Методика решения иррациональных уравнений и неравенств в школьном курсе математики

Анализ школьных учебников по алгебре и началам анализа. Методика изучения иррациональных уравнений и неравенств на уроках математики. Основные понятия и наиболее важные приемы преобразования уравнений. Основы и методы решения иррациональных неравенств.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 28.05.2008
Размер файла 793,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ответ: Корней нет.

Пример 27. Решить уравнение .

Решение. Конечно, это иррациональное уравнение можно решить путем традиционного возведения обеих частей в квадрат. Однако, найдя ОДЗ этого уравнения, приходим к выводу, что ОДЗ исходного уравнения - одноэлементное множество {2}. Подставив в данное уравнение, приходим к выводу, что - корень исходного уравнения.

Ответ: .

3. Использование графиков функций

При решении уравнений или неравенств иногда полезно рассмотреть эскиз графиков их правой и левой частей в одной и той же системе координат. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения (или неравенства) было очевидно.

Обратим внимание, что эскиз графика лишь помогает найти решение, но писать, что из графика следует ответ, нельзя, ответ еще надо обосновать.

Пример 28. Решить уравнение .

Решение. ОДЗ данного уравнения есть все из промежутка . Эскизы графиков функций и представлены на рисунке 1.

Проведем прямую . Из рисунка следует, что график функции лежит не ниже этой прямой, а график функции не выше. При этом эти графики касаются прямой в разных точках. Следовательно, уравнение не имеет решений. Докажем это. Для каждого имеем , а . При этом только для , а только для . Это означает, что исходное уравнение не имеет корней.

Ответ: Корней нет.

Пример 29. Решить уравнение .

Решение. Эскизы графиков функций и представлены на рисунке 2.

Легко проверяется, что точка является точкой пересечения графиков функций и , то есть - решение уравнения. Проведем прямую . Из рисунка следует, что она расположена между графиками функций и . Это наблюдение и помогает доказать, что других решений данное уравнение не имеет.

Для этого докажем, что для из промежутка справедливы неравенства и , а для промежутка справедливы неравенства и . Очевидно, что неравенство справедливо для , а неравенство для . Решим неравенство . Это неравенство равносильно неравенству , которое можно переписать в виде . Решениями этого неравенства являются все . Точно также показывается, что решениями неравенства являются все .

Следовательно, требуемое утверждение доказано, и исходное уравнение имеет единственный корень .

Ответ: .

Кроме рассмотренных типов иррациональных уравнений существуют еще и уравнения смешанного типа. К этой группе относятся иррациональные уравнения, содержащие кроме знака радикала и другие выражения (логарифмическое, показательное, тригонометрическое), а также знак модуля и параметр. Уравнения данного типа также чаще всего включаются в задания ЕГЭ и программу вступительных экзаменов в ВУЗы.

Со всеми учащимися на уроке такие уравнения разбирать не нужно, но они могут быть рассмотрены в рамках факультативных или кружковых занятий по математике с учащимися, повышенный интерес к математике. Примеры решения уравнений смешанного типа помещены в приложении А.

3. Тождественные преобразования при решении иррациональных уравнений

При решении иррациональных уравнений и неравенств часто приходится применять тождественные преобразования, связанные с использованием известных формул. К сожалению, эти действия иногда столь же небезопасны, как уже рассмотренное возведение в четную степень, - могут приобретаться или теряться решения. [17]

Рассмотрим несколько ситуаций, в которых эти проблемы наступают, и научимся их распознать и предотвращать.

I. Пример 30. Решить уравнение .

Решение. При первом же взгляде на это уравнение возникает мысль избавиться от корня с помощью «преобразования» . Но это неверно, так как при отрицательных значениях x оказывалось бы, что . Здесь необходимо применить формулу . Уравнение теперь легко решается

.

Ответ. .

Рассмотрим «обратное» преобразование.

Пример 31. Решить уравнение .

Решение. Здесь применима формула

.

Только необходимо задуматься о безопасности ее применения. Нетрудно видеть, что ее левая и правая части имеют разные области определения и что это равенство верно лишь при условии . Поэтому исходное уравнение равносильно системе

Решая уравнение этой системы, получим корни и . Второй корень не удовлетворяет совокупности неравенств системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ. .

II. Следующее опасное преобразование при решении иррациональных уравнений, определяется формулой

.

Если пользоваться этой формулой слева направо, расширяется ОДЗ и можно приобрести посторонние решения. Действительно, в левой части обе функции и должны быть неотрицательны; а в правой неотрицательным должно быть их произведение. [17]

Пример 32. Решить уравнение .

Решение. Возведем обе части уравнения в квадрат и произведем приведение подобных членов, перенос слагаемых из одной части равенства в другую и умножение обеих частей на . В результате получим уравнение

,

являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение

,

которое приводится к виду

.

Это уравнение (также являющееся следствием исходного) имеет корни , . Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Ответ. , .

Замечание. При возведении уравнения в квадрат учащиеся нередко в уравнении типа из Примера 32 производят перемножение подкоренных выражений, то есть вместо такого уравнения пишут уравнение

.

Такое «склеивание» не приводит к ошибкам, поскольку такое уравнение является следствием уравнения . Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения. Поэтому в рассмотренном выше примере можно было сначала перенести один из радикалов в правую часть уравнения, то есть уединить один радикал. Тогда в левой части уравнения останется один радикал, и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональное выражение. [3]

Рассмотрим пример, где реализуется проблема с использованием формулы .

Пример 33. Решить уравнение .

Решение. Попробуем решить это уравнение разложением на множители

.

Заметим, что при этом действии оказалось потерянным решение , так как оно подходит к исходному уравнению и уже не подходит к полученному: не имеет смысла при . Поэтому это уравнение лучше решать обычным возведением в квадрат

Решая уравнение этой системы, получим корни и . Оба корня удовлетворяют неравенству системы

Ответ. , .

