Формування геометричних понять у молодших школярів
Місце геометричного матеріалу в структурі вивчення математики в початковій школі, його роль у розвитку сприйняття та уяви учнів. Методика вибору ефективних шляхів, методів та прийомів формування математичних понять, розробка методичних рекомендацій.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 28.07.2009 |
Размер файла | 162,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Вивчення величин - це один із засобів зв'язку навчання математики з життям. Ознайомлення учнів початкових класів треба організувати так, щоб діти набули деяких практичних навичок вимірювання величин, конкретно уявляли собі одиниці їх вимірювання та співвідношення між ними.
У початкових класах розглядають величини: довжина, площа, маса, місткість тощо.
Довжина. На першому етапі слід з'ясувати практичне значення вимірювання, сам його процес. Учні отримують уявлення про сантиметри і вимірюють довжину відрізка за допомогою моделей сантиметра.
Потім діти ознайомлюються з лінійкою (покажіть початок лінійки, ж» її відліку, перший, другий і т.д. сантиметр). Вони навчаються виконувати окремі операції: розміщувати аркуш паперу так, щоб руки і лінійки закривали відрізка, який вимірюють; суміщати початок відліку лінійки початком вимірюваного відрізка; розміщувати чотири пальці лівої руки щоб вони притискували середину лінійки до аркуша паперу.
Ознайомлення з дециметром та вимірювання довжини предметів і відрі н їм у дециметрах і сантиметрах проводяться під час вивчення чисел другого десятка. Учитель креслить на дошці відрізок завдовжки 50 см і пояснює вимірювати його довжину сантиметром незручно. Тому треба мати оті м одиницю вимірювання довжини. Потім показує смужку завдовжки 1 см. Учні, маючи такі самі смужки, прикладають їх до шкали лінійки і виясняють, що І дм = 10 см.
Первинне закріплення проводять за завданнями підручника. Діти розглядають моделі 1 см і 1 дм, визначають довжини відрізків, які поліп ш на сантиметри.
Ознайомлення з метром (у процесі вивчення нумерації чисел) проводять за таким планом: бесіда вчителя, за допомогою якої він підводить учнів до висновку, що великі відстані краще вимірювати більшими одиницями мір; показ демонстраційного метра для безпосереднього зорового сприймання; повідомлення співвідношень: 1 м = 100 см, 1 м = 10 дм; розгляд моделей метра, виготовлених з різних матеріалів; самостійне виготовлення дітьми метра з паперових смужок; вправи на вимірювання.
Вправи на вимірювання бувають подвійного роду: вимірювання відстані між двома пунктами (точками), наприклад, довжини та висоти класу, довжини шнурка та ін.; відмірювання відстаней, що дорівнюють даному числу метрів (наприклад, відміряти 3 м ниток).
У 3 класі вводяться нові одиниці вимірювання довжини (міліметр, кілометр), буквене позначення відрізків. Відрізки широко використовують для розгляду понять збільшення і зменшення числа в кілька разів, кратного порівняння чисел та ін.
У 4 класі передбачається узагальнення набутих раніше знань, умінь і навичок вимірювання довжини. Учні під керівництвом вчителя складають таблицю одиниць вимірювання довжини.
1 |
м - |
10 дм |
1 |
км = |
1 000 м |
|
1 |
м = |
100 см |
1 |
дм = |
10 см |
|
1 |
м = |
1 000 мм |
1 |
см = |
10 мм |
Окремий урок відводиться для ознайомлення учнів з новими одиницями вимірювання площі. Вводяться відразу всі одиниці вимірювання передбачені програмою.
У процесі подальшого вимірювання й обчислення площі прямокутник і розв'язування задач на обчислення площі слід мати на увазі такі моменти6
Діти повинні достатньо практикуватися у вимірюванні площ прямокутників на моделях та малюнках.
Кожен учень має виконати 2-3 завдання на вимірювання площі класне дошки, вікна, поверхні кришки стола, підлоги, стіни класної кімнати земельної ділянки тощо.
1 мм2 |
це площа квадрата, сторона якого 1 мм. |
|
1 см2 |
це площа квадрата, сторона якого 1 см. |
|
1 дм2 |
це площа квадрата, сторона якого 1 дм. |
|
1 м2 |
це площа квадрата, сторона якого 1 м. |
|
Ар |
це площа квадрата, сторона якого 10 м. |
|
Ар |
це сота частина гектара (сотка). |
|
Гектар (га) - це площа квадрата, сторона якого 100 м. |
||
1 км2 |
- це площа квадрата, сторона якого 100 м. |
Треба розв'язати достатню кількість задач на обчислення площ прямокутника, сторони якого виражені складеними іменованими числам. Саме тоді стане зрозумілою вимога правила про те, що довжину і ширину прямокутника необхідно вимірювати однією і тією самою мірок Розв'язування задач на обчислення площі потрібно поєднувати з розв'язуванням задач на обчислення периметра.
