Методическое наследие Ф.В. Филипповича

Характеристика математического образования России на рубеже XIX–XX веков. Развитие методики преподавания математики в России в это время. Биографические сведения о Ф.В. Филипповиче. Обзор его работ по педагогике и научно-методические идеи, их значение.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 06.05.2011
Размер файла 281,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В-третьих, из изложенного видно, что курс «дробей» должен распадаться на три цикла. В первом - надо познакомить детей с простейшими случаями дробления конкретных «единиц», эти четвертушки. Половинки, восьмушки свободно усваиваются детьми, также как и простые выкладки над ними. Во втором - научить производить действия над десятичными конечными числами. В третьем- изложить не теорию обыкновенных дробей, а лишь условные определения оперирования с символами и на числовых, а затем и буквенных примерах, поскольку эти операции необходимы в курсе уравнений». [12, 246-248]

Как видим, авторы в схеме изучения темы склонны придерживаться последовательности: сначала десятичные дроби, затем обыкновенные. Это предложение являлось в те времена весьма смелым высказыванием, - достаточно указать на официальные программы и популярные учебники А.П. Киселева, в которых был реализован другой порядок - раздел, посвященный обыкновенным дробям, предшествовал разделу «Десятичные дроби». Поэтому понятно, почему авторы так много внимания уделяют обоснованию порядка изучения дробей и детально описывают методику изучения десятичных дробей.

Вопрос об иррациональных числах излагается здесь весьма доступным образом, сопровождается рядом полезных пояснений. Изложение ведется с опорой на геометрические представления, дается пропедевтика аксиомы непрерывности множества действительных чисел, разъясняется суть несоизмеримости с методологической точки зрения. [3, 32]

Проиллюстрируем эти замечания подробной цитатой:

«Лучше всего начать с исторического примера, . Построив прямоугольный треугольник с катетами по 1, откладываем гипотенузу на оси абсцисс, ее конец лежит, как видно, между 1 и 2, т.е. 1<<2.

Разделив теперь промежуток между 1 и 2 на 10 частей, мы видим, что 1,4<< 1,5.

Проверка: 1,4 2 = 1,96; 1,5 2 = 2,25. Теперь разделив еще на 10 частей промежуток между 1,4 и 1,5 мы видим, что конец гипотенузы лежит между 1,41 и 1,42, следовательно, 1,41 << 1,42.

Действительно, 1,41 2 =1,9881 и 1,42 2 =2,0104. Дальнейшие деления промежутка между 1,41 и 1,42 при нашем масштабе невозможны; но если воспользоваться лупой и при ее помощи нанести такие деления, то мы получим следующие приближения, а именно, 1,414 < < 1,415.

Проверка: 1,4142 = 1,999396 и 1,415 2 =2,002225 показывает, что значение 1,414 точно до 0,1%.

Пользуясь лупой. Или же взяв покрупнее масштаб, мы можем продолжить наши вычисления, но наступит момент, когда учащиеся спросят: как долго это может продолжаться? Предложите им тогда убедиться аналитически в бесконечности такого процесса, а именно, докажите им, что не существует такого дробного числа, квадрат которого равнялся бы 2. Пусть = , где а и b целые взаимно - простые числа. Тогда 2 = , но дробь тоже несократима, и мы пришли к нелепости: целое число равно несократимой дроби. Следовательно, предположение, что есть дробное число, невозможно. Остается допустить, что это число особого рода, пока нам неизвестного. Теперь выступает на сцену аксиома Кантора: надо показать, что такие числа действительно возможны, что они соответствуют реальным объектам. Лучше всего взять непрерывную кривую и показать, что проекции всех ее точек на ось Х-ов должны выражаться числами; одни из перпендикуляров попадут на целые деления, другие - на дробные, но будут и такие, для которых необходимо допустить существование особых чисел - несоизмеримых. Таким образом, непрерывность геометрической области будет связана с непрерывностью арифметической области.

После этого полезно указать учащимся, что несоизмеримость - свойство нашей системы счисления, а не тех величин, какие мы рассматриваем: абсолютной несоизмеримости нет. Возьмем пример. Отношение длины окружности к длине диаметра есть величина постоянная, но число , ее выражающее, в нашей системе счисления является несоизмеримым. Если бы у нас была иная, например, такая система, где единицы писались бы на своем месте, а на втором месте тот же знак выражал бы число не в 10 раз, а в раз больше, и т.д., то тогда в такой системе числа, кратные , были бы соизмеримы, а все соизмеримые числа нашей системы стали бы несоизмеримыми». [12, 369-370]

О преподавании геометрии

Особый интерес Ф. В. Филиппович проявляет к методике обучения геометрии. Этот интерес вполне объясняется спецификой предмета геометрии, позволяющей в большей степени, чем в других разделах математики, использовать разнообразные средства наглядности. А как уже было отмечено выше, Филиппович испытывал постоянную тягу к наглядным и лабораторным (практическим) методам обучения. Согласно его концепции, предполагается изучение геометрии в два цикла. «В первом цикле,- пишет автор, - должна преобладать интуиция, наглядность. Второй цикл геометрии содержит только необходимое число теорем и задач, составляющих неразрывную логическую цепь».[12, 369] По сути, автор говорит о наглядном курсе геометрии и курсе, в определенной степени, систематическом.