Вывод. Есть два пути. Или аккуратно возводить уравнение в квадрат, или безошибочно определять, какие решения могли быть потеряны, и проверить, не случилось ли этого на самом деле.

III. Существует еще более опасное действие - сокращение на общий множитель. [17]

Пример 34. Решить уравнение .

Неверное рассуждение: Сократим обе части уравнения на , получим

.

Нет ничего более опасного и неправильного, чем это действие. Во-первых, подходящее решение исходного уравнения было потеряно; во-вторых, было приобретено два посторонних решения . Получается, что новое уравнение не имеет ничего общего с исходным! Приведем правильное решение.

Решение. Перенесем все члены в левую часть уравнения и разложим ее на множители

.

Это уравнение равносильно системе

которая имеет единственное решение .

Ответ. .

§ 3. Методика решения иррациональных неравенств

Иррациональные неравенства - довольно сложный раздел школьного курса математики, а если учесть, что на его изучение отведено крайне мало времени, то становится ясно, что учащиеся как правило это раздел не усваивают. Даже у тех учащихся, что успешно решают иррациональные уравнения, часто возникают проблемы при решении иррациональных неравенств. Решение иррациональных неравенств осложняется тем обстоятельством, что здесь, как правило, исключена возможность проверки, поэтому надо стараться делать все преобразования равносильными.

3.1. Теоретические основы решения иррациональных неравенств

Если в любом иррациональном уравнении заменить знак равенства на один из знаков неравенства: >, , <, , то получим иррациональное неравенство. [19] Поэтому под иррациональным неравенством будем понимать неравенство, в котором неизвестные величины находятся под знаком корня. [16]

Способ решения таких неравенств состоит в преобразовании их к рациональным неравенствам путем возведения обеих частей неравенства в степень.

Чтобы избежать ошибок при решении иррациональных неравенств, следует рассматривать только те значения переменной, при которых все входящие в неравенство функции определены, то есть найти ОДЗ этого неравенства, а затем обоснованно осуществлять равносильный переход на всей ОДЗ или ее частях.

При решении иррациональных неравенств следует запомнить правило: при возведении обеих частей неравенства в нечетную степень всегда получается неравенство, равносильное данному неравенству. [16]

Но если при решении уравнений в результате возведения четную степень мы могли получить посторонние корни (которые, как правило легко проверить) и не могли потерять корни, то корни неравенства при бездумном возведении в четную степень могут одновременно и теряться, и приобретаться. [8]

Например, возведя в квадрат:

- верное неравенство , мы получим верное неравенство ;

- верное неравенство , мы получим неверное неравенство ;

- неверное неравенство , мы получим верное неравенство ;

- неверное неравенство , мы получим неверное неравенство .

Вы видите, что возможны все комбинации верных и неверных неравенств.

Однако верно основное используемое здесь утверждение: если обе части неравенства возводят в четную степень, то получится неравенство, равносильное исходному только в том случае, если обе части исходного неравенства неотрицательны. [16]

3.2. Методы решения иррациональных неравенств

3.2.1. Метод сведения к эквивалентной системе или совокупности рациональных неравенств

Основным методом решения иррациональных неравенств является сведение исходного неравенства к равносильной системе или совокупности систем рациональных неравенств. [17]

Наиболее простые иррациональные неравенства имеют вид:

1) или ;

2) или ;

3) или .

Иррациональное неравенство или равносильно системе неравенств

или . (1)

Первое неравенство в системе (1) является результатом возведения исходного неравенства в степень, второе неравенство представляет собой условие существования корня в исходном неравенстве, а третье неравенство системы выражает условие, при котором это неравенство можно возводить в квадрат.

Иррациональное неравенство или равносильно совокупности двух систем неравенств

или . (2)

Обратимся к первой системе схемы (2). Первое неравенство этой системы является результатом возведения исходного неравенства в квадрат, второе - условие, при котором это можно делать.

Вторая система схемы (2) соответствует случаю, когда правая часть отрицательна, и возводить в квадрат нельзя. Но в этом и нет необходимости: левая часть исходного неравенства - арифметический корень - неотрицательна при всех x, при которых она определена. Поэтому исходное неравенство выполняется при всех x, при которых существует левая часть. Первое неравенство второй системы и есть условие существования левой части.

Иррациональное неравенство или равносильно системе неравенств

или . (3)

Поскольку обе части исходного неравенства неотрицательны при всех x, при которых они определены, поэтому его можно возвести в квадрат. Первое неравенство в системе (3) является результатом возведения исходного неравенства в степень. Второе неравенство представляет собой условие существования корня в исходном неравенстве, понятно, что неравенство выполняется при этом автоматически.

Схемы (1)-(3) - наш основной инструмент при решении иррациональных неравенств, к ним сводится решение практически любой задачи. Разберем несколько примеров. [8]

Пример 1. Решить неравенство .

Решение. Заметим, что правая часто этого неравенства отрицательна, в то время как левая часть неотрицательна при всех значениях x, при которых она определена. Поэтому неравенство решений не имеет.

Ответ. Решений нет.

Пример 2. Решить неравенство .

Решение. Как и в предыдущем примере, заметим, что правая часть данного неравенства отрицательна, а левая часть исходного неравенства неотрицательна при всех значениях x, при которых она определена. Это означает, что левая часть больше правой части при всех значениях x, удовлетворяющих условию .

Ответ. .

Пример 3. Решить неравенство .

Решение. В соответствии со схемой (1) решения неравенств этого типа, запишем равносильную ему систему рациональных неравенств

Условие выполнено при всех x, и нет необходимости добавлять его к выписанной системе.

Ответ. .

Пример 4. Решить неравенство .

Решение. Это неравенство решается при помощи схемы (2). В данном случае , поэтому можно сразу записать неравенство, равносильное исходному

.

