Защита трубопроводов тепловых сетей от наружной коррозии

Определение опасности наружной коррозии трубопроводов тепловых сетей и агрессивности грунтов в полевых и лабораторных условиях. Признаки наличия блуждающих постоянных токов в земле для вновь сооружаемых трубопроводов. Катодная защита и анодное заземление.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 09.11.2011
Размер файла 1000,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Критерии опасности наружной коррозии теплопроводов

2. Способы защиты трубопроводов тепловых сетей

3. Катодная защита

4. Анодное заземление

5. Определение опасности наружной коррозии трубопроводов тепловых сетей

6. Определение коррозионной агрессивности грунтов в полевых и лабораторных условиях

7. Определение наличия блуждающих постоянных токов в земле для вновь сооружаемых трубопроводов тепловых сетей

8. Определение опасного влияния переменного тока

Выводы

Список литературы

Вступление

Наружная коррозия подземных трубопроводов является в настоящее время основной причиной аварий в тепловых сетях. В связи с этим защита от нее относится к важнейшим вопросам, которые приходится решать при проектировании и эксплуатации систем теплоснабжения.

По виду наружная коррозия трубопроводов бывает сплошной равномерной и язвенной очаговой. Наибольшую опасность представляет приводящая к сквозным повреждениям (свищам) язвенная очаговая коррозия, скорость которой достигает 1,4--1,8 мм/год. Сплошная равномерная коррозия менее опасна, так как скорость ее составляет 0,1--0,2 мм/год.

Наружную коррозию подземных трубопроводов по природе подразделяют на химическую, электрохимическую и электрическую (от блуждающих токов).

Химическая коррозия возникает от действия на металл различных газов и жидкостей, поступающих из окружающего грунта через изоляцию к поверхности трубы. Химическая коррозия относится к сплошной коррозии и при ней толщина стенки трубы уменьшается равномерно.

Электрохимическая коррозия возникает в результате взаимодействия металла, выполняющего роль электродов, с агрессивными растворами грунта, выполняющими роль электролита. Коррозия стали протекает в анодной зоне, где наблюдается выход ионов металла в грунт.

Электрохимическая коррозия имеет в основном характер местной очаговой коррозии и при ней на трубопроводах возникают местные язвы и каверны большой глубины, которые могут развиваться в сквозные отверстия в стенке трубы.

Электрическая коррозия возникает при воздействии на трубопровод электрического тока, движущегося в грунте. В грунт токи попадают в результате утечек из рельсов электрифицированного транспорта -- их называют блуждающими. Попадая на трубопровод, они движутся по нему, а вблизи тяговой подстанции выходят из трубопровода в грунт, образуя очаги электрокоррозии.

На интенсивность протекания коррозионных процессов оказывают влияние температурный режим теплопровода, наличие влаги, кислорода и агрессивные соли и кислоты, содержащиеся в грунте, в грунтовых водах и иногда в тепловой изоляции.

Температура поверхности трубы оказывает основное влияние на интенсивность поступления к ней кислорода и других агрессивных газов. При повышении температуры, с одной стороны, увеличивается скорость диффузии кислорода из воды, с другой, уменьшается растворимость его в воде вследствие снижения коэффициента абсорбции и парциального давления кислорода. При этом происходит подсушивание изоляции и перемещение обескислороженной влаги к периферии вследствие действия градиента температур. В результате скорость коррозии сначала растет, достигая максимума при 65--75°С, а затем снижается*. При температуре 100°С коррозия практически отсутствует, что подтверждается опытом эксплуатации паропроводов.

При понижении температуры происходит приток обогащенной кислородом и другими агрессивными газами влаги из грунта через изоляцию к поверхности трубопровода, т. е. переменная температура теплоносителя действует как "насос", поставляющий агрессивные газы к трубопроводу, что дополнительно увеличивает их коррозию.

Кроме того, при влажном грунте и изоляции возрастает электропроводимость, что значительно увеличивает опасность электрической и электрохимической коррозии.

Защита подземных стальных трубопроводов от коррозии - одна из актуальных научных и экономических проблем в промышленно развитых странах: прямые потери от коррозии подземных коммуникаций достигают 20% от мирового объема ежегодного производства стальных труб.

Опыт эксплуатации тепловых сетей различных конструкций показывает, что срок их службы в первую очередь определяется коррозионной стойкостью стальных теплопроводов. Главной причиной перекладки тепловых сетей является наружная коррозия стальных труб. Доля повреждений теплопроводов от внутренней коррозии не превышает 25% и связана с некачественной подготовкой теплоносителя. По статистике наружной коррозии больше подвержены подающие трубы теплосетей, работающие до 70% рабочего времени в опасном температурном режиме (70-80°С). Наибольшая удельная повреждаемость приходится на тепловые сети малого диаметра 50-150 мм, прокладываемые, как правило, в непроходных каналах (рис. 1).

