, обнаруживают единственный линкор противника. Когда с ним будет покончено, принимаются за поиск крейсеров. Теперь удары наносятся не через три поля по вертикали и горизонтали, а через два. Потопив оба крейсера, переходят к эсминцам. Когда непотопленными останутся одни катера, выбор полей ударов уже не будет иметь никакого значения, и приходится полагаться только на случай. Конечно, "легкие" корабли могут быть обнаружены и при охоте за "тяжелыми".

Итак, труднее всего обстоит дело с катерами, для нахождения которых нельзя придумать эффективной стратегии.

Поэтому при размещении собственной флотилии надо располагать все крупные корабли поплотнее, представляя противнику для поиска катеров как можно больше свободной территории.

Наиболее выгодное в этом смысле размещение показано на рисунке 7. Если даже соперник потопил все шесть наших крупных кораблей, для обнаружения четырех катеров у него имеется территория наибольшей площади - целых 60 полей (на рисунке справа от черты).

Рисунок 7

Учитель: Сейчас нам некоторые из учеников расскажут доклады, приготовленные ранее, о разных вариациях игры морской бой и некоторых интересных аспектах этой игры.

Докладчик 1: Доклад о различных досках и кораблях. Форма доски в морском бое, вид кораблей и состав флотилии особенного значения не имеют. Так, шахматисты, возможно, предпочитают играть на доске 8Ч8. Заметим, что в терминах игры "полимино" наши корабли имеют такие названия: катер - мономино, эсминец - домино, крейсер - прямо тримино, линкор - прямое тетрамино (рисунок 4). В качестве кораблей в этой игре можно использовать и другие виды полимино. На рисунке 4 представлены все девять кораблей, содержащих не более четырех клеток.

Сражение можно вести не только на море, но и на суше. Для этого доску следует разбить на две части - морскую и береговую. Противники получают в свое распоряжение три вида боевых средств - флот (корабли могут располагаться только в море), сухопутные войска (размещаются на суше) и самолеты, которые находятся как в море, так и на суше. Можно, например, использовать для игры 20 боевых единиц: во флотилию включить десять кораблей обычного морского боя, в сухопутные войска - два квадратных, два косых, два Т-и два L-тетрамино и, наконец, два прямоугольных тримино превратить в самолеты. Одно из расположений всех видов войск на доске 20Ч15 представлено на рисунке 8 (беговая часть доски на рисунке заштрихована). Как и положено, флот находится в море, а сухопутные войска дислоцированы на суше, один самолет летает над морем, другой охраняет берег.

Рисунок 8

Рисунок 9

Вот еще одна разновидность морского боя. Игра протекает на шахматных досках 8Ч8; каждый из двух игроков разбивает свою доску на четыре части произвольной формы, состоящее из одинакового количества полей - по 16 каждая. На рисунке 9. даны четыре варианта разбиения доски. Ход состоит из четырех одновременных выстрелов по полям доски, образующими произвольный квадрат 2Ч2, например б5, б6, в5, в6 (на рис.9 его поля помечены крестиками). Обстреливаемый игрок сообщает номера частей, в которые произошло попадание, не указывая при этом, какие поля каким частям принадлежат. Для наших квадратов ответы будут такие: 2, 2, 2, 3 - рис.9а; 1, 1, 2, 2 - рис.9б; 2, 2.3, 4 - рис.9в; 2, 2, 3, 3 - рис 9г. После каждого хода партнеры делают определенные выводы о возможном разбиении доски и на их основании выбирают следующий ход. Побеждает игрок, который первым определяет, на какие четыре части разбил противник свою доску.

Докладчик 2:

Я хочу рассказать о интересном "эндшпиле", в котором одна неточность сразу решает исход боя (этот пример придумал В. Чванов).

На рисунке 10 изображено положение, возникшее в процессе игры. К данному моменту обе флотилии - и наша (рисунок 10а) и противника (рисунок 10б) пострадали одинаково. У обеих потоплены линкор, один крейсер и один эсминец, продолжают сражение по одному крейсеру, по два эсминца и все четыре катера. Расположение наших кораблей противнику уже известно (на рисунке 10а они обведены пунктиром), и при своем ходе он разгромит их без промаха.

Рисунок 10

Рисунок 11

К счастью ход наш и судьба партии в наших руках. Мы должны потопить один за другим все семь кораблей, сосредоточенных в квартале 5Ч5. Для нахождения победной комбинации в этой напряженной схватке требуется прежде всего провести логический анализ ситуации.

По правилам любые два корабля отстоят друг от друга не меньше чем на одно поле. Окружим каждый корабль каймой шириной в полполя (рис.11), полученный прямоугольник назовем достройкой этого корабля. Найдем теперь площадь достроек всех семи кораблей, которые предстоит потопить. Какими они будут?

Ученики: Достройка катера - 4 клетки (2Ч2), эсминца - 6 клеток (3Ч2) и крейсера - 8 клеток (4Ч2). Общая площадь достроек составляет 36 клеток.

Докладчик2: Верно. Но площадь достройки доски (достройка с каймой в полполя) также 36 клеток, из чего следует, что угловые поля доски 5Ч5 обязательно заняты кораблями (иначе угловая площадь достройки доски "пропадает"). Передерем все возможные расположения кораблей. Сколько их будет, если повороты и зеркальные отражения доски не учитывать?

Ученики: Их всего пять (рисунок 12а - д).