Ответ. .

Пример 5. Решить неравенство .

Решение. Это неравенство может быть решено при помощи схемы (1). Система, равносильная исходному неравенству, имеет вид

.

Ответ. .

Пример 6. Решить неравенство .

Решение. Данное неравенство можно решать с помощью схемы (2). Оно равносильно совокупности двух систем

Ответ. .

Пример 7. Решить неравенство .

Решение. Согласно схеме (3), данное неравенство равносильно системе

Ответ.

Рассмотрим решение иррациональных неравенств следующего вида

.

Поскольку , , то должны выполнятся условия , , (соответственно ). На множестве, где эти условия выполняются, данное неравенство равносильно неравенству

(соответственно неравенству ), которое сводится к разобранным выше типам неравенств. [4]

Пример 8. Решить неравенство .

Решение. Данное неравенство равносильно следующей системе неравенств:

Решение исходного неравенства является общей частью решений всех неравенств системы, то есть имеет вид .

Ответ. .

Теперь перейдем к решению более сложных задач, стараясь свести их решение к стандартным ситуациям - к простейшим неравенствам, рассмотренным выше. Приемы сведения во многом аналогичны приемам, применяемым при решении иррациональных уравнений.

Если в неравенстве встречаются два квадратных радикала, обычно приходится неравенство возводить в квадрат дважды, обеспечивая при этом необходимые для этой операции условия.

Пример 9. Решить неравенство .

Решение. Перенесем второй радикал в правую часть, чтобы обе части неравенства стали неотрицательными, и его можно было возвести в квадрат:

Мы пришли к простейшему стандартному неравенству, которое согласно схеме (1) равносильно системе:

Ответ. .

Замечание. При получении неравенства мы не выписывали допустимые значения неизвестного, так как там фигурировал , который существует при , но при этих значениях существует и .

Пример 10. Решить неравенство .

Решение. Начнем с отыскания допустимых значений неизвестного:

Заметим, что для избавления от радикала достаточно возвести данное неравенство в квадрат. Но для этого необходимо, чтобы обе части его были неотрицательны, что выполняется лишь при выполнении условия (так как все остальные выражения, входящие в неравенство, неотрицательны). Но при этом условии можно умножить данное неравенство на положительное выражение .

Итак, если , данное неравенство преобразуется и решается так:

В том случае, когда , данное неравенство будет выполняться, так как его отрицательная левая часть станет меньше положительной правой.

Ответ: .

Замечание. При решении последней задачи мы фактически получили такие новые схемы, легко выводимые из схем (1) и (2):

(4)

(5)

Если в правой части подобного неравенства стоит не единица, а любое другое число кроме нуля, можно естественно, поделить на него обе части неравенства и, в зависимости от знака этого числа, перейти к неравенствам из схем (4) или (5).

3.2.2. Умножение обеих частей неравенства на функцию

Выражения и называются сопряженными друг другу. Заметим, что их произведение уже не содержит корней из и . Поэтому в ряде задач вместо возведения в квадрат, приводящего к слишком громоздким выражениям, разумнее умножить обе части неравенства на выражение, сопряженное одной из них.

Пример 11. Решить неравенство .

Решение. Найдем ОДЗ:

Умножим обе части данного неравенства на выражение, сопряженное его левой части и, очевидно, положительное в ОДЗ:

Дальнейшее решение зависит, очевидно, от знака общего множителя левой и правой частей полученного неравенства .

Если он меньше нуля, то есть , сократив на этот отрицательный множитель, переходим к неравенству:

,

из которого находим прямым возведением в квадрат (ведь обе части этого неравенства положительны)

Во втором случае, если общий множитель положителен (то есть при ), после сокращения на него получаем неравенство

,

из которого прямым возведением в квадрат (ведь обе части этого неравенства положительны) получаем, что оно справедливо при .

Осталось указать, что в третьем возможном случае - если общий множитель равен нулю, - неравенство не выполняется: мы получаем тогда , что неверно.

Ответ: .

3.2.3. Метод введения новой переменной

Для решения иррациональных неравенств, так же как и для решения иррациональных уравнений, с успехом может применяться метод введения новой переменной.

Иногда удается иррациональную функцию, входящую в неравенство, заменить новой переменной таким образом, что относительно этой переменной неравенство становится рациональным. [24]

Пример 12. Решить неравенство .

Решение. Перепишем исходное уравнение .

Сделаем замену , . Тогда получим

Таким образом, для определения получаем совокупность неравенств

Ответ. .

Пример 13. Решить неравенство .

Решение. Введем новую переменную , .

Тогда и для переменной t получаем рациональное неравенство

.

Осталось сделать обратную замену и найти :

Ответ. .

3.2.4. Решение иррациональных неравенств с использованием свойств входящих в них функций

1. Использование монотонности функции

Пусть на промежутке задана возрастающая функция и требуется решить неравенство (или ). Если - корень уравнения , причем , то решения данного неравенства - весь промежуток (соответственно промежуток ). Единственность корня следует из монотонности . Понятно, что если требуется решить нестрогое неравенство, то при том же рассуждении в ответ войдет и число , а если функция задана на замкнутом или полуоткрытом промежутке, то в ответ войдут соответствующие концы промежутка. [26]

Пример 14. Решить неравенство .

Решение. Заметим, что левая часть данного неравенства - возрастающая функция (обозначим ее через ). При левая часть равна правой. Учтем ОДЗ исходного неравенства и рассмотрим его на промежутке . Имеем , то есть данное неравенство выполняется. При по той же причине (из-за возрастания функции ) , то есть данное неравенство не выполняется. Так как исследование проведено при всех допустимых значениях , решение закончено.

Ответ:

2. Использование ОДЗ

Пример 15. Решить неравенство .

