Ультразвук и его применение

Теоретические основы акустики. Рождение, характеристика, специфические особенности, измерение и коэффициент поглощения звука. Дифракция света на ультразвуке в анизотропной среде. Схемы и характеристики ультразвуковой аппаратуры. Применение ультразвука.

Рубрика Физика и энергетика
Вид научная работа
Язык русский
Дата добавления 11.03.2009
Размер файла 6,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Материал

Скорость звука (м*с-1)

Мягкие ткани (в среднем)

1540

Головной мозг

1541

Жир

1450

Печень

1549

Почка

1561

Мышцы

1585

Кости черепа

4080

Для различных типов ультразвуковых исследований применяются разные виды ультразвуковых волн. Наиболее важными параметрами являются частота излучения, диаметр поверхности трандюсера и фокусировка ультразвукового пучка. В системах медицинской ультразвуковой диагностики обычно используются частоты 1; 1,6; 2,25; 3,5; 5 и 10 МГц.

В аппаратах имеется возможность регулировать излучаемый и принимаемые сигналы, так же имеется возможность усиления изображения эхосигналов.

3.1.3. Лучевая безопасность ультразвукового исследования

Ультразвук широко используется в медицине, хотя в отличие от технической сферы, где применяется низкочастотный ультразвук, для которого имеются нормы излучения, в медицине все обстоит гораздо сложнее. С одной стороны, отсутствует возможность провести прямую дозиметрию излучения в рабочем пучке, особенно на глубине; с другой же, - очень трудно учесть рассеяние, поглощение и ослабление ультразвука биологическими тканями. Кроме того, при работе с аппаратами реального масштаба времени практически невозможно учесть и экспозицию, так как длительность озвучивания, а так же его направление и глубина варьируют в широких пределах.

Распространение ультразвука в биологических средах сопровождается механическим, термическим, и физико-химическими эффектами. В результате поглощения ультразвука тканями акустическая энергия превращается в тепловую. Другим видом механического действия является кавитация, которая приводит к разрывам в месте прохождения ультразвуковой волны.

Все эти явления происходят при воздействии на биологические ткани ультразвука высокой интенсивности, и в известных условиях они желательны, например, в физиотерапевтической практике. При диагностике эти эффекты не возникают в результате использования ультразвука небольшой интенсивности - не более 50 мВт*см2 . Конструктивно приборы для ультразвуковой медицинской диагностики надежно защищают пациента от возможного вредного воздействия звуковой энергии. Однако, в последнее время все чаще появляются работы о неблагоприятном воздействии ультразвукового исследования на пациента. В частности, это относится к ультразвуковому исследованию в акушерстве. Уже доказано, что ультразвук неблагоприятно воздействует на хромосомы, в частности может приводить к мутациям плода. В некоторых странах, например Япония ультразвуковое исследование беременным проводится только после серьезного обоснования необходимости данного исследования. Несомненно, воздействие ультразвука на самого врача, который длительное время находится под воздействием ультразвука. Имеются сообщения, что со временем поражается кисть руки, которой врач держит датчик.

3.1.4. Общая схема ультразвукового аппарата.

Первичный пользователь, осуществляющий управление УЗИ, обеспечивает захват изображения с УЗИ и передачу его на персональный компьютер. Далее с персонального компьютера первичного пользователя осуществляется передача изображения по сети до конечного пользователя. Предусматривается также передача изображения в базу данных локальной сети первичного пользователя с последующей дальнейшей пересылкой в базу данных сети конечного пользователя, если осуществляется консультация специалистов в различных медицинских учреждениях. Или в общую базу данных локальной сети одного медицинского учреждения, в том случае, когда первичный и конечный пользователь работают в рамках одного медицинского учреждения.

3.2. Методы и алгоритмы обработки изображений

3.2.1. Принципы обработки

При цифровой обработке изображения обычно используется его представление в памяти в виде матрицы пикселов f(m1, m2), 0<m1<M1-1, 0<m2<M2-1. Обработка изображения в общем случае заключается в выполнении какого-либо преобразования указанной матрицы, в результате которого формируется набор ее числовых характеристик или новое, обработанное изображение - g(n1,n2), 0<n1<N1-1, 0<n2<N2-1. Преобразование может касаться значений элементов или их координат (индексов), выполняться над матрицей в целом, группой элементов или над каждым элементом в отдельности. Простейший вид цифровой обработки изображений заключается в выполнении одного и того же функционального преобразования для каждого элемента матрицы вне зависимости от его положения и значений других (соседних) элементов. Такая обработка получила название поэлементного преобразования изображений. Она переводит значение каждого элемента f в новое значение g в соответствии с заданной функциональной зависимостью

(1)

g = g(f )

Размеры входного и выходного изображения здесь совпадают (M1 = N1 , M2 = N2). При практической реализации поэлементных преобразований можно непосредственно вычислять каждое значение преобразованного элемента в соответствии с конкретным видом функции (1). Однако для достаточно сложных функций такое построение процедуры обработки оказывается неудобным из-за больших затрат машинного времени на вычисления. Скорость обработки возрастает при переходе к табличному заданию функции преобразования. Алгоритм работы с таблицей прост: по значению f вычисляется адрес (номер строки) таблицы с выходным значением g. Преимущества такого подхода: высокое быстродействие, гибкость процедуры обработки (таблица преобразования по сути является параметром процедуры и может легко меняться); недостаток: приближенность результатов из-за ограниченного числа строк таблицы. Несмотря на простоту, метод поэлементных преобразований позволяет решить довольно много прикладных задач улучшения качества и анализа изображений. Рассмотрим некоторые из них.

3.2.2. Линейное контрастирование

Изображения, вводимые в компьютер, часто являются малоконтрастными, то есть у них вариации функции яркости малы по сравнению с ее средним значением. Реальный динамический диапазон яркостей [fmin , fmax] для таких изображений оказывается намного меньше допустимого диапазона (шкалы яркости). Задача контрастирования заключается в "растягивании" реального динамического диапазона на всю шкалу. Контрастирование можно осуществить при помощи линейного поэлементного преобразования

(2)

g = af + b

Параметры этого преобразования a, b нетрудно определить, исходя из требуемого изменения динамического диапазона. Если в результате обработки нужно получить шкалу [gmin , gmax], то

(3)

При диалоговой обработке изображений иногда проще не определять параметры преобразования (2), а непосредственно строить его в табличной форме, ориентируясь на границы распределения вероятностей функции яркости.

