Ультразвук и его применение

Теоретические основы акустики. Рождение, характеристика, специфические особенности, измерение и коэффициент поглощения звука. Дифракция света на ультразвуке в анизотропной среде. Схемы и характеристики ультразвуковой аппаратуры. Применение ультразвука.

Рубрика Физика и энергетика
Вид научная работа
Язык русский
Дата добавления 11.03.2009
Размер файла 6,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Выход жира при озвучивании мягкого жиросодержащего сырья составляет 60...75%, выход костного жира - до 15%.

Технология, аналогичная описанной, позволяет в несколько раз ускорить процесс извлечения жира из печени рыб и увеличить его выход при приготовлении рыбьего жира в домашних условиях.

1.1.2. Ультразвуковая обработка молока

В составе молока содержится 87,3% воды, 12,5% сухих веществ, в том числе 3,8% молочного жира, 3,3% белков, 4,7% молочного сахара, 0,7 минеральных веществ. Особенность многих компонентов молока в том, что природа не повторяет их ни в каком другом продукте питания.

В молоке жир распределен в виде жировых шариков, окруженных сложной белковой оболочкой, т.е. представляет собой эмульсию молочного жира в воде. Размер жировых шариков колеблется от 1 до 5 мкм. Причем, количество жировых шариков, имеющих размер более 2 мкм составляет более 50% и зависит от породы и индивидуальных особенностей коровы.

Питательная ценность молока в значительной степени определяется размерами частиц жира в молоке. Как отмечалось в предыдущем подразделе, сверхтонкое дробление жира в эмульсиях очень сильно изменяет свойства исходного продукта.

В работе показано, что дробление жировых шариков молока до меньших, чем в исходном состоянии, размеров почти на треть повышает питательную ценность молока

Дробление жировых шариков (гомогенизацию) следует осуществлять с помощью многофункционального ультразвукового аппарата - электронного фитомиксера "АЛЁНА".

Результаты ультразвуковой обработки 500 мл молока в течении 10 минут с помощью фитомиксера при различных температурах приведены в таблице.

Как следует из приведенной таблицы, оптимальным следует считать обработку молока при температуре 55...70 градусов Цельсия, позволяющую получать более 80% от общего числа жировых шариков размером менее 2 мкм.

При такой обработке молока наблюдается еще один важный положительный эффект - стерилизация молока. При этом количество болезнетворных бактерий существенно сокращается.

Таблица.

Результаты гомогенизации молока

Температура молока, град. С

Количество жировых шариков, размером менее 2 мкм (процентное содержание)

контроль

УЗ обработка

15

48

75

25

50

73

35

49

72

45

49

70

55

52

80

65

50

90

70

52

88

В таблице приведены данные о бактерицидном действии ультразвука на микрофлору молока при различном по времени воздействии на 250 мл молока (использовано не пастеризованное молоко).

Из приведенных данных следует, что за 8...10 обработки сырого молока (250 мл) фитомиксером обеспечивается снижение обсемененности до нормы (менее 200000 КОЕ в 1 мл.).

Таблица.

Бактерицидное действие ультразвука при обработке молока

Время обработки, мин

Количество бактерий в 1 мл молока

0 (контроль)

610000

2

460000

4

410000

6

340000

8

170000

10

80000

При ультразвуковой обработке молока, как следует из результатов работы [48], не происходит разрушения наиболее лабильной части витамина С и его содержание остается практически равным исходному - 0,83 мг (пастеризация паром снижает концентрацию витамина С до 0,65 мг, инфракрасным излучением - до 0,75 мг, кипячение - практически полностью разрушает витамин С). Таким образом, ультразвуковая обработка с помощью фитомиксера обеспечивает не только повышение питательной ценности молока, но и обеспечивает его стерилизацию.

Следует отметить еще несколько положительных сторон УЗ обработки молока, способных найти широкое применение.

1. Обработанное ультразвуком и замороженное для длительного хранения молоко, после размораживания полностью сохраняет свои питательные и вкусовые качества.

2. Сухое молоко, выработанное, из обработанного ультразвуком, хранится значительно дольше. При восстановлении, по вкусу и составу не отличается от настоящего.

3. При ультразвуковой обработке пригодного к употреблению молока (в т.ч. пастеризованного) в домашних условиях в течении нескольких минут, кислотность молока не повышается более 5 часов.

1.1.3. Интенсификация процессов приготовления сыров

Сыр - высокоценный пищевой продукт. Он содержит большое количество легкоусвояемых полноценных белков, молочного жира, различных солей и витаминов. Особенно богат сыр минеральными веществами. Велика роль сыра в лечебном питании при малокровии, желудочных заболеваниях, характеризующихся понижением кислотности. Сыры, особенно острые, возбуждают аппетит, а белки сыра усваиваются на 98% . В домашних условиях, пользуясь традиционными рецептами, можно приготовить несколько видов сыров. Однако всякое приготовление сыра немыслимо без сычужного фермента.

Фермент на фабриках изготавливается из сычугов жвачных животных или желудков свиней (пепсин). При отсутствии сычужного порошка или пепсина заводского изготовления можно использовать экстракт, приготавливаемый с помощью фитомиксера из сухих ягнячьих или телячьих сычужков или желудков свиней.

Технология приготовления сычужного экстракта достаточно проста. При забое ягнят или телят вырезанный сычужок освобождают от содержимого и в расправленном виде высушивают в тени, а затем измельчают. Измельченное сырье замачивается и экстрагируется с учетом приведенных выше требований. По данным работы [33] активность заводского порошка сычужного фермента - 100 тыс. ед., активность экстракта, полученного традиционным способом - 800 тыс. ед., а получаемый с помощью ультразвука экстракт имеет активность - 1670 тыс. ед. Выход фермента, при обработке ультразвуком, получается на 35% выше, чем к контрольной партии.