Рис. 1. Удельная повреждаемость от наружной коррозии Пу в зависимости от диаметра трубопроводов

Одним из доступных решений проблемы повышения коррозионной стойкости подземных тепловых сетей может стать применение полносборных строительно-изоляционых конструкций теплопроводов полной заводской готовности, сертифицированных заводом-изготовителем на расчетный срок службы подземных коммуникаций. В тепловых сетях освоено применение таких полносборных индустриальных конструкций типа "труба в трубе" с теплоизоляцией на основе теплостойкого пенополиуретана в оболочке из полиэтиленовых труб. В этих конструкциях применена система оперативного дистанционного контроля состояния подземных коммуникаций (ОДК), позволяющая принимать неотложные меры до наступления аварийной ситуации. Но остается нерешенной проблема защиты от коррозии десятков тысяч километров старых конструкций теплопроводов, находящихся в эксплуатации и нуждающихся в защите (рис. 2).

Рис. 2. Схема электрохимической коррозии

1. Критерии опасности наружной коррозии теплопроводов

коррозия трубопровод ток заземление

Критерии опасности наружной коррозии теплопроводов зависят от способа их прокладки, конструктивных особенностей и условий эксплуатации.

Главной причиной коррозионных повреждений теплопроводов, с нашей точки зрения, является недооценка роли противокоррозионной защиты тепловых сетей при их проектировании, строительстве и эксплуатации.

Например, применение средств электрохимической защиты (ЭХЗ) в системах газоснабжения снизило их удельную повреждаемость в несколько раз.

Подземные теплопроводы являются наиболее слабым и уязвимым звеном систем централизованного теплоснабжения. Особенно велика удельная повреждаемость (Пу) теплопроводов малого диаметра, срок службы которых во многих случаях не превышает 8-10 лет. Интенсивность наружной коррозии подземных тепловых сетей в первую очередь объясняется неблагоприятными температурно-влажностными условиями их эксплуатации (в отличие от "холодных" трубопроводов), низкими защитными свойствами строительно-изоляционных конструкций и отсутствием надежной электрохимической защиты тепловых сетей.

Для теплопроводов бесканальной прокладки критерии опасности определяются главным образом коррозионной агрессивностью грунта, а также опасностью воздействия блуждающего постоянного тока и опасным воздействием переменного тока. На трубопроводы с пенополиуретановой изоляцией, снабженные системой оперативного дистанционного контроля ОДК состояния изоляции, указанные критерии не распространяются.

Для теплопроводов канальной прокладки критерии опасности коррозии определяются наличием воды в канале и заносом канала грунтом, когда вода или грунт достигают изоляционной конструкции или поверхности трубопровода. Увлажнение теплоизоляционной конструкции теплопровода капельной влагой, достигающей поверхности трубы, также является критерием опасности коррозии. Для участков теплопроводов, находящихся в теплофикационных камерах, критерии опасности коррозии те же, что и для теплопроводов канальной прокладки.

Опасное воздействие блуждающего постоянного и переменного тока при наличии воды или наноса грунта в канале, которые достигают изоляционной конструкции или поверхности трубопровода, существенно увеличивают скорость наружной коррозии теплопровода.

2. Способы защиты трубопроводов тепловых сетей

Способы защиты трубопроводов тепловых сетей подразделяются на две основные группы: первая объединяет мероприятия, направленные на создание условий, при которых прекращается или существенно снижается интенсивность воздействия на металл трубопровода внешних факторов (агрессивность среды, увлажнение изоляции, интенсивность поля блуждающих токов и пр.), вторая группа мероприятий предусматривает создание условий для протекания таких электрохимических процессов, при реализации которых подавляется или существенно снижается скорость коррозионных процессов на защищаемой поверхности металлического трубопровода.

Электрохимическая защита (ЭХЗ) трубопроводов относится ко второй группе мероприятий, направленных на защиту от коррозии подземных металлических сооружений методом катодной поляризации.

Коррозия наружной поверхности подземных трубопроводов имеет электрохимическую природу, протекает на границе двух фаз - металла и водной фазы и сопровождается протеканием через эту границу электрического тока.

Электрохимический механизм растворения (коррозии) металла является результатом одновременного протекания двух сопряженных реакций - анодной и катодной.

Анодная реакция представляет собой ионизацию атомов металла за счет потери ими отрицательно заряженных электронов и сопровождается переходом металла в раствор в виде гидратированных ионов с последующим образованием малорастворимых продуктов коррозии:

Катодная реакция представляет собой ассимиляцию отрицательно заряженных электронов, освободившихся в результате анодной реакции, каким-либо деполяризатором, содержащимся в водной среде. В роли такого деполяризатора чаще всего выступает кислород:

Участки анодных и катодных реакций на поверхности металла пространственно разделены, но для протекания коррозионного процесса необходим переток электронов в металле от анода к катоду. Материальный эффект коррозионного разрушения металла проявляется на аноде. Электрохимическая коррозия напоминает работу гальванического элемента, на электродах которого происходят окислительно-восстановительные процессы. На скорость коррозии оказывают влияние множество различных факторов: рН-среды, химический состав металла и водной среды, температура металла и среды и т. д. Среди причин проявления системы "анод-катод" могут быть микро- и макроэлементы (микро- и макропары), металлы одного типа, но различные по химическому составу или структуре, один и тот же металл, но разные среды. Классическая зависимость скорости коррозии (реакции ионизации растворения металла) от его потенциала (рис. 3) описывает главные области растворения (коррозии) металла по различным механизмам: АВ - активная область коррозии, ВС - переходная область, СД - пассивная область, ДЕ - область нарушения состояния пассивности. Под влиянием различных факторов (природы металла, состава электролита, температуры) параметры этой зависимости могут изменяться. Так, с увеличением концентрации хлора (хлорид-ионов) в водном растворе и связанным с этим уменьшением щелочности (показатель рН) может исчезнуть пассивная область СД.

Рис. 3. Зависимость скорости реакции ионизации металла от потенциала.

Защита от коррозии необходима, когда скорость ионизации металла превышает допустимое для данной системы значение iдоп. Если потенциал коррозии металла подземного трубопровода находится в активной зоне цкор и коррозия протекает с кислородной деполяризацией, можно уменьшить скорость коррозии до приемлемого значения I < iдоп., сместив потенциал к более отрицательному значению в активной области, например, кцкор.

3. Катодная защита

Итак, электрохимическая защита методом катодной поляризации (катодная защита) основана на закономерном снижении скорости растворения металлов по мере смещения их потенциалов в сторону отрицательных значений относительно опасного потенциала коррозии. Этот метод предусматривает смещение потенциала ионов металла трубопровода с помощью внешнего источника постоянного тока или путем соединения трубопровода с металлом - гальваническим анодом (протектором), имеющим больший отрицательный потенциал, до значений, соответствующих защитному потенциалу. До начала 90-х годов преобладала тенденция к применению совместной электрохимической защиты всех подземных металлических сооружений в заданной зоне с применением мощных защитных установок. Исследования, проведенные АКХ им. К.Д. Памфилова, показали, что в этих зонах, как правило, протяженность защищенных теплопроводов оказывается минимальной, особенно при канальной прокладке тепловых сетей. Это объясняется значительно меньшим переходным электрическим сопротивлением в сравнении с другими металлическими трубопроводами и связано с отсутствием на теплопроводах электрической изоляции от опорных конструкций (неподвижных и скользящих опор), низким качеством противокоррозионных покрытий или полным их отсутствием и малой "долей" тока защиты тепловых сетей от его общего значения. Поэтому при проектировании ЭХЗ для тепловых сетей канальной прокладки наиболее целесообразным является применение не совместной, а индивидуальной электрохимической защиты, обеспечивающей необходимые защитные параметры теплопроводов в границах известных или предполагаемых опасных зон.

4. Анодное заземление

Варианты размещения

Одним из основных элементов установок катодной ЭХЗ является конструкция анодного заземления (АЗ), с которого стекает в землю ток защиты, и способ его размещения относительно защищаемого теплопровода. Применявшиеся ранее сосредоточенные анодные заземления (АЗ) в виде забиваемых в землю стальных отрезков труб имели небольшие размеры, значительно меньшие в сравнении с протяженностью защищаемого теплопровода, и низкую эффективность защиты. Максимальный защитный потенциал имели участки теплопроводов, наиболее приближенные к АЗ (в городских условиях это зоны 20-30 м). На периферийных участках теплопроводов защитный потенциал снижался по экспоненциальному закону (рис. 4) При этом, чем ниже переходное электрическое сопротивление R сооружения, обусловленное конструкцией канала и изоляции, тем больше падение защитного потенциала.

Рис. 4. Схема распределения потенциалов вдоль трубопровода при катодной защите с использованием сосредоточенных АЗ: 1 - трубопровод; 2 - катодная станция; 3 - АЗ; 4 - стационарный потенциал трубопровода; 5 - поляризационный потенциал трубопровода

Как показали натурные исследования, зона защиты теплопроводов одной установкой ЭХЗ в таких условиях составляла всего несколько десятков метров при значительных расходах электроэнергии, в то время как защитные зоны подземных газопроводов измеряются сотнями метров.

Анализ работы действующих установок ЭХЗ тепловых сетей канальной прокладки показал, что применение традиционных сосредоточенных анодных заземлителей в городских условиях во многих случаях не обеспечивает их эффективную работу. Неоправданно увеличиваются затраты электроэнергии, неравномерно распределяется ток защиты. При выборе конструкции и расположения АЗ следует учитывать участки возможного подтопления каналов грунтовой водой или заиливания каналов до уровня контактов с поверхностью теплопровода.

В этих условиях более предпочтительным оказывается применение распределенных (протяженных) анодных заземлителей, позволяющих обеспечить более равномерное распределение тока защиты вдоль опасного участка тепловых сетей, экономию электроэнергии и возможность применения катодных установок малой мощности, локализацию дополнительных полей блуждающих токов и экономию площади земельных участков. Эффективность работы протяженных АЗ значительно возрастает при использовании устройств автоматического включения ЭХЗ.