3.2.3. Пороговая обработка

Некоторые задачи обработки изображения связаны с преобразованием полутонового изображения (то есть такого, которое имеет много градаций яркости) в бинарное (двухградационное). Такое преобразование осуществляется в первую очередь для того, чтобы сократить информационную избыточность изображения, оставить в нем только ту информацию, которая нужна для решения конкретной задачи. В бинарном изображении должны быть сохранены интересующие нас детали (например, очертания изображенных объектов) и исключены несущественные особенности (фон). Пороговая обработка полутонового изображения заключается в разделении всех элементов изображения на два класса по признаку яркости, то есть в выполнении поэлементного преобразования вида

, (4)

где f0 - некоторое "пороговое" значение яркости. При выполнении пороговой обработки основной вопрос состоит в выборе порога f0 . Пусть полутоновое изображение содержит интересующие нас объекты одной яркости на фоне другой яркости (типичные примеры: машинописный текст, чертежи, медицинские пробы под микроскопом). Тогда в идеале плотность распределения яркостей должна выглядеть как две дельта-функции. В данном случае задача установления порога тривиальна: в качестве f0 можно взять любое значение между "пиками". На практике встречаются определенные трудности, связанные с тем, что, во-первых, изображение искажено шумом и, во-вторых, как для объектов, так и для фона характерен некоторый разброс яркостей. В результате пики функции плотности распределения "расплываются", хотя обычно ее бимодальность сохраняется. В такой ситуации можно выбрать порог f0 , соответствующий положению минимума между модами.

3.2.4. Алгоритмы линейной фильтрации изображений

Рассмотрим схему искажения и фильтрации (восстановления) изображений, представленную на рис.

Рис. Модель искажения и восстановления изображений

Целью восстановления искаженного изображения y(n1 ,n2) является получение из него при помощи некоторой обработки изображения, которое близко к идеальному изображению x(n1 ,n2) по заданному критерию. Получающееся в результате обработки изображение будем называть оценкой исходного (идеального) изображения x(n1 ,n2). Определим ошибку оценивания в каждой точке изображения:

(5)

а также среднюю квадратичную ошибку (СКО) через ее квадрат, то есть дисперсию ошибки:

(6)

Критерий минимума квадрата СКО является наиболее универсальным и распространенным критерием качества восстановления при проектировании алгоритмов фильтрации изображений из-за математической простоты. Однако этот критерий имеет недостаток, заключающийся в том, что он не всегда согласуется с субъективным (психовизуальным) критерием качества, основанным в основном на точности передачи контуров.

Указанный критерий является конструктивным и позволяет теоретически рассчитывать оптимальные (дающие минимумы квадрата СКО) алгоритмы фильтрации при рассмотренных моделях наблюдения. Однако оптимальные алгоритмы оказываются весьма сложными для расчета и реализации. В автоматизированных системах обработки изображений предпочтение отдается так называемым квазиоптимальным алгоритмам, которые дают минимум квадрата СКО в некотором классе алгоритмов с заданной структурой и незначительно отличаются от оптимальных по этому критерию. Обычно спектр шума содержит более высокие пространственные частоты, чем спектр идеального изображения. Этот факт наводит на мысль, что простая низкочастотная фильтрация может служить эффективным средством подавления шумов. В принципе любой фильтр с неотрицательными коэффициентами обладает сглаживающими свойствами. Можно предложить следующие сглаживающие маски:

(7)

Коэффициенты масок нормированы с тем чтобы процедура подавления помех не вызывала смещения яркости исходного изображения. Маски (3.7) отличаются степенью сглаживания шумов (у маски A1 она максимальная, у A3 - минимальная). Выбор коэффициентов маски должен производиться экспериментально. При увеличении степени сглаживания шумов происходит также подавление высокочастотной составляющей полезного изображения, что вызывает исчезновение мелких деталей и размазывание контуров. Если требуемая степень сглаживания с применением маски размера 3х3 не достигается, то следует использовать сглаживающие маски больших размеров (5х5, 7х7).

3.2.5. Медианный фильтр

Медианный фильтр в отличие от сглаживающего фильтра реализует нелинейную процедуру подавления шумов. Медианный фильтр представляет собой скользящее по полю изображения окно W, охватывающее нечетное число отсчетов. Центральный отсчет заменяется медианой всех элементов изображения, попавших в окно. Медианой дискретной последовательности x1 , x2 , ..., xL для нечетного L называют такой ее элемент, для которого существуют (L - 1)/2 элементов, меньших или равных ему по величине, и (L - 1)/2 элементов, больших или равных ему по величине. Другими словами, медианой является средний по порядку член ряда, получающегося при упорядочении исходной последовательности. Например, med(20, 10, 3, 7, 7) = 7. Двумерный медианный фильтр с окном W определим следующим образом:

(8)

Как и сглаживающий фильтр, медианный фильтр используется для подавления аддитивного и импульсного шумов на изображении. Характерной особенностью медианного фильтра, отличающей его от сглаживающего, является сохранение перепадов яркости (контуров). При этом если перепады яркости велики по сравнению с дисперсией аддитивного белого шума, то медианный фильтр дает меньшее значение СКО по сравнению с оптимальным линейным фильтром. Особенно эффективным медианный фильтр является в случае импульсного шума.

Что касается импульсного шума, то, например, медианный фильтр с окном 3х3 полностью подавляет одиночные выбросы на равномерном фоне, а также группы из двух, трех и четырех импульсных выбросов. В общем случае для подавления группы импульсных помех размеры окна должны быть по меньшей мере вдвое больше размеров группы помех. Среди медианных фильтров с окном 3х3 наиболее распространены следующие:

(9)

Координаты представленных масок означают, сколько раз соответствующий пиксел входит в описанную выше упорядоченную последовательность.

