Оптические явления в природе
Изучение зеркальных оптических и атмосферных явлений. Полное внутреннее отражение света. Наблюдение на поверхности Земли происхождение миражей, радуги и полярного сияния. Исследование явлений, возникающих в результате квантовой и волновой природой света.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.06.2014 |
Размер файла | 164,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Оптические явления в природе: отражение, ослабление, полное внутреннее отражение, радуга, мираж.
Российский Государственный Аграрный Университет Московская Сельскохозяйственная Академия имени К.А. Тимирязева
Реферат
Тема: Оптические явления в природе
Выполнила
Бахтина Татьяна Игоревна
Преподаватель:
Момджи Сергей Георгиевич
Москва, 2014
План
1. Виды оптических явлений
2. Зеркальные оптические явления
3. Полное внутреннее отражение
4. Атмосферные оптические явления
Заключение
1. Виды оптических явлений
Оптическое явление каждого видимого события является результатом взаимодействия света и материальных сред физической и биологической. Зелёный луч света является примером оптического явления.
Общие оптические явления часто происходят из-за взаимодействия света от солнца или луны с атмосферой, облаками, водой, пылью и другими частицами. Некоторые из них как зеленый луч света настолько редкое явление, что его иногда считают мифическим.
Оптические явления включают те, вытекающие из оптических свойств атмосферы, остальной природы (другие явления); из объектов, будь то природного или человеческого характера (оптические эффекты), где наши глаза имеют энтоптический характер явлений.
Есть много явлений, которые возникают в результате либо квантовой или волновой природой света. Некоторые из них довольно тонкие и наблюдаемое только при помощи точных измерения с помощью научных приборов.
В своей работе я хочу рассмотреть и рассказать об оптических явлениях, связанных с зеркалами (отражение, ослабление) и с атмосферными явлениями (мираж, радуга, полярные сияния), с которыми мы часто и много сталкиваемся в повседневной жизни.
2. Зеркальные оптические явления
Свет мой, зеркальце, скажи…
Если брать простое и точное определение, то Зеркало -- гладкая поверхность, предназначенная для отражения света (или другого излучения). Наиболее известный пример -- плоское зеркало.
Современную историю зеркал отсчитывают с XIII века, а точнее -- с 1240 года, когда в Европе научились выдувать сосуды из стекла. Изобретение настоящего стеклянного зеркала следует отнести к 1279 году, когда францисканец Джон Пекам описал способ покрывать стекло тонким слоем олова.
Кроме зеркал, изобретенных и созданных человеком, список отражающих поверхностей велик и обширен: гладь водоема, иногда - лед, иногда - отшлифованный металл, просто стекло, если взглянуть на него под определенным углом, но, тем не менее, именно рукотворное зеркало можно назвать практически идеальной отражающей поверхностью.
Принцип хода лучей, отражённых от зеркала прост, если применять законы геометрической оптики, не учитывая волновую природу света. Луч света падает на зеркальную поверхность (рассматриваем полностью непрозрачное зеркало) под углом альфа к нормали (перпендикуляру), проведённой к точке падения луча на зеркало. Угол луча отражённого будет равен тому же значению - альфа. Луч, падающий на зеркало под прямым углом к плоскости зеркала, отразится сам в себя.
Для простейшего -- плоского -- зеркала изображение будет расположено за зеркалом симметрично предмету относительно плоскости зеркала, оно будет мнимым, прямым и такого же размера, как сам предмет.
То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут «вверх ногами» далеко не так. Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем «исчезнет», если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду. Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а также по мере удаления объекта. Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления. Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других ярко освещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза.
3. Полное внутреннее отражение света
Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. Это можно изобразить в обычных условиях, проделав следующий опыт. В высокой консервной банке на высоте 5 см от дна надо просверлить круглое отверстие диаметром 5-6 мм. Электрическую лампочку с патроном надо аккуратно обернуть целлофановой бумагой и расположить ее напротив отверстия. В банку надо налить воды. Открыв отверстие, получим струю, которая будет освещена изнутри. В темной комнате она ярко светится и опят выглядит очень эффектно. Струе можно придать любую окраску, поместив на пути лучей света цветное стекло. Если на пути струи подставить палец, то вода разбрызгивается и эти капельки ярко светятся. Объяснение этого явления довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней. Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.