Необходимое количество фермента (1 мл на 10 л) вливают в молоко, предварительно гомогенизированное в фитомиксере и сняв ультразвуковую колебательную систему со стакана фитомиксера в течении 10 минут производить ультразвуковое воздействие на весь объем заквашенного молока (10 л). Такое воздействие раздробит фермент , равномерно распределит его по всему объему молока и ускорит ферментацию, т.е. сократит время приготовления сыра.

1.1.4. Применение ультразвука при приготовлении соков

Препараты из свежих растений содержат значительно больше активных веществ, чем из высушенного сырья. В этих препаратах и соках содержится весь комплекс веществ в их естественном виде. Традиционные способы изготовления соков и извлечений из свежих растений и плодов заключается в прессовании предварительно измельченного сырья в специальных матерчатых мешках или салфетках. Малосочные растения измельчают и настаивают со спиртом в течении длительного времени (10-15 суток). В обоих случаях живые клетки оказывают сопротивление внешнему воздействию, т.е. во время прессования не все клетки раздавливаются, а при действии спирта его проникновение внутрь клеток идет очень медленно. Поэтому, при приготовлении соков и извлечений, стремятся измельчить исходное сырье до мелкодисперсного состояния.

Но это не всегда дает только положительный эффект, так как при этом в раствор выходит большое количество балластов (белков, пектинов и др.). Проведенные исследования подтвердили эффективность диспергирующего действия ультразвука для увеличения сокоотдачи при обработке свежего сырья (в том числе, лекарственного).

Под действием ультразвука проницаемость оболочек клеток увеличивается и процесс извлечения биологически активных веществ ускоряется. Ультразвуковая обработка мезги свежих листьев алоэ, корней белладонны, травы ландыша, листьев очистка большого, подорожника, каланхоэ, капусты перед прессованием, увеличивает выход сока из сырья в среднем на 10%. Получаемые соки более прозрачны, чем получаемые обычными способами. Оптимальное время обработки составляет 20-30 мин. Вкус и основные показатели приготовленного продукта при ультразвуковой обработке не изменяются.

При приготовлении извлечений из свежих малосочных растений наибольший выход основных действующих веществ происходит через 15-20 минут обработки.

В отдельных случаях ультразвуковая обработка позволяет увеличить выход суммы извлекаемых полезных веществ на 5-7% ( например, из травы донника белого и желтушника, корней радиолы розовой).

Кроме приготовления лекарственных соков и извлечений ультразвуковое воздействие повышает эффективность извлечения пищевых соков (например, из мезги винограда и различных ягод).

Сокоотдача винограда увеличивается с увеличением времени ультразвукового воздействия. Так при 30 минутной обработке выход сока увеличивается с 66 до 71% после первого прессования и с 74 до 79% после второго прессования.

Время обработки мезги дробленных ягод в течение 20-30 мин является оптимальным, так как дальнейшее время обработки становится малоэффективным. Оптимальное время обработки в фитомиксере зависит от высоты слоя обрабатываемого сырья (т.е. от обрабатываемого объема). При объеме измельченного сырья 200-300 мл достаточно 10 мин обработки. При увеличении объема до 500-700 мл время обработки следует увеличивать до 20-30 мин.

Вкусовых изменений в соке при обработке винограда ультразвуком, по результатам дегустационных проверок, не обнаружено.

Таким образом, ультразвуковая обработка предварительно измельченного винограда и других ягод, позволяет на 10- 15% увеличить выход сока. При обработке окрашенных сортов винограда и ягод резко повышается интенсивность окраски получаемого сока. Приготавливаемый в домашних и производственных условиях виноградный сок является насыщенным раствором винного камня, который необходимо удалить из сока. В производственных условиях кристаллизация винного камня производится путем выдержки виноградного сока в течение трех-четырех месяцев в 10 литровых стеклянных баллонах при температуре 0-3 град.

Такая продолжительная выдержка, даже в производственных условиях, технологически очень не выгодна, т.к. требует больших площадей и энергозатрат. В домашних условиях такая выдержка создает большой перерыв между получением сока и приготовлением конечной продукции.

Ультразвуковое воздействие на сок при низких температурах (-2...+2) интенсифицирует процесс выпадения винного камня.

Оптимальный режим обработки заключается в ультразвуковой обработке сока в течение 20-40 мин с последующей выдержкой сока на холоде в течение 2-3 суток. Это обеспечивает удаление необходимого количества винного камня.

1.1.5. Применение ультразвука в сельском хозяйстве

Ультразвуковая обработка зерна и семян перед посадкой интенсифицирует процесс прорастания, повышает урожайность различных культур в среднем на 20...40%.

Так обработанные ультразвуком зерна ячменя дают всходы на 2-3 дня раньше, чем контрольные посадки, длина колоса и количество зерен в нем увеличиваются на 30%, количество стеблей от одного зерна также увеличивается на 25-30%.

Механизм ультразвукового воздействия на зерна и семена до конца не исследован. Ясно только, что ультразвук способен стимулировать жизненные силы, заложенные природой в каждую сельскохозяйственную культуру.

Экспериментальные исследования позволили установить, что ультразвуковое воздействие в большей или меньшей степени, но всегда положительно влияет на процесс прорастания зерен и семян и увеличивает урожайность. Максимальное повышение урожайности отмечено у дынь - на 46%.

Обработка семян огурцов перед посадкой ультразвуком приводит к тому, что междоузлия на взрослом растении (места образования плодов) формируются в полтора раза чаще, получаемые плоды отличаются от контрольных вкусом.

Обработка семян томатов ультразвуком позволила установить, что после посадки кусты разрослись сильнее, плодов образовалось больше, созрели они быстрее, чем контрольные. Анализ состава плодов показал, что обработанные ультразвуком томаты имели большее количество витаминов, чем контрольные.

Хорошие результаты были получены автором при обработке ультразвуком семян капусты, моркови, свеклы, лука.

При обработке семян ультразвуком в них можно вносить необходимые микроэлементы, уничтожать возбудителей болезней и вредителей, активизировать ферменты.

Так например, ультразвуковая обработка семян редиса в растворе органических удобрений повышает урожайность на менее чем в 2 раза.