Разновидностью медианного фильтра является метод, подавляющий импульсный шум и в то же время минимально изменяющий значения яркости на исходном изображении, состоит в замене яркости пикселов локальных максимумов на локальное максимальное значение яркости между границами и замене пикселов локальных минимумов на локальное минимальное значение между границами:

(10)

здесь P(i) - исходная интенсивность пиксела i; P'(i) - новое значение интенсивности пиксела i. Уравнение (1) представляет минимум из k пикселов, уравнение (2) - максимум из k пикселов.

3.2.6. Выделение контуров

С точки зрения распознавания и анализа объектов на изображении наиболее информативными являются не значения яркостей объектов, а характеристики их границ - контуров. Другими словами, основная информация заключена не в яркости отдельных областей, а в их очертаниях. Задача выделения контуров состоит в построении изображения именно границ объектов и очертаний однородных областей.

Будем называть контуром изображения совокупность его пикселов, в окрестности которых наблюдается скачкообразное изменение функции яркости. Так как при цифровой обработке изображение представлено как функция целочисленных аргументов, то контуры представляются линиями шириной, как минимум, в один пиксел. При этом может возникнуть неоднозначность в определении линии контура с перепадом яркости.

Если исходное изображение, кроме областей постоянной яркости, содержит участки с плавно меняющейся яркостью, то введенное определение контура остается справедливым, однако при этом не гарантируется непрерывность контурных линий: разрывы контуров будут наблюдаться в тех местах, где изменение функции яркости не является достаточно резким.

С другой стороны, если на "кусочно-постоянном" изображении присутствует шум, то, возможно, будут обнаружены "лишние" контуры в точках, которые не являются границами областей.

При разработке алгоритмов выделения контуров нужно учитывать указанные особенности поведения контурных линий. Специальная дополнительная обработка выделенных контуров позволяет устранять разрывы и подавлять ложные контурные линии.

Общую процедуру построения бинарного изображения границ объектов иллюстрирует блок-схема, представленная на рис.

Рис. Процедура выделения контуров

Исходное изображение f подвергается линейной или нелинейной обработке, с тем чтобы выделить перепады яркости. В результате этой операции формируется изображение e, функция яркости которого существенно отличается от нуля только в областях резких изменений яркости изображения f. Затем в результате пороговой обработки из изображения e формируется графический (контурный) препарат g. Правильный выбор порога на втором этапе должен производиться из следующих соображений. При слишком высоком пороге могут появиться разрывы контуров, а слабые перепады яркости не будут обнаружены. При слишком низком пороге из-за шумов и неоднородности областей могут появиться ложные контуры. Других особенностей пороговая обработка не имеет. Поэтому обратим основное внимание на первую операцию - выделение перепадов яркости (контуров) - и рассмотрим основные методы выполнения этой операции.

3.2.7. Градиентный метод

Одним из наиболее простых способов выделения границ является пространственное дифференцирование функции яркости. Для двумерной функции яркости f(x, y)перепады в направлениях x и y регистрируются частными производными df(x, y)/dx и df(x, y)/dy, которые пропорциональны скоростям изменения яркости в соответствующих направлениях. Подчеркивание контуров, перпендикулярных к оси x, обеспечивает производная df(x, y)/dx, а подчеркивание контуров, перпендикулярных к оси y, - df(x, y)/dy.

В практических задачах требуется выделить контуры, направление которых является произвольным. Для этих целей можно использовать модуль градиента функции яркости

(11)

который пропорционален максимальной (по направлению) скорости изменения функции яркости в данной точке и не зависит от направления контура.

Модуль градиента в отличие от частных производных принимает только неотрицательные значения, поэтому на получающемся изображении точки, соответствующие контурам, имеют повышенный уровень яркости.

Для цифровых изображений аналогами частных производных и модуля градиента являются функции, содержащие дискретные разности, например:

(12)

Таким образом, операция выделения контуров заключается в выполнении нелинейной локальной обработки изображений "окном" 2х2 (без одной точки):

(13)

3.2.8. Метод активных контуров

Метод активных контуров (метод змеек) является видом деформируемых моделей, характеризующихся свойством динамического изменения контура от первоначально заданного к контуру изображения. Деформация контура производится таким образом, чтобы минимизировать его энергию. Эта энергия зависит от формы контура и от его расположения на изображении и содержит внутреннюю и внешнюю энергию контура. Исходя из этого, новое положение каждого из узлов контура может быть вычислено по формуле

(14)

где vi(t)=(xi(t), yi(t)) - узел контура; ? - коэффициент затухания; ? и ? - весовые коэффициенты; ?t - ограниченный временной шаг

(15)

сила растяжения (ограничивающая вытягивание), действующая на узел i в момент времени t.

(16)

сила изгиба (ограничивающая отклонение)

(17)

внешняя полученная из изображения сила, которая перемещает контур в направлении области изображения с большим градиентом яркости.

- яркость пиксела (x,y) на сглаженной версии изображения.

(18)

сила расширения, где ni(t) - единичный вектор, перпендикулярный контуру в узле i,

(19)

бинарная функция, связывающая силу расширения с изображением, T - порог яркости. Изменение положения узлов контура повторяется до тех пор, пока контуры, полученные в результате последних двух итераций, не будут идентичными либо пока не будет достигнуто другое условие завершения цикла.

3.3. Пример ультразвуковой диагностики

3.3.1. Методика ультразвуковой ангиографии печени

С внедрением в клиническую практику ультразвуковых методов исследования появилась возможность визуализации многих паренхиматозных органов, в том числе и печени. Так, при УЗИ у больных с вирусным гепатитом эхогенность печени повышена, сосудистый рисунок усилен, воротная вена расширена. Вирусный гепатит является достаточно распространенным заболеванием, иногда трудно поддающимся диагностике. В то время как жалобы больного могут соответствовать какому-либо другому заболеванию, эхографическая картина печени зачастую отвечает гепатиту. В настоящее время ввиду стремительного развития технических средств появились аппараты УЗИ, производящие не только снятие, но и обработку изображения. Однако эти системы ориентированы в основном либо на обработку ультразвуковых снимков сердца, либо на акушерские эхограммы. Поэтому, актуальной является задача создания программы обработки ультразвуковых эхограмм печени с целью диагностики гепатита. Так как при данной патологии в первую очередь изменяется сосудистый рисунок печени, создаваемая программа должна определять контуры сосудов, оценивать их размер и форму. На основании этой информации в дальнейшем можно делать выводы о том, болен ли данный пациент гепатитом. В целом создаваемая система анализа ультразвукового изображения предназначена для облегчения окончательной установки диагноза врачом.