Решение. ОДЗ этого неравенства есть все , удовлетворяющие условию . Ясно, что не является решением данного неравенства. Для из промежутка имеем , а . Следовательно, все из промежутка являются решениями данного неравенства.

Ответ: .

Пример 16. Решить неравенство .

Решение. ОДЗ этого неравенства есть все из промежутка . Разобьем это множество на два промежутка и .

Для из промежутка имеем , . Следовательно, на этом промежутке, и поэтому исходное неравенство не имеет решений на этом промежутке.

Пусть принадлежит промежутку , тогда и . Следовательно, для таких , и, значит, на этом промежутке исходное неравенство также не имеет решений.

Ответ: Корней нет.

3. Использование графиков функций

Пример 17. Решить неравенство .

Решение. ОДЗ этого неравенства есть все из промежутка . Эскизы графиков функций и представлены на рисунке 3. Из рисунка следует, что для все из ОДЗ данное неравенство справедливо.

Докажем это. Для каждого из промежутка имеем , а для каждого такого имеем . Значит, для каждого имеем . Следовательно, решениями исходного неравенства будут все из промежутка .

Ответ:

§ 4. Опытное преподавание

Опытное преподавание применяется для объективной и достоверной проверки гипотезы и предполагает одновременное использование целого ряда методов, например, наблюдение, диагностирующие контрольные работы, беседа и другие.

Одной из задач опытного преподавания являлась проверка эффективности разработанного факультативного курса по изучению иррациональных уравнений, как предусмотренных школьной программой, так и не встречающихся в школьном курсе математики. Курс рассчитан на систематизацию методов решения иррациональных уравнений. Необходимо рассмотреть основные виды иррациональных уравнений наиболее часто встречаемых на выпускных и вступительных экзаменах.

Цели факультативных занятий:

1. Познакомить учащихся с некоторыми методами решения иррациональных уравнений.

2. Показать применение различных методов при решении уравнений одного вида.

3. Формировать умение видеть рациональный метод для решения конкретных видов уравнений.

4. Формировать логическое мышление.

5. Формировать настойчивость, целеустремленность, трудолюбие через решение сложных задач.

6. Развивать математическую речь с присущей ей краткостью, точностью и лаконичностью.

7. Подготовить учащихся к поступлению в ВУЗы.

Знания и умения, которыми должны владеть учащиеся перед изучением факультативного курса по теме «Иррациональные уравнения и методы их решения»:

1. Владеть основными понятиями, относящимися к уравнениям и неравенствам: корень уравнения, ОДЗ уравнения, знать, что значит решить уравнение.

2. Владеть определениями понятий арифметического квадратного корня и арифметического корня -ой степени.

3. Знать свойства арифметического квадратного корня и свойства арифметического корня -ой степени.

4. Уметь решать простейшие иррациональные уравнения.

5. Уметь решать простейшие тригонометрические, показательные и логарифмические уравнения.

6. Уметь решать линейные и квадратные уравнения.

Кроме того, учащиеся должны иметь представление об общих методах решения уравнений: метод замены, метод разложения на множители, функционально-графический метод.

Цель курса: исследование возможности изучения дополнительно к учебному плану некоторых типов иррациональных уравнений, углубления уже имеющихся знаний по решению иррациональных уравнений.

Этапы курса:

1. Разработка программы факультативных занятий «Иррациональные уравнения и методы их решения» для учащихся 11 класса.

2. Проведение диагностирующей контрольной работы №1.

3. Проведение разработанной программы факультативных занятий.

4. Проведение диагностирующей контрольной работы №2.

5. Анализ полученных результатов опытной работы.

Этап №1

Разработка программы факультативных занятий «Иррациональные уравнения и методы их решения» для учащихся 11 класса.

Факультативные занятия были разработаны на основе анализа математической, методической и учебной литературы.

Этап №2

Проведение диагностирующей контрольной работы №1.

Контрольная работа была проведена перед проведением факультативных занятий с учениками 11а класса школы №37 города Кирова. Ее основная задача: определить уровень подготовки, знаний и умений по теме «Иррациональные уравнения».

Учащимся было предложено 8 заданий, которые было необходимо выполнить в течение 1 часа. В классе 25 человек. Содержание диагностирующей контрольной работы №1 представлено в приложении Б.

Задания 1-3 -с выбором ответа, задания 4-7 - с кратким ответом, задание 8 - с развернутым ответом.

Результаты диагностирующей контрольной работы №1 отображены в таблице №1:

№ задания

1

2

3

4

5

6

7

8

Кол-во человек, решивших задание

18

17

18

10

7

6

3

0

Доля человек, решивших задание в процентах

72%

68%

72%

40%

28%

24%

12%

0%

Этап №3

Проведение разработанной программы факультативных занятий.

Разработанные задания проводились 2 раза в неделю. Всего было проведено 6 занятий по 2 часа.

Основные задачи проведения факультативных занятий:

1) проверить правильность отбора содержания и системы упражнений;

2) выявить тот материал, который вызывает у учащихся наибольшие затруднения;

3) определить эффективность усвоения материала посредством текущей проверки;

4) выявить заинтересованность учащихся в изучении данной темы.

Этап №4

Проведение диагностирующей контрольной работы №2.

Контрольная работа была проведена после проведения факультативных занятий разработанной программы. Задача: выявление знаний и умений решать иррациональные уравнения.

Учащимся было предложено 8 заданий, которые было необходимо выполнить в течении 1 часа. Содержание диагностирующей контрольной работы №1 представлено в приложении Б.

Тематика заданий та же, что и в контрольной работе №1.

Результаты диагностирующей контрольной работы №2 отображены в таблице №2:

№ задания

1

2

3

4

5

6

7

8

Кол-во человек, решивших задание

24

23

24

17

11

10

5

3

Доля человек, решивших задание в процентах

96%

92%

96%

68%

44%

40%

20%

12%

Этап №5

Анализ полученных результатов опытной работы.