Убедительно доказывает Ф.В. Филиппович целесообразность начального (основного) курса геометрии (для младших классов - средней, старших - народной школы, и даже для взрослых - слушателей в народных университетах), сопоставляются разные способы построения начального курса геометрии, выявляются требования к такому курсу и его содержание. Филипповича постоянно интересовала проблема определения оптимального объема содержания начального курса геометрии. Краткое содержание курса было приведено в книге «Педагогика математики», идеи наглядного курса геометрии получили развитие в программах для народных университетов и восьмиклассной женской гимназии, в составлении которых участвовал Ф. Филиппович. Данный курс построен на принципе фузионизма стереометрии и планиметрии. Содержание этого курса подкреплено разработанной методикой изучения конкретных разделов, в которой в высшей степени раскрыты возможности использования наглядности и лабораторного метода в обучении математике. Более того, к данному разделу математики Филипповичем были составлены наглядные и лабораторные пособия «Наглядная геометрия в развертках», «16 геометрических разборных тел из 55 частей», «10 разверток геометрических тел» и др. (последние два пособия составлены вместе с В.Р. Мрочеком).

В трудах Филипповича описано огромное количество лабораторных и практических работ по наглядной геометрии, среди которых есть и такие, которые и сегодня используются учителями средних школ (лабораторная работа по определению длины окружности и выявлению численного значения числа ). Но есть и работы забытые, хотя они могли бы быть не менее полезными и интересными для современной школы.

Для вывода формулы площади круга рекомендуется провести опыт. Сначала им предлагается вырезать из цветного картона круг и провести диаметр. Затем оба получившиеся полукруга разделить на возможно большее число равных секторов так, чтобы можно было принять за треугольники (ввиду того, что дугу в силу ее малости можно принять за хорду). Если эти полукруги растянуть, то получатся две фигуры напоминающие пилы. Теперь, если вкладывать зубцы одной фигуры между зубцами другой, получится параллелограмм (или почти прямоугольник). Основание параллелограмма равняется половине длине окружности, а высота - ее радиусу. Применяя формулу для отыскания площади параллелограмма, получим . Это и есть формула для отыскания площади круга. [3, 33-37]

Филиппович разработал методику введения формулы для вычисления объема пирамиды лабораторным методом. Он предлагает пять различных способов измерения объема пирамиды. Приведем описание первых трех способов:

«Первый, чисто эмпирический способ, состоит в том, что нужно взять полую призму, основание и высота которой соответственно равны основанию и высоте полой пирамиды. Пересыпая песок или переливая воду находим, что объем ирамиды составляет третью часть объема призмы, т.е. объем пирамиды = площади основания X [умножить на высоту]

Второй - также наглядный - способ: возьмем куб, состоящий из шести пирамид с вершиною в центре куба; каждая из них основанием имеет одну из граней.

Все полученные пирамиды равны между собою, это очевидно. Но мы знаем, что объем куба измеряется произведением площади основания на высоту, а так как каждая из полученных пирамид составляет куба, то и объем каждой пирамиды будет равняться произведению площади основания на высоты куба, или, что все равно, на высоты пирамиды, потому что высота каждой из пирамид составляет высоты куба.

Третий способ: возьмем опять тот же куб из 6 пирамид и проведем через его центр плоскость, параллельно основанию; тогда наш куб разделится на два прямоугольных бруса (параллелепипеда). В каждом из брусов будет заключаться одна полная пирамида, покоящаяся на основании куба, и четыре боковые, составляющие половины первой. Если получившиеся четыре боковые пирамиды сложим по две, то у нас будут - вместе с оставшейся целой пирамидой -три совершенно равные пирамиды, заключенные в одном брусе. Следовательно, объем каждой из них составляет объема бруса. Так как объем бруса равен произведению площади основания и высоты, то объем четырехугольной пирамиды измеряется произведением площади ее основания на высоты, т.е.

.[12, 194-197]

Без сомнения, самым удачным следует признать первый способ. Именно этот способ выбрал Филиппович для лабораторных работ в своем учебном пособии «Начальная геометрия». Сначала он предлагает измерить опытным путем объем треугольной пирамиды и треугольной призмы, а затем произвести аналогичный опыт с четырехугольной пирамидой и параллелепипедом. Вообще, по теме «Треугольная пирамида» Филиппович разработал следующий цикл практических упражнений. Первые пять заданий заключаются в том, чтобы по данной развертке треугольной пирамиды определить ее апофему, сторону правильного треугольника и его высоту, боковую и полную площадь пирамиды. [3, 37-38]

Далее Филиппович пишет:

«Для того, чтобы узнать, как измеряется объем треугольной пирамиды, изготовь из картона треугольную пирамиду и треугольную призму, имеющие одинаковые основания и высоты. После этого, наполняя пирамиду, например, мелким песком, удостоверься, сколько раз надо брать содержимое пирамиды для наполнения призмы. Стало быть,

Объем треугольной пирамиды =………..объема треугольной призмы.

Обьем треугольной пирамиды =…………..куб. см.

Сделай из картона брус и квадратную пирамиду, имеющие одинаковые основания и высоты, и таким же способом покажи, как измеряется объем квадратной пирамиды (см.рис.).

Объем пирамиды …….= ..... объема призмы.