Здесь приводятся рекомендации по их устройству, применению, выбору экономичных режимов работы, экономической эффективности применения станций катодной защиты (СКЗ).

Преимущества протяженных АЗ вполне удовлетворяют требованиям защиты подземных теплопроводов на локальных участках. При этом могут применяться протяженные аноды кабельного или стержневого типа из материала на основе каучука с углеродсодержащими наполнителями (токопроводящие эластомеры), стержневые аноды из низколегированных сплавов, пластинчатые титановые аноды с активным покрытием оксиданами железа. На рис. 5а показана схема размещения в теплофикационном канале протяженных АЗ кабельного типа из токопроводящих эластомеров.

Рис. 5а. Схема размещения в теплофикационном канале распределенных АЗ кабельного типа из токопроводящих эластомеров или стальных трубопроводов: 1 - электрод АЗ; 2 - измерительный электрод; 3 - трубопровод; 4 - распределительный кабель; 5 - КИП у СКЗ; 6 - электроперемычка; 7 - СКЗ; 8 - КИП; 9 - уровень затопления канала; 10 - диэлектрическая опора; 11 - перемычка между электродами АЗ

Для действующих трубопроводов тепловых сетей диаметром менее 300 мм размещение электродов АЗ в каналах при их затоплении или заиливании представляет определенные трудности. В этих случаях целесообразно размещать АЗ за пределами каналов и камер, четко определяя границы опасных зон.

Рис. 5б. Схема размещения в теплофикационном канале распределенных АЗ стержневого типа, расположенных перпендикулярно оси трубопроводов: 1 - электрод АЗ стержневого типа; 2 - измерительный электрод; 3 - трубопровод; 4 - распределительный кабель; 5 - КИП у СКЗ; 6 - электроперемычка; 7 - СКЗ; 8 - КИП; 9 - уровень затопления канала; 10 - диэлектрическая опора

Для обеспечения защиты теплопроводов на таких участках необходимы локальные источники катодной поляризации малой мощности. Одно выносное АЗ рекомендуется применять для участка длиной 50-60 м. Возможны другие варианты схем защиты, обусловленные иным взаимным расположением теплопроводов. Например, на участках теплопроводов канальной прокладки небольшой длины диаметром более 200 мм, подверженных сезонному подтоплению, применяются протекторы из магниевых сплавов ПМ-5 или ПМ-5у (с активатором). Протекторы устанавливают на дне или стенках каналов (рис. 6).

Рис. 6. Примерные расчетные схемы размещения и количества магниевых протекторов стержневого типа ПМ-2,7 в сечении трубопровода

Применение протекторов стержневого типа из магниевых сплавов для ЭХЗ теплопроводов на участках их прокладки в футлярах. На вновь прокладываемых или реконструируемых теплопроводах протекторы устанавливают внутри изоляционной конструкции, на действующих теплопроводах - на их поверхности. На рис. 6 приведены примерные расчетные схемы размещения магниевых протекторов стержневого типа на теплопроводах Д = 530 мм непосредственно на их поверхности или на поверхности изоляционной конструкции. Одна из главных особенностей эксплуатации ЭХЗ теплопроводов канальной прокладки при расположении АЗ непосредственно в канале - периодическое отсутствие электролитического контакта между АЗ и поверхностью трубопровода при осушении канала. В этом случае могут возникнуть узкополосные или точечные контакты АЗ с водой, где плотность тока утечки будет многократно превышать допустимую плотность тока АЗ, что особенно опасно для АЗ из токопроводящих эластомеров. С целью уменьшения числа локальных участков возможного преждевременного разрушения АЗ и экономии электроэнергии целесообразно применение устройств автоматического включения и выключения станций катодной защиты (СКЗ) в зависимости от уровня подтопления канала. Для контроля эффективности действия ЭХЗ теплопроводов при расположении АЗ в каналах применяются вспомогательные электроды (ВЭ), устанавливаемые у поверхности трубопроводов. С помощью ВЭ определяется также присутствие грунтовой воды в канале. Начато также применение специальных блоков-пластин индикаторов (БПИ-1 И БПИ-2) для непосредственного контроля опасности коррозии и эффективности действий электрохимической защиты теплопроводов.

5. Определение опасности наружной коррозии трубопроводов тепловых сетей

Для определения опасности наружной коррозии трубопроводов тепловых сетей должны систематически проводиться осмотры трубопроводов подземных тепловых сетей и электрические измерения для определения коррозионной агрессивности грунтов и опасного действия блуждающих токов.

Электрические измерения на тепловых сетях, находящихся в эксплуатации, должны производиться ПЗК ОЭТС. К этим работам могут привлекаться также специализированные организации.