Я приведу здесь физическое объяснение этому явлению. Пусть абсолютный показатель преломления первой среды больше, чем абсолютный показатель преломления второй среды n1 > n2, то есть первая среда оптически более плотная. Здесь абсолютные показатели сред соответственно равны:
Тогда, если направить луч света из оптически более плотной среды в оптически менее плотную среду, то по мере увеличения угла падения преломленный луч будет приближаться к границе раздела двух сред, затем пойдет по границе раздела, а при дальнейшем увеличении угла падения преломленный луч исчезнет, т.е. падающий луч будет полностью отражаться границей раздела двух сред.
Предельный угол (альфа нулевое)- это угол падения, которому соответствует угол преломления 90 градусов. Для воды предельный угол составляет 49 градусов. Для стекла - 42 градуса. Проявления в природе: - пузырьки воздуха на подводных растениях кажутся зеркальными - капли росы вспыхивают разноцветными огнями - «игра» бриллиантов в лучах света - поверхность воды в стакане при рассматривании снизу через стенку стакана будет блестеть.
4. Атмосферные оптические явления
Мираж -- оптическое явление в атмосфере: отражение света границей между резко различными по плотности слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещённое относительно.
То есть мираж - не что иное, как игра световых лучей. Дело в том, что в пустыне земля прогревается очень сильно. Но при этом температура воздуха над землей на различных от нее расстояниях очень колеблется. Например, температура слоя воздуха на десять сантиметровом над уровнем земли на 30-50 градусов меньше, чем температура поверхности.
Все законы физики гласят: свет в однородной среде распространяется прямолинейно. Однако, при таких экстремальных условиях, закон не действует. А что же происходит? Лучи при таких разностях температур начинают преломляться, а у самой земли вообще начинают отражаться, при этом создавая иллюзии, которые мы привыкли называть миражами. То есть воздух у самой поверхности становится зеркалом.
Хотя миражи принято ассоциировать с пустынями, их очень часто можно наблюдать над водной поверхностью, в горах, а иногда даже в крупных городах. Другими словами, везде, где возникает резкие изменения температур, можно наблюдать эти сказочные картинки.
Это явление довольно частое. Например, в самой большой пустыне нашей планеты ежегодно наблюдается около 160 тысяч миражей.
Очень интересно, что хотя миражи считают детьми пустынь, бесспорным лидером по их возникновению уже давным-давно признали Аляску. Чем холоднее, тем четче и красивее наблюдаемый мираж.
Как бы ни было часто данное явление, изучать его очень сложно. Почему? Да все очень просто. Никто не знает где и когда он появится, каков он будет и сколько проживет.
После того, как появилось множество всевозможных записей о миражах, естественно, их пришлось классифицировать. Оказалось, что, несмотря на все их многообразие, удалось выделить всего шесть видов миражей: нижние (озерные), верхние (возникают в небе), боковые, «Фата-Моргана», миражи-призраки и миражи-оборотни.
Более сложный вид миража называется Фата-Моргана. Объяснений ему пока не найдено.
Нижний (озерный) мираж.
Это самые распространенные миражи. Свое название они получили из-за мест своего возникновения. Они наблюдаются на поверхности земли и воды.
Верхние миражи (миражи дальнего видения).
Этот вид миражей по происхождению так же прост, как и предыдущий вид. Однако такие миражи намного многообразнее и красивее. Они появляются в воздухе. Самые захватывающие из них знаменитые города-призраки. Очень интересно, что они обычно представляют собой изображения объектов - городов, гор, островов - которые находятся за много тысяч километров.
Боковые миражи
Они возникают возле вертикальных поверхностей, которые сильно прогреваются солнцем. Это могут быть скалистые берега моря или озера, когда берег уже освещен Солнцем, а поверхность воды и воздух над ней еще холодные. Этот вид миражей - очень частое явление Женевского озера.