Если обозначить высоту квадратной пирамиды через Н см., а длину стороны квадрата а см., то

Объем пирамиды ….... = куб. см.» [29, 15 ]

О преподавании алгебры

Учение о прогрессиях является традиционным разделом в современном школьном курсе математики. Заметим, что сведения о прогрессиях были включены еще в самую первую официальную программу для гимназий в 1845 году и стабильно сохранялись как в до революционной, так и в советской средней школе. Включение этого раздела в курс математики средней школы оправдано сразу из нескольких соображений. Во-первых, арифметическая и, особенно геометрическая, прогрессии имеют широкие применения в экономике и в самой математике (при помощи бесконечной геометрической прогрессии можно изложить учение о периодических десятичных дробях, вычислять пределы интегральных сумм (уделенные интегралы) и т.п.). Во-вторых, здесь школьники получают первые элементарные представления об очень важном магического анализа - теории рядов (арифметическая и геометрическая прогрессии являются примерами простейших числовых последовательностей, а их частичные и бесконечные суммы - примерами частичных сумм и просто сумм числового ряда и т.п.) Изучение данной темы не вызывает принципиальных затруднений у школьников.

Методика изучения прогрессий, описанная В.Р. Мрочеком и Ф.В. Филипповичем, широко использует символическую наглядность и, поэтому способствует более прочному сохранению в памяти информации о прогрессиях.

Отличительной особенностью «Педагогики математики» является также наличие большого набора задач практически по всем рассматриваемым разделам. [3, 39-42]

Пример задачи к разделу об арифметической и геометрической прогрессиях: «Бедняк предложил богачу жить у него на следующих условиях. Бедняк будет платить своему квартиранту ежедневно на 1 р. Больше, чем накануне, в первый же день уплатит ему 1р. богач, напротив, должен платить так: в первый день - копейку, во второй - две, в третий - четыре, в четвертый - восемь и т.д. В виде опыта они заключили двухнедельное условие. Кто из них отказался от продолжения условия? (Ответ: богач, т.к. ему пришлось доплатить бедняку 58р.63к.)» [12, 241]

Всюду, где это только возможно, авторы стараются выявить существующие методические подходы к изучению темы и построению курса, глубоко и всесторонне анализируют эти подходы, пытаясь установить наиболее целесообразный. Так, после критического анализа трех главных систем построения школьного курса алгебры (в основе первой - учение о тождественных преобразованиях, согласно второй системе материал группируется около двух главных моментов: уравнений первой и уравнений второй степени», в третьей же системе доминирующую позицию занимает функциональная идея) педагоги приходят к следующим выводам:

«В алгебре, как и в других отделах математики, материал должен быть распределен по циклам. Если иметь в виду интересы учащихся, то содержание первого цикла должно ограничиваться вопросами об уравнениях первой и второй степени, решаемых аналитически и графически, и знакомством с практикой логарифмических вычислений. Построение курса должно быть таково, чтобы арифметика и алгебра развивались нераздельно и непрерывно». [12, 241]

Вопрос о введении общего понятия уравнения, также как и общего понятия функции, пока еще в дореволюционной методике обучения математике не ставится. Однако по поводу изучения конкретных видов функций (линейной функции (в т.ч. прямой пропорциональности) и квадратичной функции) сделан ряд перспективных предложении. Так в зародышевом виде здесь высказана идея о методической схеме изучения конкретной функции.

Описанная схема (конкретные задачи - графическая интерпретация - аналитическая запись -- исследование) реализована Мрочеком и Филипповичем в методике изучения линейной функции. Похожие идеи были высказаны, развиты и окончательно сформулированы советскими педагогами, которые предложили следующую схему изучения конкретных функций:

1) рассмотрение конкретных ситуаций (или задач), приводящих к данной функции;

2) формулировка определения данной функции, аналитическая запись функции; исследование входящих в эту формулу параметров;

3) ознакомление с графиком функции;

4) исследование свойств функции;

5) использование изученных свойств функций при решении различных задач, в частности уравнений и неравенств.

Эта схема получила всеобщее признание, о чем свидетельствует хотя бы то, что ее придерживаются практически вес учебники алгебры для девятилетней школы. [3, 44]

Последовательность изучения квадратичной функции почти такая же: сначала дается понятие о параболе на основе графического описания процесса свободного падения, затем указывается что «эту же кривую можно получить и аналитическим путем» и без всяких пояснений говорится, что дано уравнение у=х, а учащимся предлагается составить таблицу для некоторых значений х и у, затем построить график. На следующих страницах выясняется положение параболы на плоскости в зависимости от параметров, входящих в описываемое эту параболу уравнение. Надо уточнить, что всякий раз здесь рассматриваются конкретные числовые значения параметров, а не общий случай.

В данной главе заслуживает внимания раздел, в котором описываются приближенные приемы извлечения квадратного корня. Авторы предлагают пять приемов. «Извлечение квадратного (и вообще корня) есть действие, обратное возведению в степень, поэтому на первых порах лучше всего пользоваться таблицей квадратов чисел. Так как при решении геометрических вопросов в большинстве случаев получаются иррациональные числа, то учащиеся скоро будут поставлены перед необходимостью интерполировать свою таблицу; таким образом, они познакомятся с различными приемами приближенного извлечения квадратных корней. Эти приемы указаны в книге.

Таким образом, Ф. В. Филиппович (преимущественно в соавторстве с В.Р. Мрочеком) выявил связи методики математики с другими областями знаний, сделал решительные шаги вперед в определении круга вопросов, которыми занимается методика математики, выделил отличительные признаки математики - учебного предмета и математики - науки, заложил теорию целеполагания в обучении математике, развил идею о наглядности в обучении математике.