Ультразвуковое исследование сосудов печени с определением качественных и количественных показателей кровотока (ультразвуковая ангиография печени) может быть выполнено на аппаратуре среднего и высшего класса, оснащенной допплеровским блоком. Цветовое допплеровское картирование и импульсно-волновой допплер можно отнести к наиболее ранним ультразвуковым методикам, применяемым для исследования висцерального кровотока. С помощью них можно отображать движение эритроцитов, кодируемое цветом или в виде спектра на двумерной оси, что позволяет определять наличие, направление, скорость и другие количественные показатели кровотока. В основе этих методик лежит визуальное отображение частотного сдвига движущихся эритроцитов (эффект Допплера). Обе методики, несмотря на свою неоспоримую ценность, имеют и ряд ограничений. Точность получаемой информации зависит от угла инсонации: информативность методики снижается при сканировании под углом превышающим 60 градусов по отношению к ходу, исследуемого сосуда. При угле инсонации близком к 90 градусам возможно получить ложную информацию об отсутствии или обратном направлении кровотока. С помощью этих методик невозможно визуализировать сосуды с малым диаметром и низкой скоростью кровотока. Для отображения сигнала от более мелких сосудистых структур был предложен энергетический допплер. Принцип его работы основан не на частотном сдвиге, а на амплитуде кодируемого сигнала, т.е. плотности эритроцитов в заданном объеме. Данная методика не зависит от угла инсонации, но не позволяет получить информацию о направлении кровотока. С помощью компьютерной обработки изображения, полученного в режиме энергетического допплера, возможно построить пространственную карту сосудистого дерева исследуемого органа (трехмерная реконструкция сосудов - 3D). Эта методика позволяет более точно проследить пространственные взаимоотношения между сосудами и их ход. Изображение, полученное с ее помощью, напоминает рентгенограмму при ангиографии с внутривенным введением контрастного препарата.

Для исследования печени используют конвексные датчики с частотой от 2,5 до 5,0 Mhz (в настоящее время обычно 3,5-4,2 Mhz). Большое значение имеет предшествующая подготовка больного к исследованию (назначается бесшлаковая диета и энтеросорбенты накануне), так как значительное количество газа в кишечнике затрудняет и снижает диагностическую ценность исследования. Высокое расположение поперечно-ободочной кишки, вынужденное положение больного или отсутствие адекватного контакта исследователя с больным также снижают информативность методики. Измерение количественных параметров базального кровотока в сосудах печени проводится строго натощак, поскольку прием пищи вызывает их значительное изменение.

3.3.2. Техника проведения ультразвуковой ангиографии печени

Первым этапом исследования являлось изучение печени в режиме серой шкалы. При этом оценивались: передне-задний размер правой и левой долей, состояние контура, структура и эхогенность органа; проводилось измерение диаметров вен печени (воротной и печеночных) с обязательным акцентом на состоянии их просвета. Исследование осуществлялось в положении больного вначале на спине, а затем на левом боку при сканировании вдоль правой реберной дуги и через межреберья. Такое полипозиционное исследование позволяет более полно изучить внутреннее строение печени. Обращалось внимание на состояние круглой связки печени (на предмет выявления просвета параумбиликальной вены). Измерение диаметра печеночных вен производилось на уровне 2 см от места их впадения в нижнюю полую вену. Основной ствол воротной вены измерялся в положении больного на левом боку, при этом датчик располагался перпендикулярно реберной дуге. Для измерения выбирался участок основного ствола воротной вены в области ворот печени (на уровне края печени). Холедох обычно имел равномерный диаметр на всем протяжении и измерялся нами в этой же позиции. При неравномерности его диаметра измерения проводились в нескольких точках (с минимальным и максимальным диаметром). Отмечалось состояние внутрипеченочных желчных протоков, которые в норме были не видны.

При нечеткости визуализации просвета сосуда или при подозрении о наличии небольших гипоэхогенных тромбов в нем использовался режим нативной тканевой гармоники (THI). Этот режим снижал уровень помех, связанных с ослаблением ультразвукового сигнала, повышал контрастность ультразвукового изображения, что позволяло более отчетливо судить о наличии и распространенности тромбоза.

В заключение первого этапа исследования обращалось внимание на наличие или отсутствие свободной жидкости в отлогих местах брюшной полости (межкишечные, подпеченочное и околоселезеночное пространства, область латеральных каналов и полость малого таза). Вторым этапом исследования являлась оценка проходимости основных сосудов печени - печеночных вен, воротной вены и печеночной артерии, а также их крупных ветвей. Для этого использовался режим ЦДК, позволяющий уточнить направление кровотока. С помощью этой методики можно быстро определить - является ли визуализируемая трубчатая структура сосудом, оценить наличие и направление кровотока в нем.

ЦДК - это высокоинформативный метод для определения обратного (гепатофугального) направления кровотока в воротной вене и наличия кровотока в порто-кавальных коллатералях. При его проведении во внутрипеченочной части воротной вены и в ее ветвях отмечается красный сигнал спектра, соответствующий обычному (гепатопетальному) направлению кровотока при стандартных настройках аппарата.

В печеночных венах в норме регистрируется синий сигнал спектра, соответствующий кровотоку от печени, по направлению к нижней полой вене и правым отделам сердца.

К ошибкам, возникающим при проведении ЦДК, можно отнести: появление “пестрого” окрашивания просвета сосуда (чередование участков красного и синего сигналов и их оттенков) при наличии турбулентного кровотока в местах сужений или изгибов; переменное окрашивание просвета сосуда при его извилистом ходе; аляйзинг эффект - при неправильной настройке скоростных параметров аппарата, когда бледные, ненасыщенные цвета спектра могут создавать впечатление его реверсии; отсутствие цветового сигнала при недостаточном уровне усиления или при угле инсонации близком к 90 градусам по отношению к направлению хода сосуда.