При ультразвуковой обработке зерна и семян с помощью фитомиксера "АЛЁНА" необходимо учитывать следующее.

Обработка семян и зерен может осуществляться в воде или в водном растворе микроэлементов и удобрений. Обычно в качестве такого раствора используется водный раствор марганцовокислого калия. Такой раствор позволяет не только внести необходимый растениям калий, но и произвести предпосевную дезинфекцию семян.

Предварительно подготовленный слабый раствор марганцовокислого калия (бледно розового цвета) в количестве 200-250 мл. вливается в стакан миксера и в него помещаются обрабатываемые семена. Количество семян (по объему) не должно превышать 10 - 30%. Мелких семян допускается обрабатывать больше.

Время обработки семян не более 5 минут, время обработки зерен не более 10 мин. Признаком достаточной обработки может служить изменение цвета водного раствора с розового до светло-желтого. При обработке семян в маленьких стеклянных объемах (менее 200 мл) время обработки должно быть уменьшено до 3 мин. При обработке зерна в больших объемах (например, в трехлитровых банках) допускается обрабатывать до 1 кг зерна, обеспечивая его перемешивание. В этом случае время обработки составляет 20 минут и перемешивание зерна осуществляется через каждые 1-2 мин.

Рекомендации, изложенные в предыдущих разделах позволят вам с помощью фитомиксера подготовить растворы и экстракты удобрений, в том числе экстракты и настои дезинфицирующих веществ из растительного сырья.

Кроме вышесказанного, фитомиксер "АЛЁНА" может быть использован для фонофореза (введения) антибиотиков в яйцо перед закладкой в инкубатор.

1.1.6. Ультразвуковое снятие заусенцев

Ультразвуковое снятие заусенцев основано на эффекте увеличения эрозионной и кавитационной активности звукового поля при добавлении в жидкость мелких абразивных зерен, размер которых соизмерим с радиусом действия ударной волны, возникающей при захлопывании кавитационной полости (1-100 мкм). Кроме чисто кавитационного разрушения наиболее слабых участков деталей заусениц - происходит дополнительная их обработка абразивными зернами.

Снятие заусенцев осуществляется в стакане фитомиксера, заполненном водно-глицериновой смесью, в которой взвешены мелкие абразивные зерна. При возникновении акустических течений зерна абразива и детали из-за различия плотности и размеров получают неодинаковые скорости. При взаимном проскальзывании абразивных зерен и деталей происходит снятие заусенцев.

В качестве абразива рекомендуется применять электрокорунд, карбид кремния, карбид бора с размером частиц 3-20 мкм. Наиболее универсальна и широко применяется суспензия, содержащая воду, глицерин и абразив в соотношении 1:1:1. Могут удаляться заусенцы до 0.1 мм с мелких деталей (массой до 10г) из различных сталей, латуни и пр. Одновременно в стакан фитомиксера можно загружать детали в 2-3 слоя. Химически активные добавки интенсифицируют процесс обработки; например, 2%-й раствор медного купороса снижает время обработки на 93%.

Детали в процессе обработки должны находиться в постоянном движении. Способность деталей под действием ультразвуковых колебаний удерживаться во взвешенном состоянии зависит от отношения массы детали m к её поверхности S. Наиболее оптимальным для снятия заусенцев является отношение m/S не более 0,005 г/ мм2.

При обработке в абразивной суспензии зерна абразива могут внедряться в поверхность деталей. Поэтому после удаления заусенцев необходимо проводить обычную очистку деталей в воде или слабом щелочном растворе, после которой абразивные зерна полностью смываются

1.1.7. Ультразвуковая дегазация жидкостей

Ультразвуковые колебания обеспечивают более быстрое и глубокое по сравнению с другими методами понижение концентрации растворенного в жидкости газа. Ультразвуковая дегазация жидких сред применяется в металлургии (очистка сплавов от примесей), нефтепереработке (удаление метановых фракций из нефти), для выделения газов из растворов смол, трансформаторного масла, вискозы, соусов, напитков, мягкого пива, шоколада, растительного масла, крахмальных и желатиновых эмульсий и пр.

В ряде случаев для предотвращения коррозии аппаратуры необходима дегазация смазочных материалов, воды (удаление растворённого в них кислорода). Большие возможности имеет применение ультразвуковой дегазации в электрохимии при нанесении покрытий. Обычно на катоде выделяется водород, что приводит к образованию пузырьков при осаждении металла и, как следствие, снижению прочности покрытий. При применении ультразвуковой дегазации получаются прочные, лишенные пор покрытия. Кроме того, в звуковом поле увеличивается КПД и плотность электрического тока, сокращается время, необходимое для нанесения покрытия заданной толщины.

При проведении операций ультразвуковой дегазации может использоваться стакан фитомиксера и обработка осуществляться в нем. Кроме того может использоваться только ультразвуковая колебательная система, снятая со стакана миксера.

1.1.8. Ультразвуковая мойка и очистка

В электронике, приборостроении, радиотехнике, оптике, точном машиностроении, медицине и фармакологии большой удельный вес занимает производство мелких и средних деталей, работа с лабораторными посудой и инструментом, в технологию изготовления и обработки которых включены операции очистки.

Основные преимущества ультразвуковой мойки и очистки перед всеми известными методами удаления загрязнений следующие: быстрота и высокое качество очистки, механизация трудоёмких ручных операций, исключение дорогостоящих токсичных и взрывоопасных растворителей и замена их более приемлемыми щелочными растворами, обработка изделий сложной конфигурации, возможность в ряде случаев удалять загрязнения, не поддающиеся удалению другими методами.

Оптимальная интенсивность ультразвуковых колебаний, используемых при очистке, составляет 3....5 Вт/см2 для водных растворов и 1....3 Вт/см2 для органических растворителей [69].

Действие ультразвука в основном сказывается на ускорении процесса растворения загрязнений в растворителях, доставке свежих порций растворителя к загрязнённым поверхностям и удалении отделившихся частиц загрязнений из зоны очистки.