На основании таблиц №1 и №2 можно построить диаграмму, отображающую сравнение результатов контрольных работ, проведенных перед посещением учащимися факультативных занятий и после их посещения.

Как видно из диаграммы, перед проведением факультативных занятий уровень знаний учащихся был средним, а после проведения занятий он повысился. Положительная тенденция заметна: учащиеся научились решать простейшие иррациональные уравнения и справились с заданиями 1-3, значительно лучше стало умение решать более сложные уравнения. Так как 8-ое задание относится к высокому уровню сложности, с ним справилось лишь 3 человека. Учащиеся лучше стали владеть методом введения новых переменных при решении иррациональных уравнений. Трудным показался материал, связанный с рационализирующими подстановками при решении иррациональных уравнений.

Программа факультативных занятий на тему «Иррациональные уравнения и методы их решения»

Ниже предлагается программа факультативных занятий на тему «Иррациональные уравнения и методы их решения». Курс лучше изучать в 11 классе, так как уравнения такого вида содержатся в заданиях ЕГЭ и на вступительных экзаменах в ВУЗы. Программа рассчитана на 16 часов. Занятия проводятся по 2 часа.

Занятие №1

Тема: Равносильные и неравносильные преобразования уравнений.

Цели:

1) Познакомить учащихся с понятием равносильных уравнений.

2) Показать, когда одно уравнение является следствием другого.

3) Сформулировать теоремы о равносильности уравнений.

4) Познакомить учащихся с равносильными и неравносильными преобразованиями уравнений.

Краткое содержание: Определение равносильности уравнений, следствия уравнений, понятие постороннего корня уравнения, перечисление и демонстрация на примерах равносильных и неравносильных преобразований уравнений.

Литература для учителя:

Литература для ученика:

Занятие №2, №3

Тема: Решение простейших иррациональных уравнений

Цели:

1) Отработать у учащихся умение решать простейшие иррациональные уравнения вида , .

2) Закрепить изученный ранее материал.

3) Подготовить учащихся к изучению нового материала.

Краткое содержание: Определение иррационального уравнения, решение простейших иррациональных уравнений вида , методом возведения обеих частей уравнения в одну и ту же степень с последующей проверкой полученных корней, а также методом сведения к равносильной системе уравнений и неравенств. Метод уединения радикала.

Литература для учителя:

Литература для ученика:

Занятие №4

Тема: Решение иррациональных уравнений методом замены.

Цель: Научить учащихся решать иррациональные уравнения методом замены.

Краткое содержание: Применение метода замены в случае, если в уравнении неоднократно встречается некоторое выражение. Решение иррациональных уравнений методом сведения к эквивалентным системам рациональных уравнений при помощи введения двух вспомогательных неизвестных.

Литература для учителя:

Литература для ученика:

Занятие №5

Тема: Применение рационализирующих подстановок при решении иррациональных уравнений.

Цель: Научить учащихся решать иррациональные уравнения при помощи рационализирующих подстановок.

Краткое содержание: Рассмотрение рационализации некоторых выражений, содержащих радикалы, с помощью рационализирующих подстановок и применение этих подстановок при решении иррациональных уравнений.

Литература для учителя:

Литература для ученика:

Занятие №6

Тема: Решение иррациональных уравнений функционально-графическим методом.

Цель: Научить учащихся решать иррациональные уравнения и неравенства, используя свойства входящих в них функций.

Краткое содержание: Использование ОДЗ, монотонности, графиков функций при решении иррациональных уравнений.

Литература для учителя:

Литература для ученика:

Занятие №7

Тема: Обобщение и систематизация методов решения иррациональных уравнений.

Цель:

1) Показать учащимся, что иррациональные уравнения можно решать не одним методом.

2) Систематизировать методы решения иррациональных уравнений.

3) Научить выбирать наиболее рациональный способ решения.

Краткое содержание: Рассмотрение различных методов решения на примере одного иррационального уравнения вида .

Литература для учителя:

Литература для ученика:

Занятие №8

Тема: Иррациональные уравнения, содержащие знак модуля или параметр. Решение уравнений смешанного типа.

Цель: Показать учащимся как решаются уравнения смешанного типа и уравнения, содержащие знак модуля и параметр.

Краткое содержание: Решение иррациональных уравнений с параметром и модулем, а также иррациональные уравнения, содержащие логарифмические, показательные или тригонометрические выражения.

Литература для учителя:

Литература для ученика:

Заключение

В данной работе сделана попытка разработать методику обучения решению иррациональных уравнений и неравенств в школе.

При проведении исследования были решены следующие задачи:

1) Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы:

· в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном программой предусмотрено формирование у учащихся решать простейшие иррациональные уравнения и неравенства;

· в учебнике [1] материала, посвященного методам решения иррациональных уравнений нет. В остальных учебниках рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных преобразований;

· очень мало материала по методам решения иррациональных неравенств;

· среди предлагаемых заданий в учебниках много однотипных;

2) Изучена учебно-методическая литература по данной теме;

3) Рассмотрены основные методы и приемы решения различных иррациональных уравнений и неравенств;

4) Рассмотрены ситуации, связанные с потерей или приобретением посторонних корней в процессе решения, показано, как распознавать и предотвращать их;

5) Подобраны примеры решения иррациональных уравнений и неравенств для демонстрации излагаемого теоретического материала;

6) Разработана

Список библиографии

1. Алимов Ш. А. Алгебра и начала анализа [Текст]: учебник для 10-11 класса средней школы / Ш. А. Алимов - М.: Просвещение, 1993. - 254 с.

2. Башмаков М. И. Алгебра и начала анализа [Текст]: учебник для 10-11 класса средней школы / М. И. Башмаков - М.: Просвещение, 1992. - 351 с.