Фата-Моргана
Фата-Моргана - самый сложный вид миражей. Оно представляет собой совокупность сразу нескольких форм миражей. При этом предметы, которые изображает мираж, многократно увеличиваются и довольно сильно искажаются. Интересно, что свое название этот вид миражей получил от Морганы - сестры знаменитого Артура. Она, якобы, обиделась на Ланцелота за то, что он отверг её. Назло ему она поселилась в подводном мире и стала мстить всем мужчинам, обманывая их призрачными видениями
К фата-морганам можно отнести и многочисленных «летучих голландцев», которых до сих пор видят мореплаватели. Они обычно показывают корабли, которые находятся за сотни и даже тысячи километров от наблюдателей.
Пожалуй, о разновидностях миражей больше сказать нечего.
Хотелось бы добавить, что хотя это чрезвычайно красивое и таинственное зрелище, оно так же очень опасно. Миражи убиваю и доводят до сумасшествия своих жертв. Особенно это касается пустынных миражей. И объяснение этого явления не облегчает участь путников.
Однако, люди пытаются с этим бороться. Создают специальные путеводители, на которых указаны места наиболее частого появления миражей, а иногда и их форм.
Кстати, миражи получают в лабораторных условиях.
Например, простой опыт, опубликованный в книге В.В. Майра "Полное отражение света в простых опытах" (Москва, 1986 г.), здесь дано подробное описание получения моделей миража в самых различных средах. Проще всего наблюдать мираж в воде (рис. 2). Закрепите на дне сосуда с белым дном темную, лучше черную, жестяную банку из-под кофе. Глядя сверху вниз, почти вертикально, вдоль ее стенки, быстро налейте в банку горячей воды. Поверхность банки сразу же станет блестящей. Почему? Дело в том, что показатель преломления воды возрастает с температурой. У горячей поверхности банки температура воды много выше, чем в отдалении. Вот и происходит искривление луча света так же, как при миражах в пустыне или на раскаленном асфальте. Банка кажется нам блестящей из-за полного отражения света.
Радуга
Каждый оформитель желает знать, где скачать фотошоп.
Атмосферное оптическое и метеорологическое явление, наблюдаемое при освещении Солнцем (иногда Луной) множества водяных капель (дождя или тумана). Радуга выглядит как разноцветная дуга или окружность, составленная из цветов спектра (от внешнего края: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый). Это те семь цветов, которые принято выделять в радуге в русской культуре, но следует иметь в виду, что на самом деле спектр непрерывен, и его цвета плавно переходят друг в друга через множество промежуточных оттенков.
Центр окружности, описываемой радугой, лежит на прямой, проходящей через наблюдателя и Солнце, притом при наблюдении радуги (в отличие от гало) Солнце всегда находится за спиной наблюдателя, и одновременно видеть Солнце и радугу без использования оптических приспособлений невозможно. Для наблюдателя на земле радуга обычно выглядит как дуга, часть окружности, и чем выше точка наблюдения -- тем она полнее (с горы или самолёта можно увидеть и полную окружность). Когда Солнце поднимается выше 42 градусов над горизонтом, радуга с поверхности Земли не видна.
Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды (дождя или тумана), парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов (показатель преломления воды для более длинноволнового (красного) света меньше, чем для коротковолнового (фиолетового), поэтому слабее всего отклоняется красный свет -- на 137°30', а сильнее всего фиолетовый -- на 139°20'). В результате белый свет разлагается в спектр (происходит дисперсия света). Наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим окружностям (дугам).
Чаще всего наблюдается первичная радуга, при которой свет претерпевает одно внутреннее отражение. Ход лучей показан на рисунке справа вверху. В первичной радуге красный цвет находится снаружи дуги, её угловой радиус составляет 40-42°.
Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга, которая образована светом, отражённым в каплях два раза. Во вторичной радуге «перевёрнутый» порядок цветов -- снаружи находится фиолетовый, а внутри красный. Угловой радиус вторичной радуги 50-53°. Небо между двумя радугами обычно заметно более тёмное, эту область называют полосой Александра.