При подозрении о наличии тромбоза сосудов печени или при ослаблении ультразвукового сигнала на фоне значительных диффузных изменений печени для оценки проходимости сосудов использовался режим ЭД, имеющий большую чувствительность, чем ЦДК, но не позволяющий определить направление кровотока.

В заключении второго этапа исследования осуществлялось построение трехмерной реконструкции сосудов печени, которое выполнялось нами в двух стандартных сканах:

1) максимальный скан через правую долю печени, позволявший определить взаимоотношение основных сосудистых структур печени (нижней полой вены, воротной и печеночных вен, печеночной артерии и их крупных ветвей);

2) скан, выполненный на максимальном увеличении участка паренхимы печени на уровне правой долевой и правой передней сегментарной ветвей воротной вены. Исследование этой области позволяло более точно судить об изменении хода сосудов печени.

Построение трехмерной реконструкции осуществлялось в три этапа:

Выбор оптимальной позиции для сканирования в режиме ЭД;

Сбор объемной информации при поступательном перемещении датчика в режиме 3-D;

Последующая компьютерная обработка и объемная реконструкция изображения (выполняется автоматически).

Исследование сосудов левой доли печени в этом режиме было обычно затруднено из-за передаточной пульсации от сердца и перистальтических сокращений кишечника и поэтому не проводилось.

Третьим этапом проводилось определение количественных показателей гемодинамики печени. Исследование продолжалось в положении больного лежа на левом боку. Сканирование выполнялось из доступа через межреберные промежутки (интеркостальный доступ) или из правого подреберья (субкостальный доступ), в зависимости от оптимальной видимости исследуемого сосуда и его хода по отношению к углу инсонации. Задержка дыхания больным производилась вне фазы глубокого вдоха или выдоха, что снижало влияние фаз дыхания на характер кровотока в исследуемых сосудах. При определении скоростей кровотока сканирование проводилось таким образом, чтобы направление распространения ультразвуковых волн максимально совпадало с продольным ходом сосуда и не превышало 60 градусов по отношению к нему. Величина пробного объема, помещаемого в середину просвета сосуда, составляла приблизительно одну его треть. Участок сосуда, в который помещался пробный объем, был прямым, что позволило исключить ошибки измерения скоростных показателей, возникающих при турбулентном движении потока крови в местах сужений, перегибов и извилистого хода сосуда. Для повышения точности измерение каждого параметра повторялось не менее трех раз, выбирался средний из полученных результатов.

При исследовании кровотока во внутрипеченочной части основного ствола воротной вены отметил наилучшие результаты при сканировании из межреберного доступа. Он помещал контрольный объем в основной ствол воротной вены за 1-2 см до ее бифуркации на левую и правую долевые ветви. Другие исследователи также используют межреберный доступ для изучения воротного кровотока, так как коррекция угла инсонации в этом случае минимальная.

В норме воротный кровоток имеет типичный венозный спектр, зависящий от фаз дыхания и располагающийся над базовой линией, что соответствует его обычному (гепатопетальному) направлению.

Измерение диаметра селезеночной вены проводилось нами при поперечном сканировании в области ее горизонтально направленного сегмента в проекции тела поджелудочной железы, при невозможности визуализации этой области измерения осуществлялись в области ворот селезенки при сканировании через левые межреберья в положении больного на правом боку. Скоростные показатели кровотока также исследовались преимущественно при косо-горизонтальном сканировании в области вертикально направленного сегмента селезеночной вены в проекции хвоста поджелудочной железы, при невозможности визуализации данной области измерения выполнялись в области ворот селезенки при сканировании через левые межреберья.

Исследование скоростных показателей в основном стволе печеночной артерии проводилось в области вертикально направленной части, в точке, наиболее удаленной от бифуркации чревного ствола при сканировании из правого субкостального доступа.

Для облегчения визуализации печеночной артерии и ее ветвей необходимо использовать ЦДК или ЭД.

Лоцирование печеночных вен не представляло существенной трудности как из интеркостального, так и из субкостального доступов. Исследование печеночных вен выполнялось по методике, предложенной Bolondi для диагностики цирроза печени. Контрольный объем, составляющий 1/3 просвета сосуда, помещается в среднюю печеночную вену на растоянии 3-6 см от места впадения ее в нижнюю полую вену. Такая позиция позволяет исключить влияние последней на форму допплеровского спектра печеночных вен. В норме спектр кровотока в печеночных венах трехфазный, зависит от фаз сердечного цикла и дыхания.

Помимо сосудов печени в режиме ультразвуковой ангиографии исследовались область ворот печени и селезенки, круглая связка печени и передняя брюшная стенка (вдоль белой линии живота с использованием линейного датчика), что позволяло более точно выявить кровоток в параумбиликальной вене и в других порто-кавальных коллатералях. В большинстве случаев УЗИ с ультразвуковой ангиографией в исследовании было выполнено до получения результатов других инструментальных методов. Интерпретация ультразвуковых данных не зависела от результатов клинического обследования больного. В заключении необходимо отметить, что ультразвуковое допплеровское исследование не может быть отнесено к рутинным скрининговым методикам, выполняемым большинству больных, из-за дополнительных (иногда значительных) временных затрат. Целесообразно проведение ультразвуковой ангиографии печени в рамках дополнительно назначенного исследования у больных с патологией печени, а также во всех случаях возникновения дифференциальных трудностей при скрининговом УЗИ. Отдельные элементы ультразвуковой ангиографии (ЭД или ЦДК крупных сосудов печени), не требующие значительных временных затрат, могут быть включены в скрининговый протокол у всех больных гастроэнтерологического профиля.

3.3.3. Ультразвуковая картина печени при гепатите

В типичных случаях острого гепатита принято выделять четыре периода болезни: инкубационный, преджелтушный, желтушный (разгара) и реконвалесценции. Печень претерпевает максимальные изменения в преджелтушном периоде. Если в течение 6 месяцев больной не выздоравливает, говорят о хроническом гепатите. Хронический гепатит в большинстве случаев имеет бессимптомное или мягкое течение вплоть до поздних стадий, когда развивается цирроз печени и тяжелые осложнения хронического заболевания печени. В зависимости от стадии заболевания на ультразвуковых эхограммах печени выделяют различные изменения. Рассмотрим их подробнее.