Электрические измерения на трассах вновь сооружаемых и реконструируемых тепловых сетей должны производиться, как правило, организациями, разрабатывающими проект прокладки или капитального ремонта тепловых сетей, или специализированными организациями, разрабатывающими технические решения по защите тепловых сетей от наружной коррозии.

6. Определение коррозионной агрессивности грунтов в полевых и лабораторных условиях

Измерения УЭС грунта производятся для выявления участков трассы тепловых сетей бесканальной прокладки в грунте с высокой коррозионной агрессивностью, а также для выбора типа, конструкции и расчета анодного заземлителя при необходимости ЭХЗ (катодной защиты) трубопроводов тепловых сетей.

Коррозионная агрессивность грунта по их УЭС определяется в полевых и лабораторных условиях.

Измерение УЭС грунта в полевых условиях на действующих тепловых сетях должно производиться вдоль трассы тепловой сети через каждые 100 - 200 м на расстоянии 2 - 4 м от ее оси.

На трассах вновь сооружаемых тепловых сетей УЭС грунта производится вдоль оси предполагаемой трассы через каждые 100 - 200 м.

Измерение УЭС должно производиться в период отсутствия промерзания грунта на глубине заложения трубопроводов тепловых сетей по четырехэлектродной схеме (рис. 7) с помощью измерителей сопротивления типа М-416, Ф-416, Ф 4103-М1, аппаратуры ГУП "Парсек" или других приборов. В качестве электродов применяют стальные стержни длиной 250 - 350 мм и диаметром 15 - 20 мм. Схема определения удельного электрического сопротивления грунта в полевых условиях

Рис. 7. 1 - стальные электроды; 2 - измерительный прибор

Расстояния между смежными электродами принимаются одинаковыми, глубина забивки электродов в грунт должна быть не более 1/20 расстояния между смежными электродами.

УЭС грунта с(Ом·м) вычисляют по формуле:

с = 2·р·R·a,

где R - величина электрического сопротивления, измеренная по прибору, Ом;

а - расстояние между смежными электродами, принимаемое равным глубине прокладки трубопроводов, м.

Для определения УЭС грунта в лабораторных условиях необходимо произвести отбор и обработку проб испытываемого грунта.

Пробы грунта отбирают в шурфах, скважинах или траншеях из слоев, расположенных на глубине прокладки трубопроводов, с интервалом 50 ч 200 м на расстоянии 0,5 ч 0,7 м от боковой стенки труб. Для пробы берут 1,5 ч 2,0 кг грунта, удаляя твердые включения размером более 3 мм. Отобранную пробу помещают в полиэтиленовый пакет и снабжают паспортом, в котором указываются номера объекта и пробы, место и глубина отбора пробы.

Для определения коррозионной агрессивности грунта по отношению к стали в лабораторных условиях рекомендуется использовать специальные устройства и приборы, например, УЛПК-1 и АКГК. Приборы снабжены инструкцией по эксплуатации, ячейками, электродами, предназначенными для определения УЭС грунта.

Определение УЭС грунта в лабораторных условиях проводится по 4-х электродной схеме (рис.8). Сущность метода в том, что внешние электроды с одинаковой площадью рабочей поверхности S поляризуют током определенной силы J и измеряют падение напряжения U на двух внутренних электродах при расстоянии L между ними. Если измерения проводят на постоянном токе, то используют 3 разных значения силы тока. Сопротивление грунта R рассчитывают по формуле:

R = U/J

Удельное электрическое сопротивление грунта р, Ом м, вычисляют по формуле:

с = R(S/L),

где R - измеренное сопротивление, Ом;

S - площадь поверхности рабочего электрода, м2;

L - расстояние между внутренними электродами, м.

Схема установки для определения удельного электрического сопротивления грунта в лабораторных условиях

Рис. 8. 1 - измерительная ячейка; 2 - внешние электроды; 3 - внутренние электроды; 4 - прибор для определения УЭС грунта (воды); 5 - клеммник для подключения к прибору соответствующих электродов.

Внешние электроды представляют собой прямоугольные пластины (из углеродистой или нержавеющей стали) с ножкой, к которой крепится или припаивается проводник - токоподвод. Размеры электродов 44 Ч 40 мм, где 40 - высота электрода. Одну сторону электродов, которая примыкает к торцевой поверхности ячейки, изолируют.

Внутренние электроды изготавливают из медной проволоки или стержня диаметром 1 - 3 мм и длиной более высоты ячейки.

Ячейка выполняется прямоугольной формы, из материала с диэлектрическими свойствами (стекло, фарфор, пластмасса). Внутренние размеры ячейки рекомендуются 100 Ч 45 Ч 45 мм.

Отобранную пробу песчаных грунтов смачивают до полного влагонасыщения, а глинистых грунтов - до достижения мягкопластичного состояния. Если уровень грунтовых вод ниже уровня отбора проб, смачивание проводят дистиллированной водой, а если выше - грунтовой водой. Электроды зачищают шлифовальной шкуркой зернистостью 40 и менее, обезжиривают ацетоном, промывают дистиллированной водой. Внешние электроды устанавливают вплотную к торцевым поверхностям внутри ячейки. В ячейку укладывают грунт, послойно утрамбовывая его, на высоту меньше высоты ячейки на 4 мм. Затем устанавливают внутренние электроды вертикально, опуская их до дна по центральной линии ячейки на расстоянии 50 мм друг от друга и 25 мм от торцевых стенок ячейки.

