Диполи и тела вращения
Особенности распределения диполей на цилиндрическом корпусе с заостренной головной частью параболической образующей, их влияние на обтекание тела вращения. Сущность условия безотрывного обтекания в случае движения под углом атаки и одновременном вращении.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 15.11.2009 |
Размер файла | 146,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
9
ГОУ ПВО «Омский государственный технический университет»
Кафедра: __________________________________________
Специальность _____________________________________
Техническое задание
на курсовую работу
по дисциплине: «Механика жидкостей и газа»
Тема: «Неустановившееся обтекание тонких заостренных тел вращения при сверхзвуковых скоростях».
Задача 1
Найдите распределение диполей (функция ) на цилиндрическом корпусе, имеющем заостренную головную часть с параболической образующей. Корпус совершает движение при под некоторым углом атаки и одновременно вращается с угловой скоростью вокруг поперечной оси, проходящей через центр масс. Длина тела , длина головной части , расстояние от носка до центра масс ; радиус корпуса .
Решение:
Схема цилиндрического корпуса с головной частью, имеющей криволинейную образующую. Уравнение этой образующей . Рассмотрим установившееся движение под углом атаки: и найдем функцию диполей для тонкого конуса, используя граничное условие:
.(2.14)
Из решения задачи 2 следует, согласно выражению (2.11), что при производная . Отсюда следует, что в случае конического тела, для которого , функция . С учетом этого можно, используя (2.2), уточнить ее значения:
(2.15)
Эта зависимость относится к случаю, когда диполь расположен в вершине конуса (рис. 2.5), для которой . Если диполь находится в произвольной точке с координатой , то
9
.(2.16)
По условию безотрывного обтекания
. (2.17)
Суммируя для всех , получаем
.
Используя условие безотрывного обтекания, можно вычислить производную , определяющую интенсивность диполей. В соответствии с этим условием
Выберем на образующей заданного тела вращения достаточно густой ряд точек и определим координаты точек, лежащие на пересечении с осью соответствующих линий Маха
Рассмотрим точку на участке, примыкающем к носку. Полагая этот участок коническим, напишем условие
,
из которого найдем функцию для конического носка с углом
.
Зная , из этого уравнения определяем на втором участке диполь и т.д.
Рассмотрим цилиндрический участок. Для точки (рис. 2.6) в его начале имеем
Здесь неизвестна величина , которая определяется в результате решения системы уравнений по найденным . .
Найдем значения в соответствующих точках. Дополнительный потенциал
(2.19)
а соответствующая производная
(2.20)
и коэффициент давления
(2.21)
Производя здесь замену и представляя интеграл в виде сумм, получаем
(2.22)
откуда
(2.23)
Полученные данные сведем в таблицу:
По полученным данным построим графики
Рассмотрим случай вращения корпуса с угловой скоростью . Условие безотрывного обтекания в точке при движении под углом атаки и одновременном вращении имеет вид
(2.24)
Имея в виду только вращательное движение, получаем
Результаты расчета так же сведены в таблицу
Графики распределения диполей и давления с учетом только вращательного движения
Графики распределения диполей с учетом вращательного и поступательного движения
Подобные документы
Обтекание летательных аппаратов как часть раздела аэродинамики. Важность этих характеристик для оценки аэродинамических свойств. Расчет распределения диполей на цилиндрическом корпусе, имеющем заостренную головную часть с параболической образующей.
контрольная работа [2,2 M], добавлен 10.12.2009Кинетическая энергия вращения твердого тела и момент инерции тела относительно нецентральной оси. Основной закон динамики вращения твердого тела. Вычисление моментов инерции некоторых тел правильной формы. Главные оси и главные моменты инерции.
реферат [287,6 K], добавлен 18.07.2013Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.
презентация [2,1 M], добавлен 24.10.2013Сущность механического, поступательного и вращательного движения твердого тела. Использование угловых величин для кинематического описания вращения. Определение моментов инерции и импульса, центра масс, кинематической энергии и динамики вращающегося тела.
лабораторная работа [491,8 K], добавлен 31.03.2014Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.
презентация [163,8 K], добавлен 28.07.2015Исследование устойчивости вращения твердого тела при сферическом движении с неподвижным центром вращения. Сферическое движение сегментных оболочек с мгновенным центром вращения. Исследование устойчивости сферического движения эллипсоидной оболочки.
учебное пособие [5,1 M], добавлен 03.03.2015Основы динамики вращения твёрдого тела относительно неподвижной и проходящей через него оси, кинетическая энергия его частиц. Сущность теоремы Гюгенса-Штейнера. Расчет и анализ результатов зависимости момента инерции шара и диска от массы и радиуса.
курсовая работа [213,6 K], добавлен 02.05.2012Виды систем: неизменяемая, с идеальными связями. Дифференциальные уравнения движения твердого тела. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции системы. Динамические реакции, действующие на ось вращения тела.
презентация [1,6 M], добавлен 26.09.2013Методика определения момента инерции тела относительно оси, проходящей через центр масс. Экспериментальная проверка аддитивности момента инерции и теоремы Штейнера. Зависимость момента инерции от массы тела и ее распределения относительно оси вращения.
контрольная работа [160,2 K], добавлен 17.11.2010Основные задачи динамики твердого тела. Шесть степеней свободы твердого тела: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс. Сведение к задаче о вращении вокруг неподвижной точки. Описание теоремы Гюйгенса.
презентация [772,2 K], добавлен 02.10.2013