3.3.4. Ультразвуковая диагностика острого гепатита

В зависимости от тяжести и стадии заболевания при остром гепатите могут происходить различные изменения эхографической картины. Некоторую роль в быстроте и выраженности динамики эхографической картины печени при остром гепатите могут играть этиопатогенетические факторы варианты вирусных, токсических и метаболических поражений. Несмотря на это, в подавляющем большинстве случаев сделать однозначные выводы об этиологии и патогенезе выявляемых при эхографии изменений на основании динамических изменений эхографической картины не представляется возможным. При средней тяжести течения в фазе манифестации заболевания в эхографической картине печени отмечаются следующие признаки. Форма органа обычно существенно не изменяется, контуры печени остаются ровными, четко очерченными. Капсула печени обычно дифференцируется лучше, чем в норме. Это обусловлено увеличением разницы акустических сопротивлений между паренхимой и капсулой. Часто отмечается увеличение размеров печени в большей степени за счет правой доли, Увеличивается как косой вертикальный размер, так и толщина правой доли. Контуры печени остаются ровными, края острыми, хотя в некоторых случаях можно отметить их закругление. Контур диафрагмы обычно визуализируется отчетливо в виде непрерывной гиперэхогенной линии. Структура паренхимы печени в большинстве случаев неоднородная. Неоднородность паренхимы складывается из участков несколько сниженной, средней и относительно повышенной эхогенности, что соотносится с участками более или менее выраженной отечности паренхимы и неизмененных участков. У большинства пациентов наблюдается изменение сосудистого рисунка печени, выражающееся в более четкой визуализации стенок мелких ветвей воротной вены и печеночных вен симптом выделяющихся сосудов за счет повышения звукопроводимости паренхимы, на фоне которой лучше выделяются мелкие сосудистые структуры. Со стороны крупных стволов печеночных вен, воротной вены и печеночной артерии обычно диагностических существенных изменений не происходит. Помимо изменения качественного отображения сосудистого рисунка, важным дифференциально-диагностическим признаком является отсутствие деформации, дислокации и прочих вариантов изменения структурности и строения сосудистого рисунка. При значительной выраженности воспалительного процесса и, соответственно, значительном отеке паренхимы печени эхогенность последней снижается в большей степени ("темная печень"). Звукопроводимость печени при этом повышается. При регрессии воспалительного процесса эхографическая картина приближается к норме, хотя достаточно часто остается или появляется несколько повышенная эхогенность паренхимы, часто сохраняется увеличение размеров печени - большей частью также за счет правой доли. В ряде случаев может сохраняться умеренно выраженная мелкоочаговая неоднородность паренхимы. В дифференциальной диагностике данной патологии важным моментом является не только выявление признаков диффузных изменений паренхимы печени и степени их выраженности, но и уверенность исследователя в том, что неоднородность паренхимы не связана с множественным мелкоочаговым солидным или солидно-кистозным поражением печени. Важным дифференциально-диагностическим критерием является сопоставление эхогрэфической картины с клинико-лабораторными показателями и их соответствие острому воспалительному процессу. При наличии в клинической картине заболевания желтухи важным дифференциально-диагностическим признаком печеночного генеза является отсутствие расширения внутрипеченочных и внепеченочных желчевыводящих протоков. При этом следует помнить о том, что расширение протоковой системы печени при подпеченочном блоке наступает не мгновенно, а спустя некоторый период времени. Этот период зависит от степени и выраженности обструкции. Кроме того, на разных типах ультразвуковых приборов сроки выявления расширенных внутрипеченочных протоков весьма различаются. Так, на портативных приборах, обладающих не очень высокой разрешающей способностью, возможность идентифицировать такие мелкие трубчатые структуры, как расширенные желчевыводящие протоки, появляется к концу третьих - началу четвертых суток после появления признаков желтухи. На приборах высшего класса, обладающих к тому же возможностью проведения исследования в режимах импульсной и цветовой доплеровских методик, такая возможность имеется уже к концу первых - началу вторых суток после появления клинико-лабораторных признаков желтухи. Помимо визуализации протоков в В-режиме, благодаря высокой разрешающей способности имеется возможность подтвердить отсутствие кровотока, как методом спектрального анализа, так и методом цветового исследования (что несколько проще и экономнее по времени). В эхографической картине острого гепатита с менее выраженной клинико-морфологической симптоматикой отмечаются практически аналогичные изменения, однако степень их выраженности, а также продолжительность существования значительно меньше. При тяжелой форме протекания заболевания, наоборот, приведенные выше признаки, которые выявляются в эхографической картине печени, выражены намного ярче и продолжительнее. Некоторые из них начинают изменяться в противоположную сторону. Так, например, размеры печени в фазе выраженной манифестации клинической картины могут начать уменьшаться - в этом случае клиницисты отмечают симптом "тающей льдинки". Эхогенность печени при прогрессирующем воспалительном процессе может продолжать снижаться ввиду более распространенного выраженного отека паренхимы, причем структура паренхимы может казаться более однородной. При усугублении течения заболевания в паренхиме печени могут развиваться очаговые некрозы, которые эхографически могут выглядеть в острой фазе как гипо- и анэхогенчые участки с нечеткими и неправильными контурами и неоднородной внутренней структурой. Отмечается обогащение сосудистого рисунка печени за счет еще более выраженной дифференциации сосудистых стенок мелких ветвей венозной и артериальной системы печени, которое само по себе создает дополнительное впечатление мелкоочаговой неоднородности паренхимы. Со стороны магистральных стволов печеночных вен изредка можно наблюдать преходящее уменьшение их диаметра. В некоторых случаях наступает также преходящее нарушение портального кровотока, выражающееся в незначительном увеличении размера основного ствола воротной вены, снижении показателей скоростного и объемного кровотока по воротной вене, иногда увеличении селезенки. При регрессии воспалительного процесса эхографическая картина приближается к норме. При нетяжелом течении заболевания возможно практически полное восстановление нормального эхографического изображения печени. В случае тяжелого течения заболевания, наоборот, со стороны паренхимы печени отмечается постепенное повышение общей эхогенности с присутствием достаточно выраженной мелкоочаговой и даже крупноочаговой неоднородности паренхимы. Сосудистый рисунок при этом становится несколько обедненным - за счет нечеткой визуализации мелких ветвей. Помимо однократного ультразвукового исследования, целесообразно проведение повторного, или повторных исследований в динамике - для контроля дальнейшего направления развития патологического процесса. Необходимым является сопоставление данных эхографии с результатами клинических, лабораторных и прочих инструментальных методов исследования.

