Методика решения иррациональных уравнений и неравенств в школьном курсе математики
Анализ школьных учебников по алгебре и началам анализа. Методика изучения иррациональных уравнений и неравенств на уроках математики. Основные понятия и наиболее важные приемы преобразования уравнений. Основы и методы решения иррациональных неравенств.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 28.05.2008 |
Размер файла | 793,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
а) Сначала рассмотрим случай, когда дискриминант . В этом случае знак квадратного трёхчлена совпадает со знаком , и поскольку этот трёхчлен положителен (в силу условия равенство трёхчлена нулю невозможно), то .
Таким образом, мы можем сделать следующую подстановку:
(или ) (10)
Подстановку (10) иногда называют первой подстановкой Эйлера. Докажем, что эта подстановка рационализирует функцию (9) в рассматриваемом случае. Возводя в квадрат обе части равенства
(заметим, что ), получим , так что
,
где функции и рациональные. Таким образом,
.
В правой части полученного равенства стоит рациональная функция.
б) Рассмотрим теперь случай, когда дискриминант , то есть квадратный трехчлен имеет (различные) действительные корни и . Следовательно,
.
Аналогично предыдущему доказывается, что в этом случае функция (9) рационализируется посредством подстановки:
, (11)
называемой часто второй подстановкой Эйлера.
Замечание 1. Рационализирующая подстановка (11) справедлива при условии . Следовательно, применяя эту подстановку при решении иррационального уравнения, необходимо проверить, не является ли значение корнем данного уравнения (иначе возможна потеря этого корня).
Замечание 2. Если , то в этом случае можно положить
(или ) (12)
Ответ: , .
Пример 4. Решить уравнение .
Решение. В данном уравнении дискриминант квадратного трехчлена положителен, корни его и . Найдем другие корни подстановкой
.
Применяя эту подстановку, необходимо проверить, не является ли значение корнем данного уравнения. Итак, - корень данного уравнения.
Возводя в квадрат обе части равенства , получим , откуда . Теперь подставим это значение в исходное уравнение и последовательно получаем:
и исходное уравнение сводится к уравнению , или . Это уравнение имеет единственный действительный корень , тогда . Итак, исходное уравнение имеет два корня: и .
Ответ: , .
5. Рационализация с помощью тригонометрических подстановок
Иногда подходящей заменой неизвестной иррациональное уравнение можно свести к тригонометрическому уравнению. При этом полезными могут оказаться следующие замены переменной. [17]
1). Если в уравнение входит радикал , то можно сделать замену , или , .
2). Если в уравнение входит радикал , то можно сделать замену tg t, или ctg t, .
3). Если в уравнение входит радикал , то можно сделать замену , или , .
Проиллюстрируем использование этих замен на следующих примерах.
Пример 5. Решить уравнение .
Решение. В данное уравнение входит выражение , поэтому в соответствии с пунктом 2, сделаем замену
tg t, где .
Тогда выражение , входящее в уравнение, можно преобразовать
и исходное уравнение можно записать в виде
.
Поскольку не равен нулю при рассматриваемых значениях t, то полученное уравнение равносильно уравнению
.
Решая это уравнение, находим два возможных значения
и .
Из всех корней этих уравнений промежутку принадлежит единственное значение .
Поэтому соответствующее значение x равно
.
Ответ. .
Пример 6. Решить уравнение .
Решение. В этом уравнении x по ОДЗ может принимать только значения из отрезка , что приводит к мысли совершить замену
, где .
В результате такой замены приходим к уравнению
.
Учтем, что
и ,
получим уравнение
.
В силу ограничения выполнено , поэтому приходим к уравнению
,
которое, пользуясь формулой приведения, сведем к стандартному виду
.
Решая последнее уравнение, находим
или , .
Условию удовлетворяют лишь три значения
, , .
Поэтому
, , .
Ответ. , , .
В заключение нужно отметить, что способ рационализации успешно может быть применён также для рационализации иррациональных неравенств, для вычисления и преобразования иррациональных выражений и так далее.
Подобные документы
Приемы преобразования уравнений. Методика решения иррациональных уравнений. Тождественные преобразования при решении иррациональных уравнений. Применение общих методов для решения иррациональных уравнений. Методика решения иррациональных неравенств.
курсовая работа [338,3 K], добавлен 12.06.2010Методика обучения понятию неравенства и решению неравенств в начальной школе. Содержание и роль линии уравнений и неравенств в школьном курсе математики. Классификация преобразований неравенств и их систем. Общая последовательность изучения материала.
курсовая работа [320,8 K], добавлен 08.04.2009Особенности типов уравнений и неравенств с параметрами, которые встречаются в школьной программе. Роль параметра в школьном курсе математики. Характеристика основных методов решения уравнений, неравенств с параметрами. Содержание курсов по выбору в школе.
дипломная работа [1,3 M], добавлен 14.01.2018Составление методической схемы преподавания нового материала в средней школе: ознакомление с понятиями степени, решениями иррациональных уравнений, показательной и производной степенной функций, тождественных преобразований логарифмических неравенств.
реферат [75,1 K], добавлен 07.03.2010Рассмотрение методики введения в школьный курс математики понятий синуса, косинуса, тангенса, основных тригонометрических тождеств (на геометрическом и алгебраическом материалах), функций, преобразований, способов решения уравнений и неравенств.
реферат [459,8 K], добавлен 07.03.2010Разработка занятий элективного курса. Использование свойств функций при решении уравнений и неравенств. Разработка элективного курса "Решение уравнений и неравенств с использованием свойств функций". Методические основы разработки элективного курса.
дипломная работа [294,8 K], добавлен 24.06.2009Понятие квадратного трехчлена и квадратичной функции, их место в школьном курсе алгебры. Определение порядка раскрытия темы по решению квадратных уравнений и неравенств на уроках математики. Разработка методики по изучению квадратного трехчлена в школе.
дипломная работа [1,6 M], добавлен 18.07.2013Цель изучения уравнений в курсе математики в коррекционно-развивающих классах, методика обучения их решению на основании свойств равенств. Виды уравнений, решаемых в начальном классе, их связь с изученным материалом. Образцы записи и проверки решения.
курсовая работа [91,8 K], добавлен 23.05.2014Классификация и функции задач в обучении. Методические особенности решения нестандартных задач. Особенности решения текстовых задач и задач с параметрами. Методика решения уравнений и неравенств. Педагогический эксперимент и анализ результатов.
дипломная работа [387,1 K], добавлен 24.02.2010Методические рекомендации по изучению уравнений и неравенств с параметром в курсе математики средней школы. Начало изучения задач с параметрами. Задания с параметром в ЕГЭ и математических олимпиадах. Подготовка к олимпиадным заданиям с параметром.
курсовая работа [48,5 K], добавлен 15.06.2019