Рисунок 12

Докладчик2: Проведенный анализ позволяет эффективно завершить игру. Как вы думаете, куда надо выстрелить вначале?

Ученики: Первые четыре выстрела следует произвести по углам доски 5Ч5. Как мы убедились, все они достигают цели. Если при этом три катера будут потоплены (рис.12а), то расположение остальных кораблей определяется однозначно.

Докладчик 2: Пусть потоплен только один катер (рисунок 12б, в,). Какой вывод можно сделать?

Ученики: Так как достройки кораблей плотно покрывают достройку доски, пятый и шестой выстрелы можно без риска произвести по полям а3 и е1, отстоящем на два поля от углового, занятого потопленным катером. От результата этих двух выстрелов зависит, какой из случаев - "б" или "в" - имеет место.

Докладчик2: Если выстрелы по углам привели к потоплению двух катеров (рисунок 12г, д), что можно сказать?

Ученики: Удары по полям а3 и в5 позволят сразу выяснить, какой из двух вариантов избрал противник.

Докладчик 2: Итак, после шести выстрелов мы имеем полную информацию о расположении неприятельских кораблей и следующими пятью ударами победно завершим эту напряженную битву. Рассмотренный пример показывает, что в критической ситуации от играющих в морской бой требуется не малое искусство и выдержка.

Докладчик 3: Мой доклад о залпах выстрелов. До сих пор рассказывалось о том, что каждый выстрел производится по одному полю доски. Интересной разновидностью морского боя является игра, в которой один ход состоит сразу из ряда выстрелов - ведется, так сказать, массированный огонь по неприятельскому флоту. Соперник сообщает общие результаты стрельбы, не указывая при этом, в какой корабль и на каком поле произошло попадание. Например, при трех одновременных выстрелах ответы могут быть такими: три промаха; два промаха и одно попадание; один промах и одно потопление и т.д. (последний ответ означает, что два выстрела из трех попали в один и тот же корабль и потопили его). Остальные правила игры не меняются. После каждого хода и ответа на него игроки извлекают определенную информацию о дислокации неприятельских кораблей и следующими ходами пытаются использовать ее.

В другом варианте этой игры каждому игроку разрешается одновременно производить выстрелы по стольким полям доски, сколько у него еще осталось непотопленных кораблей. Обстреливаемый игрок вновь сообщает стреляющему только общее число попаданий, потоплений и промахов. При обычной флотилии из десяти кораблей первый ход состоит из девяти выстрелов. Если один или несколько кораблей потоплены, то число выстрелов уменьшится. Когда все корабли пойдут на дно, игрок лишается права хода (0 выстрелов), но оно ему больше не нужно - бой закончился его поражением.

Рассмотрим еще одну интересную модификацию морского боя на произвольной квадратной доске. В ней также разрешается производить серии выстрелов. Будем считать, что флотилии обоих партнеров состоят из кораблей одного типа: катеров, эсминцев, крейсеров, линкоров или вообще кораблей kЧ1 (k-мино) на доске nЧn (k?n). Число k оговаривается до начала игры. Игрок может расставлять на доске любое количество кораблей, быть может, ни одного, не сообщая это число противнику.

Игра состоит всего из одного хода, который заключается в одновременном произведении выстрелов по ряду полей доски (залп выстрелов). При этом игрок получает информацию о каждом поле доски - попадание или промах (о потоплениях сообщений не делается) проанализировать ответы противника, он должен однозначно определить расположение всей его флотилии. Победителем становится игрок, залп которого содержит меньше выстрелов.

И в конце учитель подводит итог:

Мы с вами рассмотрели игру морской бой. Поиграв в нее мы сравнивали, анализировали и приходили к умозаключению о правильной стратегии этой игры, что развивает логическое мышление.

Учитель подводит итог: Итак, на занятиях посвященных морскому бою были рассмотрена обычная игра морской бой. Мы попытались найти оптимальную стратегию для выигрыша. А так же были рассмотрены различные вариации игры и некоторые интересные аспекты игры.

Замечание: Отметим, что на занятиях посвященных морскому бою школьники анализировали то, как лучше расставлять корабли, чтобы противнику было сложнее их найти и то, как нужно наносить удары по вражеской флотилии, чтобы одержать победу. Сначала был рассмотрен частный случай, как найти ленкор (4Ч1), затем учащиеся предложили рассмотреть более общий случай: корабль размером kЧ1. Проводя обобщение и анализ учащиеся должны были сформулировать гипотезу о примерном количестве выстрелов, необходимом для гарантированного попадания в корабль. То есть учащиеся переходили от поля и кораблей к формулам и обратно (абстрагирование и конкретизация).

Так же учащиеся познакомились с некоторыми вариациями игры в морской бой. Если их заинтересовала эта тема, то они могут дома самостоятельно провести анализ возможных стратегий игры. Затем, учащиеся при рассмотрении "эндшпиля" перебирают все возможные комбинации расположения семи кораблей в квартале 5Ч5 и выявляют существенные моменты этих расположений.

2.4 Отгадай слово (2ч)

В начале урока учитель рассказывает правила игры. А затем рассматривает пример: Игра "отгадай слово" впервые появилась на свет в конце 60-х годов, почти одновременно с "быками и коровами", о которой будет рассказано позже, и до сих пор пользуется большой популярностью, в нее охотно играют школьники, студенты, научные сотрудники.