3.3.5. Ультразвуковая диагностика хронического гепатита

При хроническом гепатите изменения ультразвуковой картины печени во многом зависят от стадии, продолжительности и тяжести заболевания. При легкой степени и в начальной стадии заболевания эхографически существенные изменений могут не фиксироваться. При этом во многих случаях бывает трудно предполагать даже наличие каких-либо изменений со стороны эхографической картины, особенно на приборах портативного класса, а зачастую и на аппаратах среднего класса. Максимальные отклонения, которые могут быть выявлены при ультразвуковом исследовании в это время, обычно заключаются в несколько увеличенных размерах печени, незначительном повышении ее эхогенности, более чем обычно, выраженной зернистости или иногда незначительно выраженной мелкоочаговой неоднородности паренхимы. Существенных изменений со стороны печеночных вен и воротной вены не наблюдается. Из изложенного видно, что ранняя диагностика хронического гепатита и его форм с неярко выраженными морфологическими изменениями по данным ультразвукового метода исследования представляет весьма сложную и в настоящее время трудно решаемую проблему, требующую высокоразрешающего диагностического оборудования. Однако в дальнейшем, при прогрессировании заболевания, либо при исследовании пациента с умеренной или тяжелой формой этой патологии может быть отмечена разнообразная эхографическая картина. Достаточно часто при хроническом гепатите встречается увеличение размеров печени не только за счет правых, но и левых отделов. При этом часто отмечается увеличение всех измеряемых размеров косого вертикального размера и толщины правой доли, кранио-каудального размера и толщины левой доли, причем в разных случаях может превалировать как увеличение вертикальных, так и передне-задних показателей. Толщина хвостатой доли изменяется редко. Изменения формы печени обычно находятся в пределах ее анатомической конфигурации. Контуры печени остаются ровными и четко видимыми, хотя капсула может дифференцироваться менее отчетливо, чем в норме. Выявляется закругление нижнего края, угол его при этом увеличивается. Контуры печени длительное время остаются ровными. Их неровность начинает проявляться только в фазе перехода в цирроз печени. Контур диафрагмы в большинстве случаев визуализируется отчетливо, однако, иногда может отмечаться "истончение" худшая визуализация контура диафрагмы за счет повышения затухания ультразвука в ткани печени. В зависимости от длительности заболевания и тяжести морфологических повреждений эхогенность паренхимы печени может колебаться в диапазоне от умеренно до значительно повышенной. Повышение эхогенности паренхимы печени может быть достаточно равномерным (при небольшой степени выраженности изменений) или неравномерным - отдельными участками, "полями" - с чередованием с изоэхогенными участками неизмененной паренхимы. С нарастанием морфологических изменений в ткани печени усиливается и изменение ее эхографической картины. В структуре паренхимы печени отмечается появление участков неоднородности небольшого размера, обычно до 0,5 - 1 см, как правило, высокой эхогенности, занимающих в сумме большие площади среза паренхимы. При обострении процесса часто можно отметить усиление неоднородности структуры и изменение характера эхогенности из-за появляющегося отека паренхимы в виде гипоэхогенных участков, рассеянных по площади среза. Достаточно важным признаком неоднородности структуры печени при хроническом гепатите, в отличие от цирроза печени, является неотчетливость контуров участков неоднородности. Изменения сосудистого рисунка печени сводятся, главным образом, к постепенно прогрессирующему его обеднению, то есть последовательному ухудшению визуализации в первую очередь мелких периферических ветвей печеночных вен и во вторую очередь мелких ветвей воротной вены, хотя в то же время часто может наблюдаться усиление отражения от перипортальных структур. Данные изменения обусловлены повышением эхогенности и появлением неоднородности паренхимы, на фоне которых мелкие сосуды теряются и не дифференцируются в В-режиме. Определенную помощь в выявлении этих сосудов дает применение цветовых допплеровских методик. Тем не менее, в некоторых случаях может наблюдаться улучшение визуализации ветвей воротной вены - тогда, когда процесс приводит к изменениям в портальных и перипортальных зонах. В этом случае стенки ветвей воротной вены могут выглядеть несколько более эхогенными и утолщенными. Магистральные печеночные вены визуализируются несколько менее отчетливо, но без серьезных изменений параметров. Основной ствол воротной вены не расширен, существенных нарушений по скоростям и объемному кровотоку в воротной вене не отмечается. При наличии в клинической картине заболевания желтухи важным дифференциально-диагностическим признаком печеночного генеза гипербилирубинемии является отсутствие расширения внутрипеченочных и внепеченочных желчевыводящих протоков. Из других параметров отмечается снижение звукопроводимости органа, обусловленное повышенным поглощением и рассеиванием энергии ультразвукового луча в измененной ткани печени, в отличие от острого гепатита, где улучшение звукопроводимости печени связано с наличием отека паренхимы. Важными вопросами дифференциальной диагностики хронического гепатита, так же, как и острого гепатита, является не только выявление признаков диффузных изменений паренхимы печени и степени их выраженности, но и уверенность исследователя в том, что неоднородность паренхимы не связана с множественным мелкоочаговым солидным или солидно-кистозным поражением печени. Значимым дифференциально-диагностическим критерием является сопоставление эхографической картины с клинико-лабораторными показателями.