В частной (и специальной) методиках он развил методические идеи наглядной геометрии, числовой линии (рационального числа, положительного и отрицательного числа), квадратных уравнений первой степени в связи с учением о функция и т.д.

В теоретической части В. Р. Мрочек и Ф. В. Филиппович увлекаются цитированием американских и английских мыслителей -- Литца, Сивера, Демолена, Холла и др., но в тоже время в практической части, что показательно, есть немало упоминаний о трудах русских педагогов - А.И. Гольденберге, В.П. Ермакове, К.Ф. Лебединцеве, А.Н. Страннолюбском, Н.А. Томилине и др. [3, 44-47]

О преподавании начал анализа

Особенно ценным представляется вклад Ф. В. Филипповича в развитие методики преподавания начал математического анализа в средней школе. Элементы высшей математики тогда в России делали самые первые шаги в школьные программы, только начинали создаваться учебники по анализу бесконечно малых и аналитической геометрии для средней школы, поэтому предложения Филипповича были не только смелыми, но и весьма своевременными.

Просто удивительно, как грамотно, убедительно автор раскрывает узловые моменты методики преподавания математического анализа: доказывает целесообразность внедрения элементов математического анализа в среднюю школу, раскрывает приоритетные направления, идеи и пути конструирования содержания.

Следует также отметить, что развернувшиеся в начале XX века споры о целесообразности введения в школьный курс математики новых идей свидетельствует о знакомстве оппонентов с мировой и отечественной педагогикой и психологией.

Среди тех, кто в этот период приветствовал преподавание высшей математики в средней школе, были видные отечественные ученые, известные гражданские и военные педагоги: П.А. Некрасов, Б.Б. Пиотровский, М.Г.Попруженко, В.Е.Сердобинский, В.Шидловский, С.И. Шохор-Троцкий, В.П.Шереметевский.

Свою позицию имел и Ф.Филиппович, который одним из первых наиболее четко и ярко обозначил основные аргументы в пользу введения анализа бесконечно малых в среднюю школу.

Филиппович доказывает, что введение высшей математики вызвано необходимостью воплощения принципа научности. Ведь именно принцип научности требует, «чтобы содержание обучения знакомило учащихся с объективными научными фактами, теориями, законами, отражало бы современное состояние наук». Также Филиппович высказывает свои соображения в пользу начал дифференциального и интегрального исчисления в школьном курсе. Целесообразность этого нововведения, как он справедливо считает, продиктована необходимостью «удовлетворить запросы жизни» («утилитарная» функция математики).

Реализация принципа связи обучения с жизнью и практикой, особенно в старших классах, бывает осложнена тем, что в силу своей специфики (абстрактности) математика имеет опосредованное отношение к действительности. Но для решения практических задач естествознания и техники математический аппарат (в том числе и идея функциональной зависимости и аппарат производной) просто необходим. Ведь именно математический анализ занимается разработкой методов построения и изучения динамических моделей в математике, моделей, описывающих движения, текущие процессы, непрерывно меняющиеся состояния, широко распространенные в природе. [3,47 - 51]

Идея концентризма в последовательности изложения начал математического анализа в средней школе Ф. В. Филиппович резко критикует методику изложения элементов математического анализа в русских учебниках, предназначенных для средней школы, призывает позаимствовать все полезное у французов и пытается доказать целесообразность идеи концентризма в последовательности изучения темы:

«В связи с введением анализа бесконечно малых в среднюю школу возникают разногласия по поводу построения самого курса. Новые французские учебные планы, «Меранская» программа в Германии и другие настаивают на введении идеи функциональной зависимости. Реформаторы всех направлений присоединяются к этому требованию. Действительно, объяснить какое-нибудь явление в природе - это значит выяснить его генезис и связь с другими явлениями. Ввиду этого лучше всего развивать идею функциональной зависимости (закономерности) в математике. Учение о функциях есть центральное учение всей математики, потому что функциональная зависимость есть математическое выражение великого закона изменяемости соотношения всех явлений; установление ее есть сущность и конечная цель всей науки. Поэтому мы, сторонники реформы, требуем, чтобы весь курс математики был сконцентрирован около идеи функциональной зависимости и расширен первоначальными понятиями анализа бесконечно малых. Стало быть, начала дифференциального и интегрального исчислений не должны составлять самостоятельного отдела - «учения о функциях» - и являться какой-то «надстройкой» над школьным курсом, так называемой элементарной математики. Практика показала, что такая метода (надстройки) преподавания анализа бесконечно малых теряет свою воспитательную и общеобразовательную ценность. Анализ бесконечно малых в таком роде не только не возбуждает и не поддерживает интерес к математике у учащихся, но даже и усваивается очень трудно.

Раньше еще, до начала анализа бесконечно малых, должны мы подготовлять почву для ясного, отчетливого и возбуждающего новые идеи преподавания элементов дифференциального и интегрального исчислений. Некоторые способности у учащихся поддаются развитию только в известном возрасте, раз этот момент будет упущен, тогда довольно трудно наверстать пропущенное. Ввиду этого, еще с младших классов средней школы на уроках арифметики, геометрии, алгебры, ... следует проводить красной нитью в течение всего курса школьной математики идею функциональной зависимости. В этом-то и заключается точное понимание аналитической геометрии и начал дифференциального и интегрального исчислений.