Действительно, как мы сейчас увидим, эта увлекательная игра значительно богаче и глубже большинства известных словесных игр. Для успеха в ней важен не только большой запас слов, лексикон играющих, но и умение логически рассуждать.

Играют двое. Один игрок задумывает слово из пяти букв, а другой должен его отгадать. С этой целью он называет одно за другим слова, состоящие из произвольного числа букв, на каждое из которых партнер в ответ сообщает число, означающее, сколько раз буквы задуманного слова входят в названное; при этом каждая буква задуманного слова учитывается в ответе столько раз, сколько она содержится в названном.

Естественно, слова задумывают оба игрока, причем они стараются выбрать их потруднее для отгадывания. Побеждает тот, кто отгадал слово противника, то есть получает ответ "отгадал", за меньшее число ходов.

Как и в большинстве игр в слова, и задуманное слово, и "ходы" должны быть существительными, нарицательными, в единственном числе. Чтобы избежать лишних споров, лучше всего сразу договориться о том, какие разрешается использовать словари.

Очевидно, игра "отгадать слово", как и "быки и коровы", является тестовой. Выбор слов-ходов, приводящий к цели, по существу, есть тест для отгадывания задуманного противником слова (шифра), и задача игрока состоит в том, чтобы построить тест как можно короче. Конечно, игру легко обобщить, разрешая задумывать слова другой длины, однако длина пять является оптимальной (подобно четырем цифрам в "быках и коровах" - разнообразие пятибуквенных слов очень велико, и отгадать их совсем не просто).

Делать ходы (назвать тестовые слова) не обязательно по очереди, важно общее число ходов. При большом количестве партий в каждой из них можно учитывать не только то, кто раньше отгадал слово, но и на сколько ходов быстрее. Для того чтобы лучше ознакомиться с игрой, почувствовать ее тонкости, рассмотрим несколько партий, то есть выражаясь шахматным языком, прокомментируем их. Всюду предполагается, что слово задумывает ваш партнер, и нам надо его отгадать. Рядом с названными словами указываются ответы противника на них.

Приведем пример. Пусть наш воображаемый партнер задумал слово КОЛБА, а мы своим ходом назвали слово ОБОРОНА. Тогда он должен ответить числом 5. В самом деле, буквы К и Л задуманного слова не входят в названное (или иначе - входят 0 раз), буква О входит 3 раза, буквы А и Б - по 1 разу. Итого: 0+0+3+1+1=5.

Называя некоторое слово и получая на него ответ, мы всякий раз делаем определенные выводы относительно задуманного слова. Так, ответ противника на слово ОБОРОНА означает, что задуманное слово, пока не известное нам, обязательно содержит букву О (в противном случае максимальный ответ был бы равен 4), а так же две буквы из четырех Б, Р, Н, А. Рассмотрим другие возможности. Ответ 0 свидетельствовал бы о том, что в отгадываемом слове нет ни одной из пяти букв, входящих в слово ОБОРОНА; ответ 1 или 2 - что в нем содержится соответственно одна или две буквы из четырех - Б, Р, Н, А и нет буквы О; ответ 3 - что в нем есть О и нет Б, Р, Н, А, или, наоборот, есть три из этих четырех букв и нет О; наконец, при ответе 4 делаем вывод, что задуманное слово содержит букву О и одну букву из четырех остальных или все эти четыре буквы вместе, но тогда отсутствует О.

Извлекая на каждом ходу ту или иную информацию о задуманном слове противника, мы делаем следующий ход и т.д., пока не получим ответ "отгадал".

Давайте рассмотрим одну партию вместе.

Партия 1

Учитель начинает игру: Я загадываю слово и противник на первое свое слово получает ответ 2. Что это значит?

ПЕРЕВАЛ 2

Ученики анализируют и приходят к умозаключению: В данной партии первый ход позволяет сделать следующий вывод: либо в задуманном слове есть буква Е и нет букв П, Р, В, А, Л, либо есть две буквы из этой пятерки, но нет Е.

Учитель: Цель второго хода - разобраться в ситуации. Противник называет следующее слово и получает ответ 0.

СВАЛКА 0

Ученики вновь анализируют и приходят к выводу: Ответ 0 дает возможность выбросить из рассмотрения целый ряд букв. В данном случае после второго хода мы видим, что в задуманном слове нет букв В, А, Л (и, конечно, С и К), и значит, с учетом первого хода, оно содержит либо Е, либо одновременно П и Р.

Учитель: Каким словом можно определить точное наличие, например буквы П?

Школьники, не долго думая, выдают ответ: ПОП.

Учитель: На это слово ответ будет 0. Что это значит?

ПОП 0

Ученики: Итак, второй вариант отпадает, буквы П, а вместе с ней и Р в слове нет, а есть Е.

Учитель вновь предлагает новое слово к рассмотрению: На новое слово противника ответ будет 4. Какой вывод мы можем сделать из этого, если вспомнить, что отсутствие некоторых букв мы уже определили?

ФАКУЛЬТАТИВ 4

Ученики вспоминают те буквы, которых уже нет и делают вывод: Так как мы уже знаем, что букв А, К, Л, В в слове нет, то последний ход и ответ на него означают, что фактически нам надо проанализировать следующую ситуацию с фиктивным словом-ходом: ФУЬТТИ 4.

Учитель: Предположим, что в задуманном слове нет Т. Что это значит?