3. Болтянский В. Г. Математика: лекции, задачи, решения [Текст] / В. Г. Болтянский - Литва: Альфа, 1996. - 637 с.

4. Виленкин Н. Я. и др. Алгебра и математический анализ для 11 класса [Текст]: учебное пособие для учащихся школ и классов с углубленным изучением математики / Н. Я. Виленкин - М.: Просвещение, 1998. - 288 с.

5. Галицкий М. Л. Сборник задач по алгебре для 8-9 классов [Текст]: учебное пособие для учащихся школ и классов с углубленным изучением математики М. Л. Галицкий - М.: Просвещение, 1999. - 271с.

6. Григорьев А. М. Иррациональные уравнения [Текст] / А. М. Григорьев // Квант. - 1972. - №1. - С. 46-49.

7. Денищева Л. О. Готовимся к единому государственному экзамену. Математика. [Текст] / Л. О. Денищева - М.: Дрофа, 2004. - 120 с.

8. Егоров А. Иррациональные неравенства [Текст] / А Егоров // Математика. Первое сентября. - 2002. - №15. - С. 13-14.

9. Егоров А. Иррациональные уравнения [Текст] / А Егоров // Математика. Первое сентября - 2002. - №5. - С. 9-13.

10. Мордкович А. Г. Алгебра и начала анализа. 10-11 класс [Текст]: В двух частях. Ч.1: учебник для общеобразовательных учреждений / А. Г. Мордкович - М.: Мнемозина, 2004. - 315 с.

11. Мордкович А. Г. Алгебра и начала анализа. 10-11 класс [Текст]: В двух частях. Ч.2: задачник для общеобразовательных учреждений / А. Г. Мордкович - М.: Мнемозина, 2004. - 315 с.

12. Мордкович А. Г. Кто-то теряет, кто-то находит [Текст] / А. Г. Мордкович // Квант - 1970. - №5. - С. 48-51.

13. Колмогоров А. Н. Алгебра и начала анализа [Текст]: учебник для 10-11 класса средней школы / А. Н. Колмогоров - М.: Просвещение, 1991. - 320 с.

14. Кузнецова Г. М. Программа для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 классы [Текст] / Г. М. Кузнецова - М.: Дрофа, 2004 - 320 с.

15. Потапов М. Как решать уравнения без ОДЗ [Текст] / М. Потапов // Математика. Первое сентября - 2003. - №21. - С. 42-43.

16. Соболь Б. В. Пособие для подготовки к единому государственному экзамену и централизованному тестированию по математике [Текст] / Б. В. Соболь - Ростов на Дону: Феникс, 2003. - 352 с.

17. Черкасов О. Ю. Математика [Текст]: справочник для старшеклассников и поступающих в вузы / О. Ю. Черкасов - М.: АСТ-ПРЕСС, 2001. - 576 с.

18. Шабунин М. Лекции для абитуриентов. Лекция 1. [Текст] / М. Шабунин // Математика. Первое сентября - 1996. - №24. - С. 24.

19. Шувалова Э. З. Повторим математику [Текст]: учебное пособие для поступающих в вузы / Э. З. Шувалова - М.: Высшая школа, 1974. - 519 с.

20. Моденов В. П. Решение иррациональных уравнений [Текст] / В. П. Моденов // Математика в школе - 1970. - №6. - С. 32-35.

21. Горнштейн П. И. Экзамен по математике и его подводные рифы [Текст] / П. И. Горнштейн - М.: Илекса, Харьков: Гимназия, 1998, - 236 с.

22. http://www.courier.com.ru

23. http://www.5ballov.ru.

24. Шарова Л. И. Уравнения и неравенства [Текст]: пособие для подготовительных отделений / Л. И. Шарова - Киев: Вища школа, 1981. - 280 с.

25. Олейних…

26. Егоров А. Иррациональные неравенства [Текст] / А Егоров // Математика. Первое сентября. - 2002. - №17. - С. 13-14.

27. Мордкович А. Г. Алгебра. 8 класс [Текст]: В двух частях. Ч.1: учебник для общеобразовательных учреждений / А. Г. Мордкович - М.: Мнемозина, 2004. - 315 с.

28. Мордкович А. Г. Алгебра. 8 класс [Текст]: В двух частях. Ч.2: задачник для общеобразовательных учреждений / А. Г. Мордкович - М.: Мнемозина, 2003. - 239 с.

Приложение А

Решение иррациональных уравнений смешанного типа

Для каждого вида уравнений и неравенств, в том числе и иррациональных, можно составить уравнение или неравенство «с модулем» и «с параметром».

Иррациональные уравнения, содержащие знак модуля

Простейшие уравнения с модулем имеют вид: и ; будем их решать на основании определения модуля сведением к совокупности систем.

Пример 1. Решить уравнение .

Решение. ,

Данное уравнение равносильно совокупности двух систем:

Будем решать каждую из систем по отдельности.

Решение первой системы:

Последняя система не имеет корней, так как дискриминант уравнения меньше нуля.

Решение второй системы:

Ответ: .

Пример 2. Решить уравнение

Решение. ,

Данное уравнение равносильно совокупности двух систем:

Будем решать каждую из систем по отдельности.

Решение первой системы:

Если внимательно посмотреть на неравенства последней системы, можно заметить, что пересечение множеств и пусто. Следовательно, первая система совокупности корней не имеет.

Решение второй системы:

Ответ: .

Иррациональные уравнения, содержащие параметр

Уравнение вида называется иррациональным с параметром относительно неизвестного , если одна или обе его части содержат выражения, иррациональные относительно .

Как и раньше, будем находить только действительные корни.

Трудно указать какой-нибудь общий и вместе с тем достаточно простой способ решения иррациональных уравнений, содержащих параметр.

Проиллюстрируем некоторые способы решения на примерах.

Пример 3. Для каждого действительного значения параметра решить уравнение

.