В самом начале [преподавания] анализа бесконечно малых мы должны исходить из более конкретных и простых задач. Целесообразно подобранными примерами из естествознания следует проиллюстрировать учащимся, что исследование какого-нибудь явления сводится к достижению двух результатов: а) найти общий закон, выражающий ход этого явления (функцию) и b) определить скорость изменения этого явления природы в каждый произвольно взятый момент (производную).

Целью преподавания высшей математики в средней школе ни в каком случае не должно быть только усвоение механизма, техники дифференцирования и интегрирования. При такой методе начала дифференциального и интегрального исчислений потеряли бы всю свою общеобразовательную и воспитательную ценность. Тоже самое можно было бы сказать, если бы весь курс анализа состоял из доказательств теорем и применений их к дифференциалам и интегралам.

По моему мнению, мы должны воспользоваться задачами из физики, химии, техники и др., чтобы на них выяснить происхождение основных понятий дифференциального и интегрального исчислений. Например, какая-нибудь задача из естествознания дает нам возможность составить функцию, изобразить ее графически, затем исследовать и под конец найти ее производную. Подходя таким образом к понятию о производной, мы всегда должны выяснять, в чем сущность задачи дифференциального исчисления и давать наглядное представление (графическое изображение). После графического изображения идет идея и понятие производной, а под конец - термин и символ производной.

При такой системе преподавания ученики вникают в математичность жизни природы и видят наглядно, какое колоссальное значение математики со стороны ее метода. Далее, при изучении анализа, ученикам предоставляется большой простор, чтобы проявить свою самостоятельную работу, самодеятельность и постоянно делать умозаключения. Кроме того, такой порядок вещей не сводит начала дифференциального и интегрального исчислений к собранию непонятных значков и символов, как утверждают некоторые Противники введения анализа бесконечно малых в среднюю школу. Но в этом-то и состоит задача педагогики - сделать науку понятной, заставить ее говорить простымj обыкновенным языком. «Нет мысли, которую нельзя было бы высказать просто и ясно», [говорил] А.И.Герцен. В самом деле, кто следил за учебной заграничной литературой в течение последних 25-30 лет, тот может констатировать что всюду замечается стремление к упрощению изложения материала. Достаточно сравнить новейшие учебные книги со старыми. То же самое можно утверждать и относительно школьных программ и учебных планов. Что касается русских учебников по анализу бесконечно малых, то в этом отношении дело обстоит довольно плохо. Все эти учебники для средней школы построены приблизительно по одному типу. Сначала идет сухое изложение понятия о функции, затем подразделение функций, теоремы о пределах, непрерывность функций, Производная и дифференциал и т.д. Такое построение курса анализа навряд ли может вызывать интерес у учащихся. Некоторые французские и немецкие учебники могли бы послужить хорошим примером, как надо составлять учебное руководство по анализу бесконечно малых для средней школы.

Как всякий отдел математики, анализ бесконечно малых должен быть построен концентрически. Еще с V класса при графическом изображении эмпирических функций мы должны подготовлять почву для дифференциального исчисления. А в VI и VII классах при проведении идеи функциональной зависимости на уроках алгебры следует учащихся знакомить с понятием о производной, а на уроках геометрии - с понятием об интеграле.

В VIII классе - связный обзор изученных в предыдущих классах функций и элементы дифференциального и интегрального исчислений».[31, 104-107]

Рассматривая методику введения понятия производной Ф. В. Филиппович высказал ряд интересных методических замечаний по поводу изучения конкретных понятий. Так, для введения понятия производной, автор считал необходимым широко привлекать сведения из геометрии, физики, химии и т.п.:

«Учение о производной должно быть разрабатываемо с различных точек зрения. Прежде всего, рассматривая равномерное и неравномерное движение, мы подводим учащихся к понятиям о постоянной скорости, средней скорости в определенный промежуток времени и скорости для некоторого момента t. Таким образом, вводя понятие о скорости изменения в учение о функциях, мы устраиваем аналогию с механическими процессами движения. Сначала скорость есть производная пути по времени, на другом примере у нас получится, что скорость химической реакции есть производная количества реагирующего тела по времени, далее, по известной формуле расширения от теплоты, мы можем определить коэффициент расширения как меру скорости, с которой идет процесс расширения при равномерном нагревании. Конечно, и другие примеры должны показать учащимся, какие разнообразные задачи приводят нас к понятию о производной.

При помощи таких конкретных задач можно одолеть и другие методические трудности в начале учения о производной, вроде, например, того, что: 1) отношение двух бесконечно малых может быть равно конечному; и 2) предел отношения при приближении Дх к нулю для данной зависимости между у и х может быть вычислен.

Аналогично выше приведенному [изложению] и задача о направлении касательной к параболе и т.п. должна показать учащимся, как можно подойти к производной с геометрической точки зрения. Графически изображая какую-нибудь математическую функцию (например, у=х2) и определяя направление касательной при помощи тангенса угла, образуемого касательной с осью х, ученики приходят к заключению, что истинная скорость изменения ординат кривой в какой-нибудь точке равна угловому коэффициенту касательной.

Сравнивая на частных случаях и числовых примерах полученные результаты: угловой коэффициент

т.е.,

мы должны из этого извлечь в чистом математическом виде понятие о производной. Следовательно, после разнообразных частных примеров и применений производных, мы обобщаем понятие о производной в виде формулы

Авторы русских учебников начинают антипедагогично понятие о производной, т.е., с конца: дают определение производной при помощи отношения , а потом следуют примеры на отыскание производной и дифференциала.