Ученики: Тогда оно содержит все четыре оставшиеся буквы, то есть Ф, У, Ь, И. поскольку буква Е уже найдена раньше, искомое слово должно состоять из букв Ф, У, Ь, И, Е.

Учитель: А можно ли из этих букв составить слово?

Учащиеся проводят анализ (это уже не логический анализ, а чисто словесный), и приходят к умозаключению: Из этих букв собрать слово невозможно. Таким образом, в задуманном слове обязательно присутствует буква Т, кроме того, в нем есть Е и две буквы из четырех Ф, У, Ь, И.

Учитель делает некоторые выводы: Очередными ходами мы бы могли определить две эти буквы и недостающую пятую. Однако сначала попробуем извлечь побольше информации, не делая ходов, а только основываясь на полученных ответах (самое тонкое место партии!). Две буквы из четырех можно выбрать шестью способами, . Добавляя к каждой паре уже известные буквы Е и Т, получаем шесть возможных комбинаций:

1) Ф, У, Е, Т;

2) Ф, Ь, Е, Т;

3) Ф, И, Е, Т;

4) У, Ь, Е, Т;

5) У, И, Е, Т;

6) Ь, И, Е, Т. Какие же из комбинаций даже при добавлении третьей буквы не могут образовать слово?

Школьники анализируют и выдвигают гипотезу: Последние три комбинации при любом добавлении пятой буквы не могут образовывать никакого слова. Что же касается первых трех комбинаций, то, добавляя к первой из низ букву Б, ко второй Н или к третей Ш, получаем три возможных слова: БУФЕТ, НЕФТЬ, ФЕТИШ.

Учитель: Конечно, анализ требует большого перебора вариантов, но зато мы не сделали ни одного лишнего хода!

Итак, нам осталось выяснить, какая буква из трех букв - Б, Н, Ш - выходит в задуманное слово. Попытаемся справиться с этой задачей за один ход. Для этого используем такой прием: поберем слово, в котором одна из этих букв не содержится вовсе, а две другие содержатся, но в разном количестве. Следующий ход удовлетворяет требованиям. Ответ на который 1. Какой же вывод мы можем сделать?

БАНАН 1

Ученики: Ответ показывает, что в слове есть буква Б, и следующий ход заканчивает игру.

БУФЕТ Отгадал

Учитель предлагает рассмотреть другие варианты: Что значило бы, если при ответе на пятом ходу 0.

Ученики: Задуманным оказалось бы слово ФЕТИШ.

Учитель: А при ответе 2.

Ученики: НЕФТЬ.

Так же учитель делает замечание: Кстати, неточным был бы, например, пятый ход СНОБ, а так как при ответе 1 мы не смогли бы решить, какая из двух, Н или Б, входит в задуманное слово.

Далее учитель предлагает детям поиграть, задумывает слово, а дети отгадывают.

Партия 2

Школьники называют первое слово и получают ответ 3

КАРЕЛ 3

Учитель задает наводящие вопросы: Каким должно быть следующее слово, чтобы определить наличие какой-либо буквы?

Ученики приходят к умозаключению: Слово должно отличаться от предыдущего всего несколькими буквами.

Ученики называют следующее слово, на которое получают ответ 2.

КРЕОЛ 2

Учитель вновь предлагает подумать и сделать вывод.

Ученики анализируют и приходят к выводу: Поскольку четыре буквы у этих двух столбцов общие, а ответы разные, делаем вывод, что буква А в искомом слове есть, а буквы О нет.

Учитель: А что мы можем сказать об остальных буквах?

Ученики приходят к умозаключению: Из ответа на второй ход следует, что из четырех букв К, Р, Е, Л в искомом слове содержится две.

Ученики записывают шесть возможных вариантов следующим образом:

1) А, К, Р (Е, Л, О);

2) А, К, Е, (Р, Л, О);

3) А, К, Л (Р, Е, О); (1)

4) А, Р, Е, (К, Л, О);

5) А, Р, Л, (К, Е, О);

6) А, Е, Л (К, Р, О).

Здесь перед скобками записаны буквы, которые искомое слово может содержать. А внутри скобок буквы, которых при этом в слове точно нет.

Ученики называют следующее слово и получают ответ 3.

БЕКОН 3

Ученики анализируют и делают вывод: Так как буквы О в слове нет, то нужно выбрать три буквы из четырех. Это можно выбрать четырьмя способами :

1) Б, Е, К (О, Н);

2) Б, Е, Н (К, О);

3) Б, К, Н (Е, О); (2)

4) Е, К, Н (Б, О).

Учитель помогает детям провести анализ: Комбинируя шесть вариантов (1) с четырьмя вариантами (2), получаем 6Ч4=24 комбинации. Однако не все они "совместимы". Так, несовместимые являются первые возможности в (1) и (2). С одной стороны, буква Е содержится в искомом слове - первый вариант в (2), а с другой - нет - первый вариант в (1).

Далее школьники сами продолжают анализировать и приходят к умозаключению: Анализ показывает, что из 24 вариантов совместимыми являются только шесть:

К, А, Р, Б, Н, (Е, Л, О);

К, А, Е, Б (Р, Л, О, Н);

К, А, Е, Н (Б, Р, Л, Н);

К, А, Л, Б, Н (Р, Е, О);

А, Р, Е, Б, Н (К, Л, О);

А, Е, Л, Б, Н (К, Р, О).