Слід практикувати обчислення площі прямокутних ділянок за і планом.
Для ознайомлення учнів з палеткою як інструментом для вимірювання площі фігур можна скористатися прийомом аналогії (масштабна лінійка, призначена для вимірювання довжини відрізка, палетка - для вимірювання площі фігури). Розкриваючи мету уроку, вчитель повідомляє дітям, що раніш вони знаходили площу фігури тільки прямокутної форми і робили це 2 правилом. Тепер потрібно навчитись з допомогою особливого пристрої знаходити площу фігур, що мають форму круга, будь-якого многокутник або фігури будь-якої форми. На фігуру накладають палетку - прозору плівку або пластинку, поділену на квадрати, - і лічать, скільки квадратів цієї палетку накладається на дану фігуру. На дошці вчитель креслить довільну криволінійну фігуру, накладає на неї палетку, показує спосіб підрахунку повних і неповних квадратів. (Палетка вчителя поділена на квадраті дециметри). Використовуючи зображення геометричних фігур, учні за допомогою палетки визначають їх площу. [15, 48]
Висновок
Сучасний шкільний курс математики має великі розвиваючі можливості завдяки своїй цілісності й логічній строгості. Ще К.Д. Ушинський писав: зробити серйозне заняття для дитини цікавим - ось завдання початкового навчання. Кожна здорова дитина потребує діяльності і до того ж серйозної діяльності. З перших же уроків привчайте дитину полюбити свої обов'язки й знаходити приємність в їх виконані».
Початковий період адаптації на уроках математики співпадає з проведенням підготовчої роботи до сприйняття понять числа, величини, дій з числами та ін. (дочисловий період). В цей період діти вчаться цілеспрямовано спостерігати над предметами і групами предметів у ході їх порівняння, розміщення у просторі, класифікації за ознаками (форма, розмір, колір), отримуючи при цьому кількісні і просторові уявлення. Відбувається розширення математичного кругозору і досвіду дітей, формуються їх комунікативні уміння. Особлива увага приділяється розвитку математичного мовлення дітей, вихованню їх особистісних якостей. Подальша робота з ознайомлення дітей з числами та діями з ними організовується з обов'язковим використанням предметної наочності в ході проведення дидактичних ігор, практичних робіт, екскурсій тощо. Залежно від характеру завдань на уроці діти можуть вставати з-за парт, підходити до столу вчителя, до книжкових полиць, до полиць із наочністю, іграшками та ін. Значне місце на уроках математики слід відводити дидактичним іграм, дозволяючи дітям час від часу рухатись, забезпечуючи зміну видів діяльності. Для розвитку просторових уявлень у першокласників корисно використовувати різноманітні дидактичні матеріали: будівельні набори, конструктори тощо. Вивчення окремих тем з математики у цей період може проходити не лише у класі, але і в добре обладнаній ігровій кімнаті, на уроках-іграх, поза межами класу, школи. Щотижня один урок математики доцільно проводити на повітрі. Так, при вивченні ознак предметів (порівняння предметів за кольором, розміром, формою) доцільним буде проведення екскурсій по школі, шкільному подвір'ю, на спортивний майданчик з включенням тематичних ігор, екскурсії у кабінет математики. Екскурсії в парк, вулицями міста, на пришкільну ділянку, рухливі ігри з різними завданнями допоможуть першокласникам у засвоєнні просторових уявлень, взаємного розміщення предметів. При вивченні матеріалу з порівняння груп предметів за їх кількістю, а також з лічби предметів доцільними будуть екскурсії в парк, у магазин.
Література
1. Алексюк А.М. Загальні методи навчання в школі. - 2-е вид., пероробл. і допов. - К.: Рад. шк., 1981. - 206 с.
2. Артемьев А.К. Состав и методика формирования геометрических умений школьников. Приволжское книжное издательство. Пензенское отделение, 199. - 385 с.
3. Бантова М.О. Бельтюкова Г.В. Полевщикова О.М. Методика викладання математики в початкових класах, - Київ: Вища школа 1982 - 171 С.
4. Башмаков М.И. Теория и практика продуктивного обучения. - М.: Нар. образование, 2000. - 248 с.
5. Бевз Г.П. Методика викладання математики: Навч. посіб. - К.: Вища шк., 1989. - 367 с.
6. Богданович М.В. Урок в початковій школі. Посібник для вчителя. - Київ: Радянська школа, 1990 - 192 с.
7. Богданович М.В., Козак М.В., Король Я.А. Методика викладання математики в початкових класах: Навч. посібник. - 2-е вид., перероб. і доп. - Тернопіль: Навчальна книга - Богдан, 2001. - 368 с.