Итак, общее методическое положение, по моему мнению, целесообразно и здесь, при прохождении учения о производной: «Сначала применение, а затем уже правило».[31, 107-108]

Что касается последовательности изложения элементов интегрального исчисления и целесообразности включения в школьный курс понятия определенного интеграла, то автор книги обуславливает это хотя бы тем, что интегральное исчисление дает более эффективные и экономичные методы для подсчета объемов и площадей: «Усилие, требующееся для того, чтобы ознакомиться с производной и интегралом и с тем, как при помощи этих удивительных орудий можно вычислять поверхности и объемы, будет не столь значительным, как те усилия, которые приходится делать для установления равновеликости прямой и наклонной призм или двух пирамид, и затем эти невыносимые объемы тел вращения. По сей день я не знаю выражения объема тела, получающегося при вращении сегмента круга около его диаметра...

Уже и теперь во многих новых немецких и французских учебниках по геометрии убраны громоздкие и схоластические теоремы об объемах пирамид, тел вращения и т.д. Вместо них включены в геометрию метод истощения или закон Кавальери. Так, например, в новом учебнике геометрии Бореля-Штеккеля теоремы об объемах пирамид изложены методом истощения. На русском языке в элементарном курсе геометрии Д. В. Ройтмана измерения объемов некоторых тел проходятся при помощи закона Кавальери. В самом деле, «закон Кавальери», обогативший математику и начинающий собою новую эпоху величайших открытий, сделанных в новейшее время, также удобный для определения площадей и объемов тел. Он заменял собою в течение 50-ти лет с большим успехом интегральное исчисление и поэтому тоже может в курсе геометрии сослужить роль пропедевтики для интегрального исчисления».[31, 109]

В результате автор приходит к выводу, что в первую очередь следует познакомить учащихся с понятием определенного интеграла, а затем неопределенного. Причем, он считает, - с введением строгой дефиниции определенного интеграла на первых порах спешить не стоит.

«С педагогической точки зрения не будет никакой ошибки, если в самом начале не давать точного определения интеграла. Я придерживаюсь того взгляда, что сначала надо определять интеграл как площадь, и лишь когда учащиеся познакомятся с ним побольше, надо дать более точное определение. На основании своей практики позволю сообщить вам, как я подхожу к определенному интегралу.

Сначала ученики чертят прямоугольник с основанием (а-b) на оси X и высотой с на оси У. Разбивая этот прямоугольник на большое число прямоугольников с основанием дх и высотой с, мы получаем, что площадь его выражается следующей формулой:.

2) После прямоугольника переходим к площади трапеции. Чертим прямую у=тх и после некоторых суммирований и нетрудных преобразований получаем формулу для площади трапеции:

Обобщая все эти частные случаи, мы, в конце концов, получаем известную формулу интегрального исчисления:

и т.д.

Таким образом «от частного к общему» и от «конкретного к абстрактному» доходим и до других интегралов

А несколько таких интегралов достаточно будет для установления всех объемов и площадей элементарной геометрии.

В VIII классе я излагаю второй цикл интегрального исчисления. Но и здесь я считаю целесообразным подчеркивать все время на частных примерах, задачах из естествознания сущность задачи интегрального исчисления: зная бесконечно малые изменения одной переменной величины, которые соответствуют бесконечно малым изменениям другой (производную), найти функциональное отношение, которое имеет место между этими двумя величинами, т.е., найти закон, управляющий общим ходом явления (интеграл).

Что касается понятия о дифференциале, я не могу согласиться с авторами русских учебников по анализу, что дифференциал следует определять сразу после производной. Помня общее дидактическое положение - «по одной трудности зараз», - я откладываю понятие о дифференциале до тех пор, пока он нам не понадобится. А это как раз наступит тогда, когда мы подойдем к изучению неопределенных интегралов.

Так как цель анализа бесконечно малых в средней школе не только формальная - расширение кругозора наших учащихся, но и материальная, то необходимо, чтобы учащиеся на конкретных примерах из естествознания и техники усвоили и верно поняли идеи, методы и некоторые навыки, необходимые для изучения явлений природы и современной техники. В зависимости от этого и определяется содержание и методика анализа бесконечно малых в средней школе.

По дифференциальному исчислению: производные простейших функций, встречаемых в естествознании и технике, maximum и minimum в связи с исследованием функций, уравнение касательной. По интегральному исчислению: понятие об определенном интеграле, основные формулы интегрирования

понятие о дифференциале функции и неопределенном интеграле, простейшие приемы интегрирования.

Под конец - понятие о дифференциальном уравнении как высшее обобщение в анализе функций одного независимого переменного. Дифференциальные уравнения дают верное представление «о необъятной приложимости основных построений анализа бесконечно малых, составляющего, без сомнения, самую возвышенную из абстракций, до которых когда-либо поднималась мысль человека», [говорил] О.Конт.

Относительно методики анализа могу сказать, что я в своей практике не останавливался детально ни на теории пределов, ни на непрерывности функций. Я добивался отчетливых понятий у учащихся, а механическая часть, относящаяся к дифференцированию и интегрированию, имела у меня второстепенное значение. Строгих аналитических доказательств я избегал и их заменял графическими иллюстрациями.

