Расчет статически неопределимой рамы методом сил

Определение реакции опор и построение эпюры моментов, поперечных и продольных сил для статически неопределимой Е-образной рамы с одной скользящей и двумя неподвижными опорами с помощью составления уравнений методом сил, формулы Мора и правила Верещагина.

Рубрика Физика и энергетика
Вид задача
Язык русский
Дата добавления 05.12.2010
Размер файла 173,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задача №5.

Расчет статически неопределимой рамы методом сил

Для статически неопределимой Е-образной рамы с одной скользящей и двумя неподвижными опорами используя метод сил, формулу Мора и правило Верещагина необходимо определить реакции опор и построить эпюры моментов, поперечных и продольных сил

Построить эпюры M, Q и N.

Решение

Данная система дважды статически неопределима, так как рама прикреплена пятью связями, а уравнений статики для их определения - три. Выбираем основную систему путем отбрасывания лишних связей и заменой их неизвестными усилиями Х1 и Х2. Фактически Х1 будет являться реакцией опоры С, а Х2 - вертикальной составляющей реакции опоры В.

Составляем систему канонических уравнений метода сил:

11Х1 + 12Х2 + = 0;

21Х1 + 22Х2 + = 0.

Для определения коэффициентов при неизвестных и свободных членах необходимо построить эпюры изгибающих моментов поочередно для каждой силы.

Эпюра единичных изгибающих моментов от единичной силы Х1

Эпюра единичных изгибающих моментов от единичной силы Х2

Грузовая эпюра от заданной нагрузки - силы Р.

Подсчитываем коэффициенты по формуле Мора используя правило Верещагина:

где - величина изгибающего момента единичной эпюры Хj в точке, где расположен центр тяжести фигуры, образованной единичной эпюрой Хi;

- площадь фигуры, образованной единичной эпюрой Хi.

Например, для трапециевидного участка длиной L и размерами сторон м и М единичной эпюры Х1 находим координату центра тяжести для трапеции:

;

Далее находим значение Мц.т. в этой точке для всех эпюр.

- для эпюры Х1 это будет:

,

– для эпюры Х2 в любой точке данного участка М равно а, следовательно:

– для эпюры Р это будет:

Соответственно площади эпюр на данном участке будут равны:

Аналогичным образом находим составляющие уравнения Мора для других, более простых участков и вычисляем требуемые коэффициенты:

Подставив найденные коэффициенты в систему канонических уравнений и сократив на и а3 получим систему двух уравнений с двумя неизвестными:

Х1 + Х2 + Р = 0; 56Х1 + 11Х2 + 6Р = 0;

Х1 + Х2 + Р = 0.11Х1 + 10Х2 + 7Р = 0;

Вычитая из первого уравнения второе, получим более простое выражение, из которого выразим Х2 и подставим затем во второе уравнение;

45Х1 + Х2 - Р = 0;Х2 = Р - 45Х1;

11 Х1 + 10Р - 450 Х1 + 5Р = 0;

Х1 = Р = 0,034Р;

Х2 = Р - Р = -Р = -0,538Р;

Найдя значения неизвестных усилий Х1 и Х2, обратимся к основной системе и найдем ХА, УА и ХВ.

У = 0;

УА - Х1 - Х2 - Р = 0;

УА = Х1 + Х2 + Р = 0,034Р - 0,538Р + Р = 0,496Р;

МА = 0;

Х1а + ХВа - Ра = 0;

ХВ = Р - Х1 = 0,966Р;

Х = 0;

ХА - ХВ = 0;

ХА = ХВ = 0,966Р;

Зная значения всех усилий, действующих на раму, строим эпюры М, Q и N:


Подобные документы

  • Определение угла поворота узла рамы от силовой нагрузки и числа независимых линейных перемещений. Построение единичных и грузовых эпюр изгибающих моментов для основной системы. Автоматизированный расчет рамы и решение системы канонических уравнений.

    контрольная работа [2,0 M], добавлен 22.02.2012

  • Расчет статически определимой рамы. Перемещение системы в точках методом Мора-Верещагина. Эпюра изгибающих моментов. Подбор поперечного сечения стержня. Внецентренное растяжение. Расчет неопределенной плоской рамы и плоско-пространственного бруса.

    курсовая работа [1,4 M], добавлен 04.12.2012

  • Вычисление прогиба и угла поворота балки; перерезывающих сил и изгибающих моментов. Расчет статически неопределимой плоской рамы и пространственного ломаного бруса. Построение эпюр внутренних силовых факторов. Подбор двутаврового профиля по ГОСТ 8239-72.

    курсовая работа [2,8 M], добавлен 09.09.2012

  • Определение продольной силы в стержнях, поддерживающих жёсткий брус. Построение эпюры продольных усилий, нормальных напряжений и перемещений. Расчет изгибающих моментов и поперечных сил, действующих на балку. Эпюра крутящего момента и углов закручивания.

    контрольная работа [190,3 K], добавлен 17.02.2015

  • Расчет спектра собственных колебаний рамы по уточненной схеме. Коэффициенты податливости системы. Определение амплитуды установившихся колебаний. Траектория движения центра масс двигателя. Построение эпюры изгибающих моментов в амплитудном состоянии.

    курсовая работа [760,7 K], добавлен 22.01.2013

  • Определение равнодействующей системы сил геометрическим способом. Расчет нормальных сил и напряжений в поперечных сечениях по всей длине бруса и балки. Построение эпюры изгибающих и крутящих моментов. Подбор условий прочности. Вычисление диаметра вала.

    контрольная работа [652,6 K], добавлен 09.01.2015

  • Описание решения стержневых систем. Построение эпюр перерезывающих сил и изгибающих моментов. Расчет площади поперечных сечений стержней, исходя из прочности, при одновременном действии на конструкцию нагрузки, монтажных и температурных напряжений.

    курсовая работа [2,2 M], добавлен 23.11.2014

  • Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.

    контрольная работа [646,4 K], добавлен 02.05.2015

  • Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.

    курсовая работа [1,2 M], добавлен 25.05.2015

  • Определение реакции связей, вызываемых заданными нагрузками. Решение задачи путем составления уравнения равновесия рамы и расчета действующих сил. Сущность закона движения груза на заданном участке, составление уравнения траектории и его решение.

    задача [136,1 K], добавлен 04.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.