В таблице даны составы водных моющих растворов и режимы ультразвуковой очистки в зависимости от видов загрязнений и материала очищаемых изделий.

Таблица.

Состав водных моющих растворов и режимы ультразвуковой

очистки в зависимости от материала изделий.

Компонент

Содер-жание, г/см3

Темпе-рату-ра, град. С

Материал очищае-мых деталей

Загрязнения

Едкий натр

Сода кальционарованная

Жидкое стекло

Нитрит натрия

Неионогенное ПАВ

20-30

10-20

20

5-10

0,5-1,5

60-80

Сталь

Жир, консервирующие смазки

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

20-35

3

0,5-1,5

55-80

Сталь, медные сплавы, никель

Полировочные пасты, консервирующие и волочильные смазки, минеральные масла

Кальцинированная сода

Жидкое стекло

Неионогенное ПАВ

15-20

8-10

3

55-80

То же

То же

Жидкое стекло

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

5-10

10-30

3

0,5-1,5

55-80

Сталь, медные сплавы, алюминий

Масла, жиры, густые смазки и полировочные пасты

Дистиллированная вода

45-55

Полимерные пленки

Механические загрязнения, пыль

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

30

3

1

60-70

Сталь

Прокатные смазки, закаты, плены, конгломерированные загрязнения

Жидкое стекло

НеионогенноеПАВ

5

55-80

Алюминий, латунь

Полировочные пасты, сульфафрезол, эмульсол, стружка, масла, эмульсии олеиновой кислоты, флюсы.

Компонент

Содер-жание, г/см3

Темпе-рату-ра, град. С

Материал очищае-мых деталей

Загрязнения

Тринатрийфосфат или кальционированная сода

3-5

5-10

85-95

Кремний, герма-ний

Пицеиновый клей

Деионизированная вода

60-80

Кремний

Удаление абразив-

ной суспензии

Тринатрийфосфат

Неионогенное ПАВ

Сульфанол

25% -ный раствор аммиака в воде

10

3

1

5

60-70

Пластмассы

Золото, драго-ценные камни

Пемза с веретенным маслом, полировочные пасты

В таблице приводится классификация органических растворителей, применяемых при ультразвуковой очистке.

При выборе конкретных технологических режимов и приемов очистки и вспомогательных операций следует учитывать особенности конструкции, материала очищаемых поверхностей, виды загрязнений.

Из вспомогательных операций, как предшествующих ультразвуковой очистке, так и последующих за ней, следует отметить следующие:

- предварительное замачивание, которое приводит к ослаблению связей между отдельными частицами загрязнений. Однако, замечено, что изделия, выдержанные после замачивания на воздухе более 30 минут, очищаются значительно хуже изделий, вообще не подвергавшихся замачиванию.

- предварительный разогрев, который способствует размягчению загрязнений и их текучести. Особенно эффективен при очистке изделий большой массы.

- дополнительные операции очистки, применяемые как до, так и после ультразвуковой очистки, но обычно для удаления остатков моющих веществ и растворителей.

Таблица.

Органические растворители, применяемые

при ультразвуковой очистке

Растворитель

Взрывамость смесей

Предельная концентрация, г/м3

Температура, град. С

Материал очищаемых деталей

Удаляемые загрязнения

Недостатки растворителя

Трихлорэтилен

Не взрывается

0,01

5-70

Все металлы, кроме алюминия

Мин. масла, парафинсмлы, каучук, пасты

Разлагается в воде и при перегреве, токсичен

Четыреххлори-стый углерод

Не взрывается

0,02

5-70

Сталь

Мин. масла, парафинсмлы, пасты

Разлагается, токсичен

Фреон-113

Не взрывается

0,8

5-70

Все металлы

То же

Высокая стоимость

В ряде случаев, особенно при очистке массивных изделий или изделий сложной формы, целесообразно производить перемещение рабочего инструмента колебательной системы относительно изделия, либо вводить рабочий инструмент непосредственно в полости изделия.

Распространённым приёмом, снижающим энергоёмкость ультразвуковой очистки, является облучение отраженной волной. Для этого используется полуволновой слой моющей жидкости в стакане миксера при его использовании или полуволновой слой над очищаемым объектом.

При очистке изделий с полостями, сообщающимися с атмосферой узкими каналами, целесообразно в процессе очистки периодически извлекать изделия из ванны для вытекания из полостей технологической жидкости.

После проведения ультразвуковой очистки следует провести операции промывки и, если необходимо, пассивирования и сушки.

1.2. Применение ультразвуковых многофункциональных аппаратов для обработки твердых тел

1.2.1. Общая характеристика

В настоящем разделе сформулированы проблемы размерной обработки твердых хрупких материалов, сварки и резки полимерных материалов, и применительно к существующим на практике задачам показаны пути их решения с помощью ультразвуковых многофункциональных и специализированных аппаратов.

Все рассмотренные процессы можно осуществить и с помощью других многофункциональных аппаратов, выполняя отверстия различных диаметров и обеспечивая различную производительность процессов.

При разработке методик применения использованы теоретические и практические положения, выработанные ранее в лабораторных исследованиях и полученные разными авторами при использовании УЗ техники на крупных производствах и в лабораторных условиях.

Разработанные ранее методики трансформированы применительно к техническим возможностям электронного фитомиксера "АЛЁНА" для прошивки отверстий в твердых хрупких материалах и фасонной обработки таких материалов, для обработки полимерных термопластичных материалов и тканей, применительно к решению проблем:

- сварки полимерных материалов (листы и трубки):

- сварки листовых полимерных материалов по контуру с одновременной высечкой:

- резки полимерных материалов и тканей:

В разделе приведены результаты исследований и практического использования, показаны достигнутые технические характеристики, обсуждены методические особенности и эффективность использования многофункциональных аппаратов.

1.2.1. Ультразвуковая размерная обработка

Одним из наиболее интересных и перспективных промышленных применений ультразвука является процесс, получивший название ультразвуковой размерной обработки или ультразвукового резания.