Школьники вновь называют слово, на которое получают ответ 1

АБРИС 1

Ученики анализируют и делают вывод: Учитывая, что в искомом слове есть А, находим, что в нем нет Б, и, значит, из последней подборки, содержащей шесть слов, остается только третья возможность - искомое слово содержит четыре буквы К, А, Е, Н.

На следующий ход ученики получают ответ 1.

БРОШЬ 1

Учащиеся приходят к умозаключению: Букв Б, Р, О в задуманном слове нет, и мы получаем, что в нем есть Ш или Ь. итак, имеем две возможные пятерки букв: К, А, Е, Н, Ь или К, А, Е, Н, Ш. Из первой пятерки слова образовать нельзя, а из второй можно - КАШНЕ. Следующий ход завершает партию.

КАШНЕ

Учитель признает, что партия закончена. И дает слово одному из учеников, который приготовил интересную задачу:

Докладчик 1: Найти слово, которое состоит из пяти разных букв, содержащихся в указанном количестве в таких шести строках:

АБРИС 1

БРОШЬ 1

БАРИН 2

КРЕОЛ 2

БЕКОН 3

КАРЕЛ 3

Вот решение упражнения, приведенное в журнале "Наука и жизнь". Слова БАРИН и АБРИС имеют четыре общие буквы, при этом БАРИН содержит две буквы задуманного слова, а АБРИС - одну. Из этого следует, что Н входит в него, а С - нет. Аналогично, сравнивая слова КАРЕЛ и КРЕОЛ, находим, что А входит в задуманное слово, а О - нет. Из слова АБРИС по условию в искомое слово входит ровно одна буква. Поскольку, как мы установили, оно содержит А, то букв Б, Р, И, С в нем нет. так, как в слове нет букв Б, Р, О, из слова БЕКОН в него обязательно входит Е, К, Н, а из слова БРОШЬ - Ш или Ь. итак, пятью буквами задуманного слова являются либо Н, А, Е, К, Ш, либо Н, А, Е, К, Ь. Из второго набора слова не получается, а первый дает слово КАШНЕ, которое и требовалось найти.

Вторая партия получилась довольно "напряженной". Наш пятый ход был, вообще говоря, неточен. Действительно, при ответе 0 выяснилось бы, что в слове нет ни Ш, ни Ь, однако оно может содержаться П и Д (ПЕНКА, ДЕКАН). Легко придумать слово, расшифровывающее сразу три буквы - Ш, П, Д, например ДЕДУШКА.

И вновь новая партия, учитель загадывает слово.

Партия 3

На первое слово ученики получают ответ 6.

ПЕРЕВОД 6

Ученики анализируют и приходят к умозаключению: В искомом слове точно есть буква Е (без нее максимальный ответ 5), а также четыре буквы из пяти П, Р, В, О, Д. Итак, имеем пять возможностей:

1) Е, П, Р, В, О;

2) Е, П, Р, В, Д;

3) Е, П, Р, О, Д;

4) Е, П, В, О, Д;

5) Е, Р, В, О, Д.

Школьники анализируют все варианты и приходят к выводу: Слово можно составить только из последней комбинации букв - ВЕДРО. Фактически партия продолжается всего один ход!

ВЕДРО

Учитель отмечает: Слово отгадано. Если пять букв уже найдены, это еще не означает окончания партии. Ведь не исключено, что из этой пятерки букв можно составить не одно слово, а несколько. Слова, образованные из одних и тех же букв, называются анаграммами, а набор таких слов - блоками анаграмм. Если, определив пять букв, мы "натолкнулись" на такой блок, придется сделать дополнительные ходы, чтобы выяснить, какое именно слово задумано.

Партия 4

ТАПОК 5

КАПОТ 5

ПОКАТ 5

ТОПКА Отгадал

В последнем примере, который можно считать эндшпилем (заключительная часть партии) некоторой более длинной партии, определив на первом же ходу все пять букв задуманного слова, мы затем сделали еще три, чтобы найти само слово, то есть дела сложились не самым лучшим образом.

Может показаться, что загадывать слова-анаграммы выгодно, поскольку даже при отгадывании всех букв нашего слова дальнейшие действия партнеру придется вести наобум - от него уже ничего не зависит. Но надо учесть, что, чем больше слов в блоке анаграмм, тем меньше используется редких букв и, значит, тем легче найти пятерку букв. Блок пятибуквенных анаграмм (нас интересуют сейчас только такие) может содержать от двух слов до шести. Вот уникальный набор анаграмм, состоящий из шести слов (единственный в русском языке): АВТОР, ТОВАР, ТАВРО, ОТВАР, РВОТА, ВТОРА.

Далее учитель предлагает рассмотреть несколько задач:

В игре "отгадать слово" возникают интересные и оригинальные задачи со словами. Рассмотрим несколько таких задач. По некоторым задачам ученики приготовили доклады, а остальные разберем вместе.

Докладчик 2: По правилам игры ходы представляют собой слова русского языка (как уже говорилось, существительные, нарицательные, в единственном числе). А что изменится, если снять это ограничение, то есть разрешить делать ходы, так сказать, абстрактными словами - состоящими из произвольного набора букв? Может показаться, что такое изменение правил не имеет особого значения, однако из решения следующей задачи следует, что игра при этом "вырождается".