С таким небольшим содержанием курса анализа бесконечно малых можно решать массу трудных и важных задач как в научном, так и в практическом отношении. Интерес, возбуждаемый в учениках этими задачами, отражается и на их успешности по другим отделам математики». [31, 109 - 111]

Таким образом, Ф.В.Филиппович предвосхитил идеи о концентрическом изложении материала, интеграции элементов математического анализа с курсом алгебры и геометрии. Как известно, все эти идеи были реализованы в советское время, а особенно активно в период колмогоровских реформ. В своих исследованиях Ф.Филиппович иногда ошибался, некоторые положения его работ неполны и устарели, но большинство из них, несомненно, составляют золотой фонд отечественной педагогической мысли. [3, 47-57]

Заключение

Методика математики в России развивалась в трудные времена общей экономической отсталости страны.

Вклад русского народа в методику математики является неоспоримым и представляет большую ценность.

Иностранная учебная литература в XIX в. была вытеснена из школы. Выдающиеся русские педагоги-математики с большим талантом подходили к критике иностранных источников, причём наступление велось против той базы идеалистической философии, на которой основывались эти источники.

Прогрессивные идеи и методы преподавания перерабатывались в соответствии с условиями развития русской школы.

XIX век и начало XX в. заложили фундамент методики математики в России. Большая творческая работа в этом направлении страдала, однако, и существенными недостатками. В создании методики не принимали участия массы рядовых учителей, почти не был использован опыт лучших учителей, недостаточны были наблюдения над живой работой школы, отсутствовала экспериментальная основа, почти не подчёркивалась идейная сторона математики. Уникальность личности Филипповича состоит в его разноплановости. Более 300 наименований статей, монографий, выступлений, писем, речей составляет творческое наследие ученого. К сожалению, преимущественно эти работы посвящены истории Югославии, политическим проблемам, и лишь, незначительная часть - методике обучения математике. Но даже, если бы это была только одна работа - «Педагогика математики», которую он написал в соавторстве с В. Р. Мрочеком, уже и тогда следовало бы дать полный и всесторонний анализ его научно-методической деятельности.

«Педагогика математики» - монументальный труд, который затрагивает почти все аспекты математического образования, имеющие неоспоримую ценность для математического образования в России.

Филипп Васильевич Филипповия высказал ряд ценных методических идей. Многие из которых нашли реализацию в современной школе. Например, идея о последовательности изучения добей, об изучении интегрального исчисления (предпочтение необходимо отдать изучению определенного интеграла), об изучении элементарных функций. Но, к сожалению, некоторые из его идей преданы забвению: идея о широком применении лабораторного метода при изучении математики (лабораторная работа об отыскании площади круга, о вычислении объема конуса). На наш взгляд эти идеи остаются интересными и сегодня.

Все работы Филипповича, за исключением его выступления на Первом Всероссийском съезде преподавателей математики, в большим тиражом и не переиздавались ни в советское, ни в постсоветское время. Являясь сегодня большой библиографической редкостью, они в то же время не потеряли своей актуальности.

Список литературы

1. Гольтиков В.Ф. Развитие методики преподавания математики. Челябинск, Южно-Уральское кн. изд., 1966 год,

2. Колягин Ю.М. Русская школа и математическое образование: Наша гордость и наша боль. М.: Просвещение, 2001. - 318с.

3. Колягин, Ю.М. Математики-педагоги России. Забытые имена. Книга 1. Филипп Васильевич Филиппович [Текст]: монография / Ю.М. Колягин, О.А. Саввина. - Елец: ЕГУ им. И.А. Бунина, 2006. - 90с.

4. Ланков А.В. К истории развития передовых идей в русской методике математики. Пособие для учителей. - Москва, 1951. - 151с.

5. Методика обучения высшей математике в средней школе России: история становления. Хрестоматия /Сост. Р. 3. Гушель, В.П. Кузовлев, О.А. Саввина. Елец: ЕГУ им. И.А. Бунина, 2002. 144с.

6. Мовчан С.П. Филипп Филиппович - исследователь новейшей истории Югославии. Автореф. ... к. ист. н. Львов, 1971.- 27с.

7. Мрочек В.Р., Филиппвович Ф. В. 16 геометрических разборных тел из 55 частей, в деревянном ящике с гнездами на все тела. Коллекция рекомендована Гл. Упр. В.-Уч. Зав. и В. Уч. И. М.

8. Мрочек В.Р., Филиппович Ф.В. 10 разверток геометрических тел большого формата (красный картон на коленкоре с металлическими застежками). На развертках написаны геодезические линии. В коробке.

9. Мрочек В.Р., Филиппович Ф.В. К первому съезду преподавателей математики // Техническое и коммерческое образование. 1911. №5.

10. Мрочек В.Р., Филиппович Ф.В. Педагогика математики. Исторические и методические этюды. Т. 1.1910. - 380с.

11. Мрочек В.Р., Филиппович Ф.В. Реформа преподавания математики// Русская школа. 1910. № 1.

12. Начальная геометрия в развертках. СПб. Издание Российской фабрики учебных пособий и детских занятий.

13. Оганесян В.А., Колягин Ю.М., Луканин Г.Л., Саннинский В.Я. Методика преподавания математики в средней школе: Общая методика. М.: Просвещение, 1980.

14. Очак И.Д. Неизвестное письмо Филиппа Филипповича // Советское славяноведение. М. 1966. № 1.

15. Резолюции I-го Всероссийского Съезда по Просвещению25-го августа - 4 сентября 1918г. - 13 с.

16. Рыбников К.А. История математики часть 2. Издательство московского университета, 1963. - 335с.