Ультразвуковое резание было открыто более 50 лет назад американским инженером Л.Бэлемут. Исследуя дробление ультразвуком абразивных порошков, он обнаружил, что приближение колеблющегося торца рабочего инструмента излучателя к поверхности сосуда, в котором находилась суспензия абразива, приводит к разрушению поверхности в месте контакта. Выяснилось, что таким способом легко разрушаются все хрупкие материалы - стекло, керамики, твердые сплавы, драгоценные и поделочные камни и минералы. Особенно важным оказался тот факт, что форма полученного углубления весьма точно повторяет рельеф и форму рабочего инструмента излучателя.

Способ ультразвуковой обработки быстро нашел промышленное применение и уже в начале шестидесятых годов в различных странах начали появляться промышленные образцы ультразвуковых станков.

Обусловлено это было тем, что ультразвуковой способ удачно дополнил известную группу немеханических способов обработки - электроэрозионный, электрохимический, электронно-лучевой, лазерный и химический.

С его помощью удается существенно упростить и ускорить процесс изготовления фасонных деталей из твердых и хрупких материалов. Так например, в сотни раз повышается производительность вырезания пластин любой формы из различных керамик, полупроводниковых материалов, появляется возможность выполнять отверстия любой формы, упрощается технология изготовления матриц и пуансонов из твердых сплавов.

В ходе многочисленных исследований удалось установить, что совершая колебательные движения, рабочий инструмент периодически ударяет по зернам абразива. Под действием этих ударов под частицами абразива образуются трещины и выколы.

Полученные результаты показали, что разрушение хрупкого материала происходит только в случае прямого удара рабочего инструмента по частицам абразива, контактирующего в свою очередь с обрабатываемой поверхностью. В тех случаях, когда инструмент ударяет по частице абразива, взвешенной в жидкости, разрушение стекла не наблюдалось, хотя частица ударялась о поверхность со скоростью, близкой к колебательной скорости торца рабочего инструмента.

Применение абразивных суспензий, приготовленных на воде и глицерине свидетельствует о том, что скорость ультразвуковой обработки при использовании глицерина значительно меньше, чем при использовании воды. Объясняется это тем, что скорость потоков, возникающих в рабочем зазоре, а следовательно, и скорость движения частиц уменьшается с ростом вязкости используемой жидкости, а возникающие потоки играют определяющую роль в подаче абразивной суспензии в зону обработки, выносе выколотых частиц и измельченного абразива.

Современные представления о механизме ультразвуковой обработки свидетельствуют о том, что она сводится к двум различным по своей природе явлениям: образованию выколов при ударе инструмента по частицам абразива и перемещению выколотых частиц обрабатываемого материала и разрушенного абразива под действием ультразвуковых колебаний. Второй процесс обеспечивает подачу абразива и удаление отработанного абразива и снятого материала.

Производительность, точность обработки и качество поверхности, а также износ рабочего инструмента зависят от обоих явлений. Однако, производительность процесса и чистота обработанной поверхности определяются, в основном величиной и скоростью образования выколов. Скорость обработки определяется количеством частиц абразива между инструментом и обрабатываемой поверхностью. При использовании в качестве рабочих инструментов тонких пластин концентрация абразива была постоянной по всему сечению. С увеличением площади рабочей поверхности инструмента скорость ультразвуковой обработки уменьшалась. Обусловлено это тем, определяющую роль в перемещении частиц абразива под рабочей поверхностью инструмента играют кавитационные пузырьки. При использовании в качестве рабочего инструмента цилиндра и выполнении отверстий различных диаметров было установлено, что максимальное число кавитационных пузырьков образуется в центре обрабатываемого круга. Кавитационные пузырьки, способствующие перемешиванию абразива, одновременно схлапываются и создают мощные гидродинамические потоки, разбрасывающие частицы абразива от центральной зоны рабочей поверхности инструмента. Вследствие этого практически 2/3 поверхности под инструментом оказывается свободным от абразива и скорость обработки существенно снижается.

В связи с этим, при УЗ обработке целесообразно применять инструменты в виде полых трубок при выполнении отверстий различной формы и диаметра или ножевого типа при выполнении пазов и разрезании пластин. Кроме того эти же инструменты можно использовать для клеймения деталей, гравировки и т.п.

При принятии решения о необходимости выполнения отверстий необходимо учитывать функциональные возможности рассматриваемых многофункциональных ультразвуковых технологических аппаратов.

Многофункциональные аппараты N1 и N2 не комплектуются сменными рабочими инструментами и без дополнительных инструментов можно выполнять отверстия только одного диаметра - 7 мм. Однако, при необходимости выполнения отверстий меньшего диаметра, потребитель использовать дополнительный рабочий орган в виде иглы или специально изготовленного дополнительного рабочего органа необходимой формы.

При использовании многофункционального аппарата N3 можно обеспечить выполнение отверстий диаметром до 15 ...20 мм, При этом используются рабочие инструменты, входящие к комплект аппарата или изготавливаются рабочие инструменты необходимой формы и диаметра. При этом необходимо обеспечивать примерное равенство веса изготавливаемых инструментов, весу инструментов, входящих в комплект.

При применении многофункционального аппарата N 4 можно обеспечить выполнение отверстий до 40 мм. При этом также могут использоваться рабочие инструменты, входящие в комплект или изготавливаться в соответствии с решаемыми задачами.

Ультразвуковая обработка хрупких и твердых материалов осуществляется по следующей методике.

Прежде всего необходимо подготовить рабочий инструмент нужного вам диаметра. В комплект поставки обычно включаются рабочие инструменты для выполнения отверстий диаметром 5, 10 , 15 мм ( для аппарата N 3) и 20, 26, 32 и 36 мм. (для аппарата N 4). Потребитель по мере необходимости изготавливает необходимые инструменты в нужном количестве, руководствуясь изложенными выше рекомендациями и учитывая, что длина цилиндрической поверхности рабочего инструмента должна быть не более 35 мм и не менее толщины обрабатываемого изделия.