Задача 1. За сколько ходов можно угадать слово (или пять букв анаграммы), если разрешается ходить "абстрактными" словами?

Эта задача носит чисто математический характер, и ответ на нее довольно неожиданный - требуется всего один ход! Он может быть, например, таким:

Данное "слово" содержит все 33 буквы алфавита, причем букву А - 1 раз. Ответ на ход, сделанный таким словом, позволяет сразу определить пять букв. Действительно, если в задуманном слове есть А, то последней цифрой ответа будет 1, если же в нем нет, то на конце стоит 0. Если слово содержит букву Б, то на втором месте справа (количество десятков) стоит 1, в противном случае - 0. Если слово содержит В, то на третьем месте справа (количество сотен) стоит 1, в противном случае - 0 и т.д. Таким образом, число, которое мы получим в ответ на наш ход, состоит из многих нулей (28, если в слове есть буква Я) и ровно пяти единиц, которые и определяют пять нужных букв.

Приведем пример. Пусть в ответ на наше абстрактное слово получено число 100 101 011. Это значит, что в задуманном числе имеются буквы: А (1 на правом конце), Б (1 на втором конце), (1 на четвертом месте справа), Е (1 на шестом месте справа) и З (1 на девятом месте справа). Итак, задумано слово ЗАБЕГ.

"Волшебное" слово имеет астрономическую длину, но в данной задаче важно лишь само существование универсального хода.

Учитель предлагает рассмотреть еще одну задачу: Вернемся к обычному варианту игры "отгадать слово". Часто в процессе отгадывания возникает необходимость определить, содержится ли в слове та или иная конкретная буква. В связи с этим любопытна следующая задача.

Задача 2. Для каких букв алфавита можно определить за один ход, содержатся они в задуманном слове или нет?

Здесь предполагается, что никакой информацией о задуманном слове мы пока не располагаем. Идея очень проста - "подозрительная" буква должна выделяться числом вхождений в тестовое слово. Проще всего использовать трехбуквенные слова с двумя одинаковыми буквами. Получая ответ на такой ход, мы сразу определяем, есть ли две этих буквы в задуманном слове или нет. Пусть сделан первый ход ДЕД. Если ответ 0, то в задуманном слове нет ни Д, ни Е. Если ответ 1, то Е есть и нет Д, если ответ 2, то есть Д и нет Е, наконец, если ответ 3, то есть и Д, и Е.

Школьники анализируют и приходят к умозаключению:

Почти две трети алфавита - 20 букв из 33 - требуют всего одного хода для выяснения вопроса об их наличии (таблица 1). Всего трехбуквенными словами такого вида удается определить 10 букв. Еще для десяти используются слова большей длины. Девять искомых тестовых слов устроены так: они содержат подозреваемую букву и еще две пары других букв. В результате нечетный ответ (1, 3 или 5) свидетельствует о наличии данной буквы в задуманном слове, а четный (0, 2 или 4) - об ее отсутствии.

Таблица 1

Буквы

Слова, точно определяющие наличие буквы

Буквы

Слова, точно определяющие наличие буквы

А

РОТАРОР

Р

ТРАТА

Б

БОБ

С

КОКОС

В

ДОВОД

Т

ПОТОП

Г

НАГАН

У

ПУП

Д

ДЕД

Ф

ТОРФ, ТОР

Е

ДЕД

Х

ДОХОД

Ё

ЕЛКА

Ц

ЦЕЛЬ, ЕЛЬ

Ж

ЖАР, АР

Ч

ЧЕСТЬ, СЕТЬ

З

КАЗАК

Ш

ШИШ

И

МИМ

Щ

ЩЕЛЬ, ЕЛЬ

Й

РАЙ, АР

Ъ

ВЪЕЗД, ЗЕВ, ДЕД

К

ОКО

Ы

ДЫРА, ДАР

Л

ШАЛАШ

Ь

КОНЬ, КОН

М

МИМ

Э

ЭРА, АР

Н

КОКОН

Ю

ЮБКА, БАК

О

ОКО

Я

ЯБЕДА, БЕДА

П

ПОП

Учитель подводит итог: Была составлена таблица, точно определяющая наличие буквы. Так же были и другие варианты для отгадывания.

Для отгадывания буквы А тот же прием потребовал семибуквенного слова (в нем три пары посторонних букв). Можно использовать и более короткое пятибуквенное слово АТАКА. Здесь идея отгадывания несколько иная - ответ 3 и больше говорит о том, что буква А есть, а меньший ответ, что нет.

Конечно, пятибуквенное слово, которое служит для разгадки одной из букв, может не помочь для определения других его букв. Так, если ответом на ход ДОВОД служит число 2, то мы знаем, что в задуманном слове нет В, а есть Д или О, но какая именно из этих букв - не известно. Другое дело, если бы какое-нибудь пятибуквенное слово содержало только две буквы (одну - 2 раза, а другую - 3), тогда они определились бы сразу, однако такого слова нам найти не удалось.

Даже если все буквы снова имеют разное число вхождений, оно тем не менее может оказаться не пригодным для определения каждой из них. Так, слово БАОБАБ содержит три буквы в разном количестве, но при неудачном для нас ответе на него мы не сможем точно сказать, какая из его букв содержится в заданном слове. Действительно, ответ 0 говорит о том, что в слове нет букв А, Б и О, ответ 1 - что в слове есть О, но нет А и Б, ответ 2 - что в слове есть А, но нет Б и О, однако ответ 3 не вносит полной ясности - из него следует, что либо в слове есть Б и нет А и О, либо, наоборот, нет Б и есть А и О. Цель может быть достигнута, если три буквы, которые мы хотим разгадать, содержится в слове-ходе в таких количествах: 1, 2, 4 или 2, 3,4. Однако существуют ли такие слова в русском языке, нам тоже неизвестно. Об этом детям предложили подумать дома.