Решение. Исходное уравнение равносильно смешанной системе

При эта система решений не имеет.

При получим решение

Теперь необходимо найти те значения , при которых эта система имеет решение:

Ответ: при - корней нет;

при .

Для решения иррационального уравнения иногда удобно ввести вспомогательную неизвестную величину. При этом получаем квадратное уравнение с параметром, которое нужно решить в пределах некоторого ограниченного множества значений нового неизвестного.

Пример 4. Решить уравнение .

Решение. Область определения данного уравнения:

Так как и , то и .

Сделаем замену , тогда и исходное уравнение можно записать в виде системы

которая равносильна системе

Корни уравнения должны удовлетворять первому условию последней системы, то есть необходимо решить систему

Итак, при исходное уравнение имеет единственный корень . Отсюда при имеем

,

Ответ: при ;

при - корней нет.

Иррациональные показательные уравнения

Пример 5. Решить уравнение .

Решение. Перепишем уравнение так:

,

Приведем все степени к одному основанию 7:

.

Сделаем замену , , тогда получаем уравнение , корнями которого являются

Сделаем обратную замену:

или

- уравнение не имеет решений.

Ответ: .

Пример 6. Решить уравнение .

Решение. Приведем все степени к одному основанию:

.

откуда получаем уравнение которое равносильно уравнению:

Ответ:

Иррациональные логарифмические уравнения

Пример 7. Решить уравнение .

Решение. Преобразуем данное уравнение:

.

Учитывая ОДЗ, данное уравнение равносильно системе:

Ответ:

Пример 8. Решить уравнение

Решение. Учитывая ОДЗ, данное уравнение равносильно системе:

Уравнение этой системы равносильно совокупности уравнений:

Последнее уравнение этой совокупности равносильно уравнению:

Из неравенства системы следует, что . Следовательно, - посторонний корень.

Ответ: ,

Сколько корней имеет уравнение ?

Сколько корней имеет уравнение ?

Приложение Б

Диагностирующая контрольная работа №1

1. Сколько корней имеет уравнение ?

А. ни одного

Б. один

В. два

Г. четыре

2. Решите уравнение, укажите корень уравнения (или сумма корней, если их несколько).

А.

Б. 1

В. 2

Г. корней нет

3. Укажите промежуток, которому принадлежит корень уравнения (или сумма корней, если их несколько).

А.

Б.

В.

Г.

4. Решите уравнение, укажите корень уравнения (или произведение корней, если их несколько).

5. Решите уравнение , укажите корень уравнения.

6. Решите уравнение , укажите корень уравнения (если корень не единственный, то наибольший)

7. Решите уравнение , укажите корень уравнения.

8. Решите уравнение .

Диагностирующая контрольная работа №2

1. Сколько корней имеет уравнение ?

А. четыре

Б. два

В. один

Г. ни одного

2. Решите уравнение, укажите корень уравнения (или сумма корней, если их несколько).

А. 4

Б. 1

В.

Г. корней нет

3. Укажите промежуток, которому принадлежит корень уравнения (или сумма корней, если их несколько).

А.

Б.

В.

Г.

4. Решите уравнение, укажите корень уравнения (или произведение корней, если их несколько).

5. Решите уравнение , укажите корень уравнения.

6. Решите уравнение , укажите корень уравнения (если корень не единственный, то наибольший).

7. Решите уравнение , укажите корень уравнения.

8. Решите уравнение .

Ответы и решение заданий диагностирующей контрольной работы №1

1. А.

2. А.

3. Б.

4. Уединив первый радикал, получаем уравнение , равносильное исходному. Возводя обе части этого уравнения в квадрат, получаем уравнение, . Последнее уравнение равносильно системе Решая уравнение этой системы, равносильное уравнению , получим корни и . Первый корень не удовлетворяет неравенству системы и, следовательно, является посторонним корнем исходного уравнения. Ответ: .

5. Введем новую переменную , тогда , причем . В результате исходное иррациональное уравнение принимает вид квадратного , откуда учитывая ограничение , получаем . Решая уравнение , получаем корень . Как показывает проверка, удовлетворяет исходному уравнению. Ответ: .

6. Введем новую переменную . В результате исходное иррациональное уравнение принимает вид Решая первое уравнение этой системы, получим корни и . Второй корень не удовлетворяет неравенству системы. Решая уравнение , получаем корни и . Как показывает проверка, оба корня удовлетворяют исходному уравнению. В ответе нужно указать наибольший из корней. Ответ: .

7. Данное уравнение равносильно совокупности двух систем: и Будем решать каждую из систем по отдельности. Решение первой системы: Если внимательно посмотреть на неравенства последней системы, можно заметить, что пересечение множеств и пусто. Следовательно, первая система совокупности корней не имеет. Решение второй системы: Решая уравнение этой системы, равносильное уравнению , получим корни и . Второй корень не удовлетворяет неравенству системы и, следовательно, является посторонним корнем исходного уравнения. Ответ: .

8. Введем новые переменные и . Тогда исходное уравнение принимает вид: . Поскольку мы ввели две новые неизвестные, надо найти еще одно уравнение, связывающее y и z. Для этого возведем равенства , в третью степень и заметим, что . Итак, надо решить систему уравнений она имеет два (действительных) решения: , ; , . Остается решить систему двух уравнений с одним неизвестным и систему первая из них дает , вторая дает . Как показывает проверка, оба корня удовлетворяют исходному уравнению. Ответ: , .

Ответы и решение заданий диагностирующей контрольной работы №2

1. Б.

2. В.

3. Г.

4. Уединив первый радикал, получаем уравнение , равносильное исходному. Возводя обе части этого уравнения в квадрат, получаем уравнение,. Последнее уравнение равносильно системе Решая уравнение этой системы, равносильное уравнению , получим корни и . Оба корня удовлетворяют неравенству системы и, следовательно, являются корнями исходного уравнения. В ответе нужно указать произведение корней. Ответ: 48.