Воспользовавшись двумя ключами рабочий инструмент присоединяется к концентратору. Усилие затягивания должно быть достаточным для обеспечения акустического контакта и исключать повреждение резьбового соединения. Для улучшения работоспособности станка рекомендуется осуществлять соединение рабочего инструмента и концентратора через прокладку из меди толщиной 0.2 мм. Далее в отдельной емкости готовится необходимое для работы количество абразивной суспензии. Для её приготовления берется не менее 30% и не более 50% абразивного материала (карбида бора, карбида кремния, электрокорунда и т.п.) с размером зерен 30...70 мкм и 70% (не менее 50 %) воды (по объему).

Приготовленная суспензия наносится с помощью кисти на участок поверхности обрабатываемого объекта.

Ультразвуковая колебательная система устанавливается на обрабатываемый участок таким образом, что бы рабочий инструмент соприкасался с обрабатываемым материалом. Усилие, необходимое для обработки обеспечивается собственным весом колебательной системы.

При подготовке к работе многофункционального аппарата электронный блок подключается к сети. Ручка регулятора "НАСТРОЙКА" устанавливается в крайнее левое положение. Постепенно производится настройка на рабочую частоту вращением ручки "НАСТРОЙКА". Момент захвата рабочей частоты (оптимальный режим работы) фиксируется по максимальному эффекту сверления.

О нормальной работоспособности аппарата свидетельствует распыление воды, наносимой на торцевую поверхность рабочего инструмента кистью.

Нанося кистью суспензию на объект производится прошивка.

Для повышения производительности обработки и обеспечения высокого качества поверхностей выполняемых отверстий рекомендуется:

- при входе и на выходе рабочего инструмента из объекта снижать давление на обрабатываемый объект,

- выполнять отверстия длиной более 7...10 мм прошивкой с двух сторон,

- периодически выводить рабочий инструмент из отверстия и наносить суспензию на объект при прошивке глубоких отверстий,

- использовать принудительное охлаждение преобразователя потоком воздуха от бытового вентилятора при длительной непрерывной работе многофункционального аппарата,

- для ускорения процесса прошивки проворачивать колебательную систему вокруг оси на 30...90 градусов.

Применение многофункциональных аппаратов для размерной обработки твердых материалов позволяет, кроме выполнения отверстий, осуществлять обработку кромок стекла и других хрупких материалов, полировать поверхности, гравировать (наносить рисунки вручную и по трафарету), выполнять геммы (т.е. переносить рисунок, выполненный на поверхности рабочего инструмента на поверхность любого материала), обрабатывать бетонные изделия (выполнять отверстия малого диаметра), в домашних условиях выполнять отверстия в кирпичных и бетонных стенах , прожигать отверстия в дереве и многое другое.

1.2.2. Соединение порлимерных материалов под действием ультразвука

В связи с широким применением полимерных материалов в домашнем хозяйстве и различных отраслях промышленности, возникает необходимость в соединении однородных и разнородных полимерных деталей, пленок, текстильных материалов на основе химических волокон.

В настоящее время используется большое количество разнообразных способов соединения полимерных материалов, таких как: клеевой, тепловой токами высокой частоты. Каждый из этих методов имеет существенные недостатки. Так, тепловой способ, не обеспечивает необходимой прочности, а формируемый им шов является хрупким. Высокочастотный способ соединения может использоваться только для полимеров с высокими диэлектрическими потерями, так как основан на поглощении полимерным материалом энергии токов высокой частоты, вызывающей внутренний разогрев материала. Поэтому, высокочастотный способ не пригоден для множества широко распространенных материалов, например, для полиэтиленовых пленок.

Большой проблемой является также соединение тканей на основе синтетических волокон. Использование обычных способов соединения в этом случае не всегда приемлемо из-за высокой упругости синтетических волокон.

Наиболее перспективным способом решения проблем соединения полимерных материалов является ультразвуковой способ, обеспечивающий прочный, долговечный и эластичный шов, высокую производительность процесса, безопасность и возможность легко автоматизировать процесс. В настоящее время ультразвуковая сварка является одним из наиболее эффективных, малоэнергоемких и наиболее широко используемых для соединения полимерных материалов способов.

Анализ технических возможностей ультразвукового способа соединения полимерных материалов (сварки) применительно к решению перечисленных проблем позволил выявить его несомненные достоинства, к основным из которых относятся:

1. Возможность получения надежного шва при температуре, меньшей температуры плавления материала, что позволяет избежать термического разложения материалов в воздухе (т.е. исключить выделение хлора и содержащих его продуктов в атмосферу.

2. Возможность повышения качества герметизирующего шва за счет увеличения (в миллионы раз) диффузионного взаимопроникновения свариваемых материалов, обусловленного знакопеременными механическими напряжениями в ультразвуковом поле высокой интенсивности.

3. Возможность снижения, по сравнения с тепловым способом, формирующего шов сварочного усилия до значений, значительно меньших предела текучести свариваемого материала, что позволяет значительно снизить массогабаритные и стоимостные характеристики устройства сжатия полимерных материалов и обеспечить соединение полимерных материалов вручную с помощью колебательных систем многофункциональных ультразвуковых аппаратов.

4. Возможность сварки материала, на поверхности которого имеются механические загрязнения или нанесены жидкие, вязкие и жировые пленки.

5. Ультразвуковая сварка осуществляется односторонним способом и ультразвуковую энергию можно вводить на значительном расстоянии от места соединения.

6. При ультразвуковой сварке полимерных материалов максимальный разогрев происходит на соединяемых поверхностях, что исключает перегрев материала по толщине.

7. При сварке ультразвуком на соединяемых выступах нет напряжений и отсутствуют радиопомехи.

С помощью ультразвука легко и качественно соединяются любые термопластичные материалы, к которым относятся: полиэтилен, полипропилен, полистирол, поливинилхлорид, полиамид, полиакрилат, поликарбонат и др.