Появление радуги третьего порядка в естественных условиях случается чрезвычайно редко. Считается, что за последние 250 лет было только пять научных сообщений о наблюдении данного феномена. Тем более удивительным представляется появление в 2011 г. сообщения о том, что удалось не только наблюдать радугу четвёртого порядка, но и зарегистрировать её на фотографии. В лабораторных условиях удаётся получать радуги гораздо более высоких порядков. Так, в статье, опубликованной в 1998 г., утверждалось, что авторам, используя лазерное излучение, удалось получить радугу двухсотого порядка.
Свет первичной радуги поляризован на 96% вдоль направления дуги. Свет вторичной радуги поляризован на 90%.
В яркую лунную ночь можно наблюдать и радугу от Луны. Поскольку рецепторы человеческого глаза, работающие при слабом освещении, -- «палочки» -- не воспринимают цвета, лунная радуга выглядит белесой; чем ярче свет, тем «цветнее» радуга (в её восприятие включаются цветовые рецепторы -- «колбочки»).
При определённых обстоятельствах можно увидеть двойную, перевёрнутую или даже кольцевую радугу. На самом деле это явления другого процесса -- преломления света в кристаллах льда, рассеянного в атмосфере, и относятся к гало. Для появления в небе перевернутой радуги (околозенитной дуги, зенитной дуги -- одного из видов гало) необходимы специфические погодные условия, характерные для Северного и Южного полюсов. Перевернутая радуга образуется за счет преломления света, проходящего через льдинки тонкой завесы облаков на высоте 7 -- 8 тысяч метров. Цвета в такой радуге располагаются тоже наоборот: фиолетовый вверху, а красный -- внизу.
Полярное сияние
Полярное сияние (северное сияние) -- свечение (люминесценция) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.
В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низкоэнергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.
При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосфер планет: так, например, если для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне, то для Юпитера -- линии излучения водорода в ультрафиолете.
Поскольку ионизация заряженными частицами происходит наиболее эффективно в конце пути частицы и плотность атмосферы падает с увеличением высоты в соответствии с барометрической формулой, то высота появлений полярных сияний достаточно сильно зависит от параметров атмосферы планеты, так, для Земли с её достаточно сложным составом атмосферы красное свечение кислорода наблюдается на высотах 200--400 км, а совместное свечение азота и кислорода -- на высоте ~110 км. Кроме того, эти факторы обусловливают и форму полярных сияний -- размытая верхняя и достаточно резкая нижняя границы.
Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли -- авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10--16°, на ночной -- 20--23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67--70°, однако во времена солнечной активности авроральный овал расширяется и полярные сияния могут наблюдаться в более низких широтах -- на 20--25° южнее или севернее границ их обычного проявления. Например, на острове Стюарт, лежащем лишь на 47° параллели, сияния происходят регулярно. Маори даже назвали его «Пылающие ».
В спектре полярных сияний Земли наиболее интенсивно излучение основных компонентов атмосферы -- азота и кислорода, при этом наблюдаются их линии излучения как в атомарном, так и молекулярном (нейтральные молекулы и молекулярные ионы) состоянии. Самыми интенсивными являются линии излучения атомарного кислорода и ионизированных молекул азота.
Свечение кислорода обусловлено излучением возбужденных атомов в метастабильных состояниях с длинами волн 557.7 нм (зелёная линия, время жизни 0.74 сек.) и дублетом 630 и 636.4 нм (красная область, время жизни 110 сек). Вследствие этого красный дублет излучается на высотах 150--400 км, где вследствие высокой разреженности атмосферы низка скорость гашения возбужденных состояний при столкновениях. Ионизированные молекулы азота излучают при 391.4 нм (ближний ультрафиолет) 427.8 нм (фиолетовый) и 522.8 нм (зелёный). Однако, каждое явление обладает своей неповторимой гаммой, в силу не постоянства химического состава атмосферы и погодных факторов.
Спектр полярных сияний меняется с высотой и зависимости от преобладающих в спектре полярного сияния линий излучения полярные сияния делятся на два типа: высотные полярные сияния типа A с преобладанием атомарных линий и полярные сияния типа B на относительно небольших высотах (80-90 км) с преобладанием молекулярных линий в спектре вследствие гашения от столкновения атомарных возбужденных состояний в сравнительно плотной атмосфере на этих высотах.
Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии. Так, за одно из зарегистрированных в 2007 году возмущений выделилось 5·1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.
При наблюдении с поверхности Земли полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.
Считалось, что полярные сияния в северном и южном полушарии являются симметричными. Однако одновременное наблюдение полярного сияния в мае 2001 из космоса со стороны северного и южного полюсов показало, что северное и южное сияние существенно отличаются друг от друга.
оптический свет квантовый радуга
Заключение
Естественные оптические явления очень красивы и разнообразны. В древние времена, когда люди не понимали их природу, они придавали им мистическое, магическое и религиозное значения, боялись и страшились их. Но теперь, когда каждое из явлений мы способны даже произвести собственными руками в лабораторных (а иногда и вполне кустарных) условиях, ушел первобытный ужас, и мы можем с удовольствием замечать в повседневной жизни мелькнувшую в небе радугу, уезжать на север полюбоваться полярным сиянием и с любопытством отмечать мелькнувший в пустыне таинственный мираж. А зеркала стали ещё более значимой частью нашей повседневной жизни - как в быту (например, дома, в автомобилях, в видеокамерах), так и в различных научных приборах: спектрофотометрах, спектрометрах, телескопах, лазерах, медицинском оборудовании.
Размещено на Allbest.ru
Подобные документы
Что такое оптика? Ее виды и роль в развитии современной физики. Явления, связанные с отражением света. Зависимость коэффициента отражения от угла падения света. Защитные стёкла. Явления, связанные с преломлением света. Радуга, мираж, полярные сияния.
реферат [3,1 M], добавлен 01.06.2010Виды оптики. Земная атмосфера, как оптическая система. Солнечный закат. Цветовое изменение неба. Образование радуги, разнообразие радуг. Полярные сияния. Солнечный ветер, как причина возникновения полярных сияний. Мираж. Загадки оптических явлений.
курсовая работа [1,4 M], добавлен 17.01.2007Воззрения древних мыслителей о природе света на простейших наблюдениях явлений природы. Элементы призмы и оптические материалы. Демонстрация влияния показателей преломления света материала призмы и окружающей среды на явление преломления света в призме.
курсовая работа [229,3 K], добавлен 26.04.2011Исследование корпускулярной и волновой теорий света. Изучение условий максимумов и минимумов интерференционной картины. Сложение двух монохроматических волн. Длина световой волны и цвет воспринимаемого глазом света. Локализация интерференционных полос.
реферат [928,6 K], добавлен 20.05.2015Явления, связанные с преломлением, дисперсией и интерференцией света. Миражи дальнего видения. Дифракционная теория радуги. Образование гало. Эффект "бриллиантовая пыль". Явление "Брокенское видение". Наблюдение на небе паргелии, венцы, полярное сияние.
презентация [2,5 M], добавлен 14.01.2014Дифракция механических волн. Связь явлений интерференции света на примере опыта Юнга. Принцип Гюйгенса-Френеля, который является основным постулатом волновой теории, позволившим объяснить дифракционные явления. Границы применимости геометрической оптики.
презентация [227,5 K], добавлен 18.11.2014Теория явления. Дифракция – совокупность явлений при распространении света в среде с резкими неоднородностями. Нахождение и исследование функции распределения интенсивности света при дифракции от круглого отверстия. Математическая модель дифракции.
курсовая работа [75,6 K], добавлен 28.09.2007Основные законы оптических явлений. Законы прямолинейного распространения, отражения и преломления света, независимости световых пучков. Физические принципы применения лазеров. Физические явления и принципы квантового генератора когерентного света.
презентация [125,6 K], добавлен 18.04.2014Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.
курсовая работа [2,1 M], добавлен 13.10.2012Исследование дифракции, явлений отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Характеристика огибания световыми волнами границ непрозрачных тел и проникновения света в область геометрической тени.
презентация [1,4 M], добавлен 07.06.2011