Измерения при определении УЭС грунта производят в соответствии с инструкцией, прилагаемой к прибору.

7. Определение наличия блуждающих постоянных токов в земле

Определение наличия блуждающих постоянных токов по трассе вновь сооружаемых теплопроводов при отсутствии проложенных смежных подземных металлических сооружений следует проводить, измеряя разность потенциалов между двумя точками земли через каждые 1000 м по двум взаимно перпендикулярным направлениям при разносе измерительных электродов на 100 м. Схема измерений приведена на рис. 7.

Схема электрических измерений для обнаружения блуждающих токов в земле

1 - медносульфатные электроды сравнения; 2 - изолированные проводники; pV - вольтметр; l - расстояние между электродами сравнения. Рис. 7

При наличии подземных металлических сооружений, проложенных вблизи трассы вновь сооружаемых теплопроводов на расстоянии не более 100 м, определение наличия блуждающих токов осуществляется путем измерения разности потенциалов между существующим сооружением и землей с шагом измерений не более 200 м.

Для измерения напряжения и силы тока используются показывающие и регистрирующие приборы классом точности не ниже 1,5. Следует применять вольтметры с внутренним сопротивлением не менее 200 кОм/В. Среди рекомендуемых приборов можно указать: ЭВ 2234; мультиметр цифровой специализированный 43313.1; прибор для измерения параметров установок защиты от коррозии подземных металлических сооружений ПКИ-02.

При измерениях используют переносные медносульфатные электроды сравнения (МЭС), которые подбирают так, чтобы разность потенциалов между двумя электродами не превышала 10 мВ, что должно быть определено в лабораторных условиях.

Переносной медносульфатный электрод сравнения (рис. 8) состоит из неметаллического полого корпуса с пористым дном и навинчивающейся крышкой с укрепленным в ней стержнем из красной меди. В корпус заливают насыщенный раствор медного купороса CuSO4·5H2O.

При сборке переносных медносульфатных электродов необходимо:

? очистить медный стержень от загрязнений и окисных пленок либо механически (наждачной бумагой), либо травлением азотной кислотой. После травления стержень тщательно промыть дистиллированной или кипяченой водой. Попадание кислоты в сосуд электрода недопустимо;

? залить электрод насыщенным раствором чистого медного купороса в дистиллированной или кипяченой воде с добавлением кристаллов купороса. Заливать электроды следует за сутки до начала измерений. После заливки все электроды установить в один сосуд (стеклянный или эмалированный) с насыщенным раствором медного купороса так, чтобы пористое дно электродов было полностью погружено в раствор.

Переносной медносульфатный электрод сравнения

1 - корпус; 2 - стержень из красной меди; 3 - крышка для крепления стержня; 4 - наконечник проводника; 5 - контактный зажим; 6 - полость, заполняемая насыщенным раствором медного купороса; 7 - нижняя крышка; 8 - пористое дно.

Измерения в каждом пункте должны проводиться не менее 10 мин. с непрерывной регистрацией или с ручной записью результатов через каждые 10 с. В зоне блуждающих токов трамвая с частотой движения 15 - 20 пар в 1 ч измерения необходимо производить в часы утренней или вечерней пиковой нагрузки электротранспорта. В зоне влияния блуждающих токов электрифицированных железных дорог период измерения должен охватывать пусковые моменты и время прохождения электропоездов в обе стороны между двумя ближайшими станциями. Если наибольший размах колебаний разности потенциалов (между наибольшим и наименьшим ее значениями) превышает 0,04 В, это характеризует наличие блуждающих токов (как в отсутствии, так и при наличии других подземных сооружений, проложенных вблизи трассы вновь сооружаемых теплопроводов).

При измерениях в зоне действия блуждающих токов и амплитуде колебаний разности потенциалов, превышающей 0,5В, вместо медносульфатных могут быть использованы стальные электроды.

8. Определение опасного влияния переменного тока

Зоны опасного влияния переменного тока определяют на участках трубопроводов, на которых выявлены значения напряжения переменного тока между трубопроводом и МЭС, превышающие 0,3 В.

Смещение потенциала трубопровода, вызываемое переменным током, измеряют на вспомогательном электроде (ВЭ) относительно переносного МЭС до и после подключения ВЭ к трубопроводу через конденсатор емкостью 4 мкф. ВЭ представляет собой пластину, изготовленную из стали ст. 3 размером 25 Ч 25 мм, толщиной 1,5 - 2,0 мм.

Работы проводят:

1. На участке трубопровода, оборудованного ЭХЗ, измерения выполняют при отключенных средствах ЭХЗ.