17. Саввина О.А. Исторические очерки о преподавании высшей математики в средних учебных заведениях России. Часть 2 (вторая половина XIX - первые семнадцать лет XX вв.): Монография. Елец: ЕГУ, 2002. - 246с.

18. Сайт: Математическое образование: прошлое и настоящее:[Электронный ресурс]// http://mathedu.ru/index/php.

19. Сумарокова М.М. Новые данные о начале революционной деятельности Филиппа Филипповича //Советское славяноведение. М.: Наука. № 1. 1967.

20. Сумарокова М.М. Новые данные о начале революционной деятельности Филиппа Филипповича// Советское славяноведение. М. №1. 1967.

21. Трейтлен П. Методика геометрии. Перевод с немецкого и под редакцией- Ф.В. Филипповича. СПб: Новая школа, 1912.

22. Трейтлен, П. Методика геометрии [Текст] / П. Трейтлен / Пер. с нем. и под ред. Ф.В. Филипповича. - СПб: Новая школа. - 1912.

23. Филипп Филиппович [Электронный ресурс] // http://stalin.memo.ru/spravki/7-199.htm

24. Филиппович Ф.В. К реформе обучения математике (с приложениями новых примерных программ) // Техническое и коммерческое образование. 1911. № 3.

25. Филиппович Ф.В. Постановка преподавания начал анализа в средней школе // Труды Первого Всероссийского съезда преподавателей математики. СПб., 1913. T.I.

26. Филиппович Ф.В. Указатель учебной математической литературы. /Сост. Ф.В. Филиппович при ближайшем участии А.П. Беляниной и Ю.Г. Шиперко. СПб. Тип. «Север», 1912.

27. Филиппович Ф. Начальная геометрия в развертках. СПб., 1912.

28. Филиппович Ф.В. К реформе обучения математике (с приложениями новых примерных программ) // Техническое и коммерческое образование. 1911. № 4.

29. Филиппович Ф.В. Постановка преподавания начал анализа в средней школе//Труды I всероссийского съезда преподавателей математики. СПб., 1913. Т.1.

30. Филиппович Филипп // Большая советская энциклопедия. М.: Советская энциклопедия, 1977. Т. 27. С. 394

31. Филиппович, Ф.В. Постановка преподавания начал анализа в средней школе [Текст] / Ф.В. Филиппович // Труды Первого Всероссийского съезда преподавателей математики. - СПб., 1913. - Т.I.

32. Филиппович, Ф.В. Реформа преподавания математики [Текст] / В.Р. Мрочек, Ф.В. Филиппович // Русская школа. - 1910. - № 1.

33. Шемянов Н.Н. У истоков русской методики математики. Ученые записки Ярославского пединститута. Педагогика. Вып.5. Ярославль 1945г.- 19с.

Размещено на Allbest.ru


Подобные документы

  • Исторические и методические аспекты проблемы преподавания математики в России. Основные направления преподавания математики на современном этапе в начальной школе. Аналитическая геометрия, линейная алгебра, дифференциальное и интегральное исчисления.

    курсовая работа [2,9 M], добавлен 30.03.2011

  • Содержание, тенденции, ориентиры образования на рубеже XX и XXI в. и их значение для современной педагогической науки и практики. Нововведения в области образования, их положительные и отрицательные черты. Анализ государственной политики в данной области.

    курсовая работа [38,1 K], добавлен 09.06.2013

  • Методы преподавания Василия Кандинского, его влияние на развитие художественного образования России. Этапы творчества, инновационный характер работ великого русского художника. Биографические вехи жизни. Вклад в развитие художественных учебных заведений.

    реферат [46,2 K], добавлен 17.09.2011

  • Общая характеристика истории школьного математического образования. Цели изучения курса. Достижения советского периода. Повышение эффективности профессиональной подготовки учителя математики. Престижные математические премии мирового уровня последних лет.

    лекция [3,6 M], добавлен 20.09.2015

  • Личностно ориентированный подход, идея развивающего обучения как новая парадигма образования в РФ. Концепция школьного математического образования: обучение приемам математического познания и математического мышления. Педагогические идеи Л.С. Выготского.

    реферат [14,1 K], добавлен 16.09.2009

  • Основоположник методики обучения географии. Начало преподавания в России географической науки на рубеже XVII–XVII веков. Издание первого русского учебника. Ошибки периода исканий. Перестройка курса географии в школе, особенности процесса обучения.

    контрольная работа [33,3 K], добавлен 14.02.2012

  • Понятие и общая характеристика региональной системы общего образования в РФ. Тенденции развития Московской региональной системы общего образования на рубеже веков. Образовательная политика Департамента образования города Москвы: эволюция, тренды.

    дипломная работа [119,7 K], добавлен 07.06.2017

  • Значение математического образования в современной России, его цели. Уменьшение объема математических дисциплин. Разрыв между уровнем математических знаний выпускников школы и требованиями высших учебных заведений, потребностями науки и технологии.

    курсовая работа [68,1 K], добавлен 15.10.2012

  • Развитие идеи свободного образования в западной педагогике и воспитания подрастающего поколения в современной отечественной педагогике. Построение гуманной, личностно-ориентированной педагогики и формирование гуманистического мировоззрения преподавателя.

    курсовая работа [32,4 K], добавлен 23.12.2015

  • Понятие и особенности обучения математике. Математика как учебный предмет. Предмет методики преподавания математики. Основные задачи методики преподавания математики. Цели и содержание обучения математике. Формы обучения математике.

    курсовая работа [23,4 K], добавлен 04.09.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.