Часть III. Применение ультразвука

Глава 1. Применение ультразвука в промышленности

1.1. Применение ультразвуковых аппаратов для обработки растворов

1.1.1. Ультразвуковая обработка мяса и рыбопродуктов

Применение ультразвукового воздействия позволяет улучшить качество мяса и рыбы, а также ускорить процессы их обработки.

Увеличение нежности мяса. Электронный фитомиксер может быть использован для увеличения нежности мяса, полученного, например, из сухожильного мускула крупного рогатого скота. Объясняется это тем, что под действием ультразвука происходит частичное механическое разрушение волокон мышечной и соединительной тканей и создаются благоприятные условия для действия ферментов мяса и ускорения химических процессов в тканях.

Обработка мяса может осуществляться двумя способами.

1. Куски мяса погружаются в заполненный рассолом (5%) стакан миксера. Продолжительность обработки зависит от размеров кусков мяса и их количества в стакане миксера. Так, обработка 100 г мяса в виде кусочков размером 10х10 мм не должны превышать 5...7 мин.

2. Обработка производится в непосредственном контакте рабочего инструмента с поверхностью куска мяса. Для этого колебательная система миксера снимается со стакана, устанавливается на обрабатываемое мясо и перемещается вдоль куска. При толщине куска мяса 10 мм и его размере, равном 10 кв. см продолжительность обработки составит 1...2 мин.

Оба способа обработки позволяют получить готовый продукт с высокой нежностью.

Посол мяса и рыбопродуктов. Диффузионные процессы посола в большинстве случаев являются самыми медленными стадиями приготовления конечного продукта. Проведенные ранее исследования показали, что посол с помощью ультразвука интенсифицирует процесс в значительно большей степени, чем обычное механическое перемешивание или термический нагрев.

Ультразвуковой посол позволяет получить нежные, равномерно окрашенные куски продукта без их предварительного внутримышечного шприцевания и соответственно получить конечные продукты (например, окорока) без повреждения тканей.

Наилучшие результаты получаются при посоле 100...200 г мяса по следующей технологии: 10 минут ультразвуковой обработки, охлаждение до температуры 10...15 градусов, последующая обработка в течении 10 минут и выдержка в течении суток в рассоле для полной готовности продукта.

По аналогичной технологии осуществляется посол свиного сала.

При посоле рыбы, очищенную тушку рыбы длиной 15...30 см уложить в рассоле на дно стакана миксера и произвести обработку в течении 10...20 минут. После обработки выдержать продукт в рассоле в холодном месте не менее 5 часов.

Отмачивание мяса и рыбопродуктов. При необходимости уменьшения содержания соли в мясо- и рыбопродуктах осуществляется отмачивание продуктов. Отмачивание может осуществляться в воде, молоке, растворе уксуса и различных соусах. Для получения практически несоленого продукта из соленого, уложите этот продукт на дно стакана миксера и залейте в него максимально допустимое количество воды (500...700 мл). Произведите обработку в течении 10 мин и слейте полученный рассол. Если продукт недостаточно несоленый повторите обработку в фитомиксере, залив свежую порцию воды.

Аналогичным образом осуществляется отмачивание сельди в молоке или растворе уксуса.

При отмачивании любых продуктов стремитесь максимально использовать объем стакана миксера. При этом эффективность отмачивания убывает при количестве отмачиваемого продукта более 10% по объему от жидкости.

Интенсификация получения жира. Обычно извлечение жира из мягкого жиросодержащего сырья осуществляется термическими способами. При этом происходит ухудшение качества жира (изменение цвета и запаха). В отличие от традиционных технологий, использование ультразвука обеспечивает извлечение жира без термического воздействия при одновременном улучшении его вкусовых качеств, цвета и запаха.

При извлечении жира мягкое животное сырьё измельчается. К измельченному сырью добавляется 30% подсоленной воды с температурой около 40 градусов и осуществляется обработка в течении 20...30 минут.


Подобные документы

  • Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук. Хирургическое применение ультразвука. Эффект Доплера, применение для неинвазивного измерения скорости кровотока. Вибрации, физические характеристики.

    контрольная работа [57,9 K], добавлен 25.02.2011

  • Понятие ультразвука, его предельная верхняя граница. Ученые, занимающиеся изучением ультразвуковых волн. Применение ультразвука в медицине, в приборах для контрольно-измерительных целей и в технике. Ультразвуковые импульсы и лучи в живой природе.

    доклад [15,4 K], добавлен 26.01.2009

  • Ознакомление с понятием и сущностью ультразвука. Рассмотрение частоты ультразвуковых волн, применяемых в промышленности и биологии. Изучение особенностей преобразования акустической энергии в тепловую. Применение ультразвука в диагностике и в терапии.

    презентация [483,0 K], добавлен 11.02.2016

  • Источники ультразвука и его применение в эхолокации, дефектоскопии, гальванотехнике, биологии. Диагностическое и терапевтическое применение ультразвука в медицине. Источники инфразвука, особенности распространения, физиологическое действие, применение.

    презентация [2,6 M], добавлен 30.11.2011

  • Сущность ультразвука, его восприятие человеком. Эхолокация летучих мышей и дельфинов. Первый ультразвуковой свисток. Терапевтическое применение ультразвука в медицине. Примеры его использования в химии и биологии, в некоторых отраслях промышленности.

    презентация [2,0 M], добавлен 20.05.2011

  • Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат [28,2 K], добавлен 04.06.2010

  • Основы теории дифракции света. Эксперименты по дифракции света, условия ее возникновения. Особенности дифракции плоских волн. Описание распространения электромагнитных волн с помощью принципа Гюйгенса-Френеля. Дифракция Фраунгофера на отверстии.

    презентация [1,5 M], добавлен 23.08.2013

  • Понятие точечного источника света. Законы освещенности, поглощения Бугера, коэффициент поглощения. Использование для измерения освещенности фотоэлемента, величина тока которого пропорциональна освещенности фотоэлемента. Обработка экспериментальных данных.

    лабораторная работа [241,8 K], добавлен 24.06.2015

  • Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат [1,0 M], добавлен 02.11.2008

  • Исследование дифракции, явлений отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Характеристика огибания световыми волнами границ непрозрачных тел и проникновения света в область геометрической тени.

    презентация [1,4 M], добавлен 07.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.