В процессе действия ультразвуковых колебаний такие пластмассы, разогреваясь, переходят за сравнительно короткий промежуток времени в высокоэластичное состояние, а при дальнейшем повышении температуры в вязкопластичное состояние. Термопластичные материалы способны к многократному нагреву, не теряют исходных свойств и сохраняют свою структуру.

Основным недостатком ультразвукового способа сварки является невозможность соединения термореактивных пластмасс (их невозможно соединять и любыми другими способами, связанными с нагреванием).

Наибольший экспериментальный материал накоплен по соединению изделий из органического стекла, полихлорвинила, полиизобутилена, полистирола и полиамида.

Легче всего с помощью многофункциональных ультразвуковых аппаратов выполнить нахлесточные и тавровые точечные соединения с помощью рабочих инструментов. С помощью этих же инструментов можно выполнять шовные соединения и соединения по контуру.

Технология сварки заключается в следующем. На опору, (желательно массивную), в качестве подкладки укладывается резина, которая отражает часть энергии в свариваемые материалы. Применение подкладки из эластичного материала обеспечивает высокое качество швов при малом давлении и времени сварки. На подкладку, при выполнении нахлесточного соединения укладываются в два или более слоев свариваемые материалы. При выполнении точечной сварки, рабочий инструмент прижимается к свариваемым материалам с усилием, меньшем предела текучести, генератор многофункционального аппарата включается на время, необходимое для перевода материалов в вязкопластичное состояние (0,5......5 сек), затем генератор автоматически (с помощью таймера) или принудительно выключается. После выключения генератора статическое усилие на рабочий инструмент удерживается в течении 1...2 сек для стабилизации сварного шва.

В качестве примера рассмотрим режимы ультразвуковой сварки винипласта и полиэтилена.

При ультразвуковой сварке винипласта толщиной от 5 до 10 мм с помощью крестообразного соединения или соединения встык при амплитуде колебаний рабочего инструмента колебательной системы около 35 мкм и усилии зажатия в пределах от 50 до 70 кг (усилие создавалось вручную) качественное соединение получалось при времени ультразвукового воздействия 2...3 сек. Полученные таким образом швы разрушались лишь при усилиях 230...240 кг (разрушение происходило вблизи шва). Использовался резиновый отражатель толщиной 5 мм.

При ультразвуковой сварке, без применения резинового отражателя, полиэтилена толщиной 2....3 мм ультразвуковыми колебаниями с амплитудой 35 мкм и усилии сжатия всего 5 кг время воздействия было от 0,5 до 2 сек. Для разрушения таких соединений достаточно усилий порядка 50 кг.

Приведенные результаты показывают, что прочность сварного шва практически равна прочности основного материала. Кроме того, при сварке вдоль направления ориентации, прочность, близкая к прочности основного материала достигается в три раза быстрее, чем при сварке поперек волокон.

Следует отметить еще одну особенность (и преимущество перед другими способами сварки) ультразвуковой сварки. Для жестких пластмасс, таких как: полистирол, полипропилен, жесткий ПВХ, полиакрилат, поликарбонат и др., характеризуемых малым коэффициентом поглощения УЗ колебаний, допускается вводить ультразвуковые колебания на значительных расстояниях от места соединения. Подобная методика сварки позволяет располагать рабочий инструмент для ввода ультразвуковых колебаний на расстоянии до 20 мм от сварного шва, обеспечивая тем самым возможность осуществлять сварку в труднодоступных местах.

Кроме пластмасс, с помощью многофункциональных ультразвуковых аппаратов можно соединять полимерные пленки полиэтилена, полипропилена, полистирола, полиамидов, а также различные ткани, содержащие синтетические волокна, нетканые материалы с поливинилхлоридным, полистирольным и полипропиленовым покрытием.

Достаточно легко осуществляется соединение пленок с бумагой (ламинирование) и хлопчатобумажной тканью.

Многофункциональные аппараты могут быть использованы для сварки различных оболочек, используемых в качестве тары для хранения жидкостей и сыпучих тел, а также для упаковки изделий.

Многофункциональные ультразвуковые аппараты могут быть с успехом использованы в автоматических установках для соединения пленок и листов толщиной от 50 мкм до 3 мм. При этом может быть обеспечена скорость сварки в пределах от 1 до 10 м/мин.

При использовании многофункциональных аппаратов в автоматизированных сварочных установках для выполнения непрерывной полосовой сварки, вместо рассмотренной колебательной системы с рабочими инструментами N 3 и N 4 могут быть использованы катящиеся ультразвуковые колебательные системы. В таких колебательных системах используется кольцевой (трубчатый) пьезоэлектрический элемент. Для излучения ультразвуковых колебаний используется цилиндрическая поверхность пьезоэлемента, перекатывающегося по поверхности свариваемых материалов.

Передача высокочастотной электрической энергии на электроды вращающегося пьезоэлемента осуществляется через индуктивный токосъемник, выполненный в виде двух катушек индуктивности, расположенных на общем замкнутом сердечнике магнитопровода.

Один из участков магнитопровода проходит внутри трубчатого пьезоэлемента и механически связанной с ним катушки индуктивности

Эта катушка индуктивности электрически подключена к электродам пьезоэлемента и вращается вместе с ним.

Вторая катушка, расположена на другом (противоположном) участке магнитопровода, электрически соединяется с генератором электрических колебаний, и во время вращения пьезоэлемента остается неподвижной.

Глава 2. Применение ультразвука в медицине

2.1. Диагностика

2.1.1. Принципы УЗ-диагностики

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании больного необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Генератором ультразвуковых волн является пьезодатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы. В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллов, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа. Для щитовидной железы используются конвексные трансдюсоры на 7,5 МГц, для исследования почек и печени в равной степени пригодны как линейные, так и конвексные датчики.

Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям.

Конвексный датчик имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие.

Секторный датчик имеет еще большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки.

Виды ультразвукового сканирования (схема):

а - линейное (параллельное); б - конвексное; в - секторное.

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - черным (эхонегативные участки). При негативной регистрации наблюдается обратное положение.

Выбор позитивной или негативной регистрации не имеет значения. Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью термопринтера.