Учителем: Давайте еще раз вспомним некоторые моменты. Для каждой буквы алфавита ответить на следующий вопрос: за какое наименование число ходов можно точно определить, содержится ли эта буква в задуманном слове или нет?

Ученики: Любую букву (исключая Ъ) можно найти не более чем за два хода! Необходимую пару слов для отгадывания 12 букв можно образовать так: одно слово составить из букв второго слова с добавлением искомой буквы. Одинаковые ответы на эти слова покажут, что в задуманном слове данной буквы нет, а разные, что есть. Например, одинаковые ответы на ходы РАЙ и АР означают, что буквы Й в задуманном слове нет, а разные (они могут отличаться только на 1), что есть. Всего данным приемом определяется 12 букв (таблица 1).

Для Ъ удалось найти только трехходовое решение. Интересно, что если буквы Е и Ё не различить, то и для Ъ достаточно двух слов - МОПЕД, ПОДЪЕМ.

Учитель подводит итог: На практике, конечно, редко стремятся найти какую-то одну определенную букву задуманного слова. В процессе игры возникают различные ситуации, и не стоит гнаться за одной буквой, а лучше попытаться извлечь больше информации о задуманном слове противника.

В третьей партии, сыграв словом из семи букв, мы сразу отгадали задуманное слово, хотя при этом пришлось провести определенный анализ. В следующем примере определить задуманное слово по семибуквенному ходу не так легко.

ПАРАПЕТ 7

Полученный ответ сразу дает нам пять букв: П, А, Р, Е, Т и вместе с ними слово ПАТЕР.

Теперь можно сформулировать такую интересную задачу.

Задача 4. Придумать как можно более длинное слово, которое на первом же ходу (при удачном для вас ответе противника) поможет отгадать нам задуманное слово.

Поскольку семибуквенное тестовое слово мы уже знаем, искать следует слова из восьми, девяти и более букв.

О решении этой задачи вы подумаете дома.

Итак, нами была рассмотрена игра отгадай слово. Мы попытались найти оптимальную стратегию, для более быстрого определения загаданного слова. Так же можно сделать вывод, что начале игры, по-видимому, имеет смысл ходить словами, в которых побольше гласных - гласных в алфавите меньше, чем согласных, и, значит, есть шансы быстрее отгадать их. Для выявления одной конкретной буквы лучше всего сыграть словом с большим числом ее вхождений. Например, на слово ОБОРОНОСПОСОБНОСТЬ ответ, меньший семи, означает, что буквы О в задуманном слове нет, а ответ 7 или больше, что она почти наверняка в нем есть. Конечно, вопрос о букве О решает и ход ОКО (или БОБ), но он дает нам намного меньше информации об остальных буквах.

Замечание: Играя в отгадай слово школьники анализировали то, какими словами лучше играть, чтобы за меньшее число ходов угадать задуманное слово. С помощью учителя были разобраны несколько партий и в каждой новой партии школьники быстрее приходили к умозаключениям. Школьниками были рассмотрены несколько задач. Например, в задаче, в которой было предложено поменять правила игры и вместо русских слов (существительных, нарицательных, в единственном числе) делать ходы наборам букв, школьники учились оперировать абстрактными понятиями. В другой задаче учащиеся пытались найти слова, точно определяющие наличие буквы в слове. Делая это они группировали (проводили классификацию) по нескольким группам: те которые можно определить с помощью одного слова и те которые можно определить с помощью двух-трех.

Так как эта игра связана со знанием русского языка некоторым школьникам, знающим более хорошо русский язык, было интересно, они себя чувствовали более сильными, в ситуации успеха. Но с другой стороны здесь приходилось проводить логический анализ.

2.5 Быки и коровы (3ч)

Учитель рассказывает правила игры и предлагает рассмотреть первый пример вместе: Эта логическая, комбинаторная игра, придуманная сравнительно недавно, в 70-е годы, завоевала огромную популярность во многих странах. Ее наиболее распространенный вариант выпускается в виде комплекта под названием "Mastermind" (мастермайнд, буквальный перевод - "выдающийся ум"). Но начнем наш рассказ с "быков и коров".

Играют двое. Каждый задумывает четырехзначное число с разными цифрами, которое должен отгадать партнер (на первом месте может стоять 0). Ход заключается в том, что отгадывающий называет определенное число, также четырехзначное с разными цифрами. Если задуманное и названное числа имеют общие цифры, состоящие на одних и тех же местах, то такую ситуацию называют "быком" (далее обозначается "б"). Если общие цифры есть, но стоят они на разных местах, то это "корова" (обозначается "к").

В ответ на ход партнера загадчик сравнивает свое число с названием и сообщает общее число "быков" и "коров". Например, если задумано 5239, а названо 2735, то ответ будет "1 бык 2 коровы" (1б 2к). Цифра 3 имеется в обоих числах и стоит на одинаковых местах (1б), цифры 2 и 5 общие, но стоят на разных местах (2к), цифры 7 и 9 не являются общими.