8. Великохатська Л.Ф. Кочіна Л.П. Наочність на уроках математики в 1-3 класах, - Київ: Радянська школа, 1979 - 41 с.
9. Глейзер Г.Д. Развитие пространственных представлений школьников при обучении геометрии. - М.: Педагогика, 1998. - 104 с.
10. Груденов Я.И. Психолого-педагогичеокие основы методики обучения математике. - М.: Педагогика, 1997. - 158 с.
11. Довга Т.Я., Завіна В.І. Шляхи раціоналізації навчальної праці молодших школярів // Початкова шк. - 1990. - №3. - с. 58-60.
12. Друзі Б.Г. Творчі вправи з математики для початкових класів. - Київ: Радянська школа, 1988 - 37 с.
13. Друзь Б.Г. Творчі вправи з математики для початкових класів: Посібник для вчителів. - К.: Рад. шк., 1988.
14. Дятлова С.І. Наочні посібники для уроків математики. Початкова школа, - 1997 №5
15. Епишев О.Б., Крупич В.И. Учат школьников учиться математике: Формирование приемов учебной деятельности: Кн. для учителя. - М.: Просвещение, 1990. - 126 с.
16. Завдання навчання математики в І-III класах // Бантова М.О., Бельтюкова Г.В., Полевщикова О.М. Методика викладання математики в початкових класах / За загальною редакцією М.О. Бантової. - Київ: Головне видавництво видавничого об'єднання «Вища школа» 1977. - С. 7-8.
17. Зильберберг Н.И. Урок математики: подготовка и проведение: Кн. Для учителя. - М.: Просвещение: АО «Учеб.лит.», 1995. - 178 с.
Подобные документы
Теоретичні аспекти вивчення геометричного матеріалу в початковій школі. Загальна характеристика геометричної пропедевтики. Програмні вимоги щодо рівня геометричних знань учнів 1-4 класів. Методика організації засвоєння геометричного матеріалу учнями.
курсовая работа [26,7 K], добавлен 03.06.2009Вдосконалення системи засвоєння геометричних понять через формування прийомів евристичної діяльності. Розробка завдань з наочної геометрії, на основі яких можна формувати прийоми. Розгляд доцільності використання прийомів евристичної діяльності.
статья [660,2 K], добавлен 13.02.2014Роль геометричного матеріалу у формуванні просторового мислення молодших школярів. Прийоми розвитку геометричних понять і уявлень на основі конструювання під час навчання математики в варіативних програмах. Методика Д.Б. Ельконіна "Графічний диктант".
дипломная работа [694,8 K], добавлен 25.06.2014Зміст та порядок вивчення навчального матеріалу з теми за чинною програмою з математики для 1-4 класів. Ознайомлення молодших школярів з просторовими відношеннями і геометричними фігурами. Система вправ на закріплення знань учнів про геометричні фігури.
курсовая работа [453,8 K], добавлен 27.07.2015Методика ознайомлення дітей з геометричним матеріалом. Особливості вивчення лінії, многокутників, кола, круга та кутів у початковій школі. Формування в учнів вміння працювати з креслярськими інструментами. Зв’язок арифметичного матеріалу з геометричним.
отчет по практике [266,8 K], добавлен 27.05.2009Аналіз розвитку уяви молодших школярів у психолого-педагогічній літературі. Психологічні фактори, що обумовлюють формування цієї якості педагогічними засобами. Розробка циклу занять з розвитку уяви учнів молодших класів за рекомендаціями Джанні Родарі.
курсовая работа [246,2 K], добавлен 08.11.2013Питання формування мотивації в психолого-педагогічній науці. Роль мотивації учнів у навчанні. Принципи, що формують позитивну мотивацію. Методика формування позитивних мотивів в початковій школі. Формування в учнів позитивного ставлення до навчання.
курсовая работа [40,1 K], добавлен 25.06.2009Методи формування у молодших школярів математичних знань в процесі дидактичної гри. Переваги використання гри на уроках математики в молодших класах, оцінка його ефективності в мовленнєвому розвитку учнів. Розробка спеціальних ігор і проведення уроку.
дипломная работа [262,0 K], добавлен 14.07.2009Основи формування екологічних понять на уроках біології в загальноосвітній школі як засобу підвищення екологічної свідомості учнів. Психолого-педагогічні підходи та методика. Експериментальне дослідження засвоєння екологічних понять та його результати.
дипломная работа [320,6 K], добавлен 11.04.2012Сутність, форми та особливості логічного мислення молодших школярів. Умови розвитку логічного мислення учнів за допомогою системи розвиваючих завдань. Діагностика рівня розвитку логічного мислення за методиками "Виключення понять" та "Визначення понять".
курсовая работа [1,4 M], добавлен 23.12.2015