Первая попытка изготовить фонограммы человеческого тела относится к 1942 году. Немецкий ученый Дуссиле "освещал" ультразвуковым пучком человеческое тело и затем измерял интенсивность пучка, прошедшего через тело (методика работы с рентгеновскими лучами Мюльхаузера). Вначале 50-х годов американские ученые Уилд и Хаури впервые и довольно успешно применили ультразвук в клинических условиях. Свои исследования они сосредоточили на мозге, так как диагностика с помощью рентгеновских лучей не только сложна, но и опасна. Применение ультразвука для диагноза при серьезных повреждениях головы позволяет хирургу точно определить места кровоизлияний.

Получение такой информации с помощью рентгеновских лучей требует около часа времени, что весьма нежелательно при тяжелом состоянии больного. При использовании переносного зонда можно установить положение средней линии мозга (она разделяет его на два полушария) примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика, при определении местонахождения камней в желчном пузыре. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

2.1.2. Эхо-имульсивные методы визуализации и измерений

Методы ультразвуковой эхо-импульсной визуализации уже нашли широкое и разнообразное применение в медицине.

Основным элементом любой системы визуализации является электроакустический преобразователь, который служит для излучения зондирующего акустического импульса в объект и для приема акустических эхо-сигналов, переизлучаемых мишенью.

Приемник представляет собой своего рода систему сопряжения между преобразователем и дисплеем или системой записи, которые применяются для передачи наблюдателю информации, полученной с помощью ультразвука. В хороших системах эхо-сигналы на выходе преобразователя имеют большой динамический диапазон.

Эхо-импульсные методы в настоящее время стали широко применятся во многих областях медицины.

2.1.3. Акушерство

Акушерство - та область медицины, где эхо-импульсивные ультразвуковые методы наиболее прочно укоренились как составная часть медицинской практики. Рассматриваемые здесь четыре основных задачи иллюстрируют ценность многих полезных свойств ультразвуковых методов.

Надежное определение положения плаценты - задача первостепенной важности в акушерской практике. С развитием техники, обеспечивающее высокое расширение по контрасту, эта процедура стала уже рутинной. Приборы, работающие в реальном времени, эргономически более выгодны, так как позволяют определять положения плаценты быстрее, чем статические сканеры.

Второй вид процедур, ставших уже привычными, - оценка развития плода по измерению одного или более его размеров, таких как диаметр головки, окружность головки, площадь грудной клетки или живота. Так как даже очень малые изменения этих размеров могут иметь диагностическое значение, эти методы требуют высокой точности самой аппаратуры и методик ее применения.

Третий вид процедур, появившийся не так давно и не столь еще укоренившийся в практике, - раннее обнаружение аномалий плода. Это приложение требует особенно хорошего пространственного разрешения и разрешения по контрасту, предпочтительно в сочетании с режимом реального времени и быстрым сканированием. Хорошие методики и качественная аппаратура позволяют обнаруживать такие дефекты, как недоразвитие (гибель) яйца, анэнцефалия (полное или почти полное отсутствие мозга), гидроцефалия (избыток жидкости в мозге, наблюдаемый в виде уширения желудочков), спинальные (позвоночные) дефекты, зачастую необнаружимые биохимическими методами, и дефекты желудочно-кишечного тракта. Вспомогательную, но очень важную роль играет ультразвук в процедуре амниоцентеза (пункции плодного пузыря) - взятии околоплодных вод для цитологических исследований и выявления возможных генетических нарушений. Ввод иглы при амниоцентезе под контролем ультразвуковой визуализации, обеспечивает значительно большую безопасность этой процедуры.


Подобные документы

  • Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук. Хирургическое применение ультразвука. Эффект Доплера, применение для неинвазивного измерения скорости кровотока. Вибрации, физические характеристики.

    контрольная работа [57,9 K], добавлен 25.02.2011

  • Понятие ультразвука, его предельная верхняя граница. Ученые, занимающиеся изучением ультразвуковых волн. Применение ультразвука в медицине, в приборах для контрольно-измерительных целей и в технике. Ультразвуковые импульсы и лучи в живой природе.

    доклад [15,4 K], добавлен 26.01.2009

  • Ознакомление с понятием и сущностью ультразвука. Рассмотрение частоты ультразвуковых волн, применяемых в промышленности и биологии. Изучение особенностей преобразования акустической энергии в тепловую. Применение ультразвука в диагностике и в терапии.

    презентация [483,0 K], добавлен 11.02.2016

  • Источники ультразвука и его применение в эхолокации, дефектоскопии, гальванотехнике, биологии. Диагностическое и терапевтическое применение ультразвука в медицине. Источники инфразвука, особенности распространения, физиологическое действие, применение.

    презентация [2,6 M], добавлен 30.11.2011

  • Сущность ультразвука, его восприятие человеком. Эхолокация летучих мышей и дельфинов. Первый ультразвуковой свисток. Терапевтическое применение ультразвука в медицине. Примеры его использования в химии и биологии, в некоторых отраслях промышленности.

    презентация [2,0 M], добавлен 20.05.2011

  • Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат [28,2 K], добавлен 04.06.2010

  • Основы теории дифракции света. Эксперименты по дифракции света, условия ее возникновения. Особенности дифракции плоских волн. Описание распространения электромагнитных волн с помощью принципа Гюйгенса-Френеля. Дифракция Фраунгофера на отверстии.

    презентация [1,5 M], добавлен 23.08.2013

  • Понятие точечного источника света. Законы освещенности, поглощения Бугера, коэффициент поглощения. Использование для измерения освещенности фотоэлемента, величина тока которого пропорциональна освещенности фотоэлемента. Обработка экспериментальных данных.

    лабораторная работа [241,8 K], добавлен 24.06.2015

  • Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат [1,0 M], добавлен 02.11.2008

  • Исследование дифракции, явлений отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Характеристика огибания световыми волнами границ непрозрачных тел и проникновения света в область геометрической тени.

    презентация [1,4 M], добавлен 07.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.