2. На теплопроводах канальной прокладки опасное влияние переменного тока определяют лишь на участках затопления или заиливания каналов.

3. На трубопроводах тепловых сетей бесканальной прокладки с пенополиуретановой тепловой изоляцией и трубой-оболочкой из жесткого полиэтилена (конструкция "труба в трубе") и аналогичной теплоизоляционной конструкцией на стыках труб, отводах и углах поворотов, имеющих действующую систему оперативного дистанционного контроля (ОДК) состояния изоляции трубопроводов, контроль опасности влияния переменного и постоянного тока не производится.

ВЭ устанавливают в специально подготовленном шурфе, подготовку и установку которого производят в следующем порядке.

В намеченном пункте измерений над теплопроводом или в максимальном приближении к нему (в плане) в месте отсутствия дорожного покрытия делают шурф глубиной 300 - 350 мм и диаметром 180 - 200 мм.

Перед установкой в грунт ВЭ зачищают шлифовальной шкуркой зернистостью 40 и насухо протирают. Предварительно из взятой со дна шурфа части грунта, контактирующего с ВЭ, должны быть удалены твердые включения размером более 3 мм. На выровненное дно шурфа насыпают слой грунта толщиной 30 мм, на нем укладывают ВЭ рабочей (неизолированной) поверхностью вниз и засыпают его грунтом слоем 60 - 80 мм от дна шурфа. Грунт над ВЭ утрамбовывают с усилием 3 - 4 кг на площадь ВЭ. Сверху устанавливают переносной МЭС и засыпают грунтом. Переносной МЭС подготавливают по п. 4.15 настоящей Типовой инструкции. При наличии атмосферных осадков предусматривают меры против увлажнения грунта и попадания влаги в шурф. Для проведения измерений собирают схему, приведенную на рис. 9. Используют вольтметр с входным сопротивлением не менее 1 МОм (например, типа 43313.1, ПКИ-02).

Измерения производят в такой последовательности:

? измеряют стационарный потенциал ВЭ относительно МЭС через 10 мин. после его установки в грунт;

? после стабилизации значения стационарного потенциала ВЭ в пределах 1 - 2 мВ в течение 5 мин. подключают ВЭ к трубопроводу по схеме рис. 10 и через 10 мин. снимают первое показание вольтметра;

? показания непрерывно записывают в память соответствующего измерительного прибора (например, ПКИ-02) или снимают через 10 с в течение не менее 10 мин.

Схема измерения смещения стационарного потенциала трубопровода под влиянием переменного тока

1 - трубопровод; 2 - датчик потенциала; 3 - переносной медносульфатный электрод сравнения; 4 - шурф; 5 - вольтметр постоянного тока; 6 - конденсатор; 7 - выключатель; 8 - амперметр переменного тока.

Рис. 9

Среднее смещение потенциала ВЭ за период измерений определяют по компьютерной программе (например, используемой при камеральной работе с прибором ПКИ-02) или по формуле:

где УUi - сумма значений потенциала, измеренного при подключении ВЭ к трубопроводу, мВ; Uст - стационарный потенциал ВЭ; m - общее число измерений.

Действие переменного тока признается опасным при среднем значении смещения потенциала в отрицательную сторону не менее, чем на 10 мВ по отношению к стационарному потенциалу.

Для дополнительной оценки опасности коррозии стальных трубопроводов под воздействием переменного тока измеряют силу переменного тока ВЭ при подключении его к трубопроводу. Для этой цели в цепи ВЭ - конденсатор - трубопровод дополнительно включают амперметр переменного тока с пределами измерений от 0,01 мА (1·105 А). После подключения ВЭ к трубопроводу измеряют силу переменного тока в течение 10 мин. через каждые 10 - 20 с с записью по форме приложения.

Среднюю плотность переменного тока рассчитывают по формуле:

j = J/6,25, mA/см2,

где J - среднее значение силы переменного тока за время измерений, мВ; 6,25 - площадь ВЭ, см2.

Действие переменного тока признается опасным при средней плотности тока более 1 мА/см2(10 А/м2). При использовании мультиметров, позволяющих измерять напряжение и силу тока, допускается сначала измерить смещение потенциала ВЭ по п. 4.27 настоящей Типовой инструкции, а затем, включив прибор в цепь в качестве амперметра, измерить силу переменного тока на ВЭ. При наличии амперметра и вольтметра одновременно измеряют смещение потенциала ВЭ и силу переменного тока после присоединения ВЭ к трубопроводу.

Выводы

Борьба с коррозией в тепловых сетях повышает их долговечность, улучшает эксплуатацию, сокращает затраты на вскрытие теплопроводов, обеспечивает экономию тепловой и электрической энергии, устраняет утечки теплоносителя и уменьшает гидравлические сопротивления теплопроводов.

Для контроля за состоянием тепловых сетей во время эксплуатации на участках, оборудованных средствами электрозащиты, в теплофикационных камерах устраиваются контрольно-измерительные пункты. Устройство этих пунктов должно обеспечивать надежный электрический контакт с металлической поверхностью теплопровода и землей, сопротивление при этом не должно превышать 5-6 ом.