5. Введем новую переменную , тогда , причем . В результате исходное иррациональное уравнение принимает вид квадратного , откуда учитывая ограничение , получаем . Решая уравнение , получаем корень . Как показывает проверка, удовлетворяет исходному уравнению. Ответ: .

6. Введем новую переменную . В результате исходное иррациональное уравнение принимает вид Решая первое уравнение этой системы, равносильное уравнению , получим корни и . Первый корень не удовлетворяет неравенству системы. Решая уравнение , получаем корни и . Как показывает проверка, оба корня удовлетворяют исходному уравнению. В ответе нужно указать наибольший из корней. Ответ: .

7. Данное уравнение равносильно совокупности двух систем: и Будем решать каждую из систем по отдельности. Решение первой системы: Решая уравнение этой системы, равносильное уравнению , получим корни и . Второй корень не удовлетворяет неравенству системы и, следовательно, является посторонним корнем исходного уравнения. Решение второй системы: Решая уравнение этой системы, равносильное уравнению , получим корни и . Оба корня не удовлетворяют неравенству системы и, следовательно, являются посторонними корнями исходного уравнения. Ответ: .

8. Введем новые переменные и . Тогда исходное уравнение принимает вид: . Поскольку мы ввели две новые неизвестные, надо найти еще одно уравнение, связывающее y и z. Для этого возведем равенства , в четвертую степень и заметим, что . Итак, надо решить систему уравнений она имеет два (действительных) решения: , ; , . Остается решить систему двух уравнений с одним неизвестным и систему первая из них дает , вторая дает . Как показывает проверка, оба корня удовлетворяют исходному уравнению. Ответ: , .

Приложение В

Разработка факультативного занятия на тему «Способ рационализации при решении иррациональных уравнений»

Ход занятия

Иногда посредством некоторой подстановки удается привести иррациональное уравнение к рациональному виду. В таком случае говорят, что эта подстановка рационализирует рассматриваемое иррациональное уравнение, и называют ее рационализирующей.

Способ решения иррациональных уравнений, основанный на применении рационализирующих подстановок, назовем способом рационализации.

Применяя рационализирующую подстановку, необходимо следить за тем, чтобы область определения нового рационального уравнения, получаемого в результате этой подстановки, соответствовала области определения данного иррационального уравнения. Только при этом условии рационализирующая подстановка приведет рассматриваемое иррациональное уравнение к рациональному уравнению, которое всюду в области его определения эквивалентно данному.

Рассмотрим рационализацию некоторых выражений, содержащих радикалы, с помощью рационализирующих подстановок и применение этих подстановок при решении иррациональных уравнений.

1. Рационализация выражения

Выражение вида

, (1)

где обозначает рациональную функцию, и - постоянные, а - любое целое положительное число, рационализируется подстановкой

. (2)

Действительно, возводя обе части равенства (2) в -ую степень, получим , откуда , причем функция рациональна. Следовательно,

.

Поскольку рациональная функция от рациональной функции представляет собой также рациональную функцию, то выражение, стоящее в правой части последнего равенства, является рациональным.

Пример 1. Решить уравнение .

Решение. ОДЗ рассматриваемого уравнения . Рационализирующей подстановкой это уравнение приводится к эквивалентной ему смешанной системе

или (сокращая дробь на ) системе

Решением последней будет . Воспользовавшись подстановкой, получим .

Ответ: .

2. Рациональность дробно-линейных иррациональностей

Аналогично предыдущему доказывается, что функция вида

, (3)

где , , и - некоторые постоянные, а - любое целое положительное число (дробно-линейная иррациональность), может быть при условии приведена к рациональному виду подстановкой

(4)

Иррациональная функция

(5)

рационализируется при помощи подстановки

(6)

где - наименьшее общее кратное показателей радикалов , , …

Пример 2. Решить уравнение .

Решение. Будем искать корни данного уравнения в области (очевидно, что числа и не являются его корнями). Разделим обе части уравнения на :

.

Полученное уравнение в рассматриваемой области с помощью рационализирующей подстановки

сводится к смешанной системе

эквивалентной ему в этой области. Определив решения этой системы и и воспользовавшись подстановкой, находим корни исходного уравнения.

Ответ: .

3. Рационализация биноминальных выражений

Можно доказать, что выражение

, (7)

где и - постоянные, а показатели степеней , - некоторые рациональные числа, допускает рационализирующие подстановки только в трех случаях, когда оказывается целым одно из чисел , или .

В этих случаях возможны следующие подстановки:

Если - целое, то , где - наименьшее общее кратное знаменателей чисел и .

Если - целое, то , где - знаменатель числа .

Если - целое, то , где - знаменатель числа .

Существование указанных трех рационализирующих подстановок доказывает возможность приведения к рациональному виду уравнений в первом случае и во втором и третьем случаях.

Пример 3. Решить уравнение .

Решение. Так как - не является корнем уравнения, разделим обе его части на . Выделяется биномиальное выражение:

.

Имеет место третий случай рационализации ( и - целое число). Следовательно, будем применять подстановку . Возводя обе части этого равенства в квадрат, получим , так что . Теперь с помощью подстановки и найденного значения получаем

и исходное иррациональное уравнение приводится к рациональному , или . Определив корни этого уравнения , и воспользовавшись подстановкой, находим

Ответ:

4. Рационализация квадратичных иррациональностей посредством подстановок Эйлера

Квадратичной иррациональностью назовем функцию вида

, (9)

где и - некоторые постоянные. Покажем, что это выражение всегда рационализируется одной из так называемых подстановок Эйлера. При этом мы, конечно, будем считать, что квадратный трёхчлен неотрицателен и не имеет равных корней (в противном случае корень можно заменить рациональным выражением).


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.