Сделав ход и получив ответ, отгадчик извлекает некоторую информацию о задуманном числе и, в конце концов, определяет его. Игра заканчивается в тот момент, когда на очередной свой ход он получает ответ 4б, то есть задуманное число найдено. Выигрывает тот, кто быстрее отгадает число противника.

Приведем один пример. Предположим, что партнер задумал число 3594, которое нам нужно отгадать. Ходы и ответы на них будем записывать в табл.2.

Таблица 2

Номер хода

Ходы

Ответ соперника

1

2

3

4

5

6

1568

1586

1658

2570

4539

3594

1б 3к

Наш первый ход 1568 дал ответ 1б. что это значит?

Ученики: Это означает, что в задуманном числе имеет всего одна цифра из названных, причем стоящая на своем месте.

Учитель: Постараемся отгадать ее, не привлекая пока - чтобы не запутаться - другие цифры. Сделаем второй ход 1586. Ответ 1б. О чем он говорит?

Ученики: Это говорит о том, что на своем месте стоит цифра 1 или 5.

Учитель: Теперь следует третий ход 1658, и ответ 1к. Что он показывает?

Ученики: Этот ответ показывает, что в задуманном числе на втором месте стоит 5, а цифр 1, 6, 8 в нем нет.

Учитель: Ходом 2570 постараемся выяснить наличие цифр 2, 7 и 0. Ответ 1б. что он нам дает?

Ученики: Этот ответ весьма удачен - этих цифр в искомом числе нет. Итак, ясно, что задуманное число состоит из цифр 3, 4.5, 9, причем на втором месте - 5.

Учитель: Сделаем следующий ход 4539. Ответ 1б 3к. Что это означает?

Ученики: Это означает, что задумано одно из чисел - 3594 или 9543. Если первая цифра 3, то 9 может быть только третьей, а если первая 9, то 3 только четвертой.

Учитель: Ход 3594 и ответ 4б привел нас к цели; ответ 1б 3к означал бы, что задуманное число 9543, в этом случае партия продлилась бы на ход дольше.

Учитель: Перед тем как начать игру, давайте послушаем доклад, об отличии быков и коров от мастермайнда:

Докладчик: В комплекте мастермайнда роль цифр выполняют колышки шести цветов (красные, желтые, синие, зеленые, белые, черные), они вставляются в отверстие доски, которая выглядит примерно так, как показано на рис.13. Задуманный набор кодовых колышков - цифр (вверху доски) шифровальщик загораживает специальными воротами, и он не виден расшифровальщику.

Для каждого хода также предусмотрены четыре отверстия, а еще четыре отверстия, размером поменьше, расположены слева - для ответа на него.

Ход состоит в том, что отгадчик вставляет в отверстия четыре цветных колышка, а загадчик в ответ маленькие ключевые колышки двух цветов (черные и белые) в отверстие слева от хода (в любом порядке). Черные колышки выполняют роль "быков", а белые "коров". Если угаданы не все цвета, то некоторые отверстия остаются пустыми.

Рисунок 13

В примере на рисунке 13. избран шифр ксбж. При ходе зчсж произошло одно полное совпадение (ж) и один цвет (с) оказался не на своем месте. Таким образом, ответ бч (по-старому 1б 1к). на втором ходу ответ чбб, на третьем - ббчч (определены все четыре цвета), на четвертом - чччч. Игра закончена. Партия длилась четыре хода. Вообще, как мы видим, доска рассчитана на десять ходов (только совсем не опытные игроки не укладываются в эти рамки).

В переводе мастермайнда на язык "быков и коров" мы получаем, что задуманное число и числа-ходы разрешается образовывать только из шести цифр (шесть цветов колышков). Правда, цвета колышков в шифре и ходах могут повторяться (в отличии от "быков и коров", где все цифры разные). Так, на рис.13. в девятой строке сделан ход сскк. Ответ на него чб (синий цвет на своем месте, красный не на своем) оба цвета считаются только один раз. При шифре ккбж и том же ходе сскк красный цвет считался бы уже дважды, и ответ бб.

Сформулируем более точно, как дается ответ на каждый ход в мастермайнде. Сначала сравниваются цвета первых колышков шифра и хода. Если они совпадают, ставится черный кодовой колышек ("бык"), а первые колышки шифра и хода исключаются из рассмотрения. Если они разные, сравниваются цвета первого колышка шифра и второго колышка хода. При совпадении ставится белый кодовый колышек ("корова"), а первый колышек шифра и второй хода исключается из рассмотрения. Если цвета разные, сравниваются цвета первого колышка шифра и третьего колышка хода и т.д. Когда первый колышек шифра будет исключен из рассмотрения (либо сам по себе, либо при одном из совпадений цветов - вместе с соответствующим колышком хода), точно такой же последовательно сравнивается цвет второго колышка с цветом шифра с цветами колышков хода, а затем аналогично третий и четвертый колышки шифра. Очевидно, для шифра и ходов в таблице 2 наша процедура даст те же ответы.

Мастермайнд отличается внешней привлекательностью - красивая доска, разноцветные колышки, ворота и т.д. Однако у "быков и коров" другое преимущество - для игры не нужно ничего, кроме бумаги и карандаша.

Для отгадывания числа в "быках и коровах" или шифра в мастермайнде партнер должен как бы придумать тест для разгадывания числа или шифра.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.