Основным устройством для борьбы с блуждающими токами в тепловых сетях является дренажная защита.

Катодная и проекторная защита выполняет вспомогательные функции, в качестве основного вида защиты она применяется преимущественно при почвенной коррозии.

Мероприятия по электрической защите городских теплопроводов от коррозии должны выполняться совместно с защитой всех подземных коммуникаций, расположенных в зоне блуждающих токов.

При ремонтах теплопроводов, проложенных в непроходных каналах и бесканально, необходимо тщательно заделывать строительные конструкции и плотно утрамбовывать засыпаемый грунт с тем, чтобы предотвратить сосредоточенное проникание к трубам поверхностных вод.

Для контроля за внешней коррозией трубопроводов блуждающими токами подземные теплопроводы должны не реже одного раза в три года проверяться электроразведкой. Контрольная проверка участков, на которых обнаружена коррозия, производится не реже одного раза в год.

Список литературы

1. Никольский И.С. Индустриальные полносборные конструкции тепловых сетей. // Строительная инженерия № 8, 9, 2005 г.

2. Сурис М.А., Липовских В.М. Защита трубопроводов тепловых сетей от наружной коррозии.-М.: Энергоатомиздат, 2003.-216 с.

3. РД 153-34.0-20.518-2003. Типовая инструкция по защите трубопроводов тепловых сетей от наружной коррозии.-М.: Новости теплоснабжения, 2003.

4. Фрейман Л.И., Макаров В.А., Брыскин И.Б. Потенциостатические методы в коррозионных исследованиях и электрохимической защите.-М.: Химия, 1972.

5. Зуев А.В., Ягмур И.Д., Пристула В.В. и др. Новые технологические системы.-М.: Газовая промышленность № 9, 1998.

Размещено на Allbest.ru


Подобные документы

  • Подземная и надземная прокладка тепловых сетей, их пересечение с газопроводами, водопроводом и электричеством. Расстояние от строительных конструкций тепловых сетей (оболочка изоляции трубопроводов) при бесканальной прокладке до зданий и инженерных сетей.

    контрольная работа [26,4 K], добавлен 16.09.2010

  • Определение тепловых потоков на отопление, вентиляцию и горячее водоснабжение, максимального расхода сетевой воды. Гидравлический расчет тепловых сетей. Параметры насосов и их выбор. Расчет толщины теплоизоляции трубопроводов, объема подачи теплоносителя.

    курсовая работа [85,6 K], добавлен 18.10.2014

  • Планировка микрорайона и трассировка тепловых сетей, тепловые нагрузки. Расчет тепловой схемы котельной, оборудование. Пьезометрический и температурный график. Гидравлический, механический расчет трубопроводов, схемы присоединения тепловых потребителей.

    курсовая работа [532,9 K], добавлен 08.09.2010

  • Вывод тепловых сетей и водогрейных котельных на период летнего простоя. Пуск водогрейных котлов и тепловых сетей на зимний режим работы. Режимы оборудования ТЭЦ. Работа тепловых установок с промышленным и теплофикационным отбором пара и конденсацией.

    презентация [1,6 M], добавлен 23.07.2015

  • Основные требования к размещению трубопроводов, оборудования и арматуры в тепловых пунктах. Учет тепловых нагрузок, расходов теплоносителя и конденсата. Заполнение систем потребления теплоты. Сбор, охлаждение, возврат конденсата и контроль его качества.

    реферат [23,4 K], добавлен 16.09.2010

  • Деятельность предприятия ОАО "Нарьян–Марстрой", его котельня. Характеристика схемы тепловой сети, расчёт изоляции трубопроводов. Подбор сетевых насосов котельной и кабельных линий. Техника безопасности при работе с электроустановками и котлоагрегатами.

    дипломная работа [978,4 K], добавлен 15.01.2011

  • Основные причины выхода трубопроводов из строя. Факторы, влияющие на выбор метода санации. Методы восстановления инженерных сетей. Гидравлический расчет восстанавливаемого участка. Определение приоритетных участков сети для проведения реконструкции.

    реферат [1,9 M], добавлен 22.06.2015

  • Определение расчётных тепловых нагрузок района города. Построение графиков расхода теплоты. Регулирование отпуска теплоты. Расчётные расходы теплоносителя в тепловых сетях. Гидравлический и механический расчёт водяных тепловых сетей, подбор насосов.

    курсовая работа [187,6 K], добавлен 22.05.2012

  • Расчёт расхода сетевой воды для отпуска тепла. Определение потерь напора в тепловых сетях. Выбор опор трубопровода, секционирующих задвижек и каналов для прокладки трубопроводов. Определение нагрузки на отопление, вентиляцию и горячее водоснабжение.

    курсовая работа [988,5 K], добавлен 02.04.2014

  • Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.

    контрольная работа [11,4 M], добавлен 26.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.