Физика: механика и термодинамика

Пособие к лабораторному практикуму по физике. Кинематика и динамика поступательного движения, и вращательного движения твердого тела, колебательное движение трех типов маятников, вязкость жидкостей и газов, энтропия тела.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 18.07.2007
Размер файла 284,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Южно - Российский государственный университет

экономики и сервиса

Ставропольский технологический институт сервиса

Лабораторный практикум

по физике

Механика.

Молекулярная физика.

Термодинамика

Ставрополь - 2003

Издается по решению Научно-

методического совета СТИС

от 5 декабря 2002 г.

Лабораторный практикум по физике

Механика. Молекулярная физика. Термодинамика

Ставрополь: СТИС, 2003. 24 с.

Пособие к лабораторному практикуму по физике для студентов инженерных специальностей. Содержит пять лабораторных работ, в которых студенты в форме укрупненных дидактических единиц осваивают кинематику и динамику поступательного движения, кинематику и динамику вращательного движения твердого тела, колебательное движение трех типов маятников, вязкость жидкостей и газов, изменение энтропии тела при нагревании и плавлении.

Каждая работа содержит краткое теоретическое введение, описание идеи метода измерений и экспериментальных установок, методику измерений, обработки и представления результатов. В конце работы приводится подробная схема отчета и набор контрольных вопросов и заданий. Работы насыщены заданиями, рассчитаны на 4 академических часа при условии основательной домашней подготовки.

Составители: ст. преподаватель Киселев В.В.

канд. ф.-м. н., доцент Козлов С.А.

Рецензент: доцент, канд. ф.-м. н., Пиунов И.Д.

Цель работы

Углубление теоретических представлений о кинематике и динамике поступательного движения материальной точки, экспериментальная проверка основных законов поступательного движения на специальной лабораторной установке - машине Атвуда, дальнейшее закрепление навыков оформления экспериментальных результатов.

1. Экспериментальная установка

Машина Атвуда (рис.1) состоит из легкого блока 2, через который переброшена нить с двумя наборными грузами на концах (массы обоих грузов одинаковы и равны m). Грузы могут двигаться вдоль вертикальной рейки со шкалой 1. Если на правый груз положить небольшой перегрузок m, грузы начнут двигаться с некоторым ускорением. Для приема падающего груза служит полочка 3.

Время движения грузов измеряется с помощью ручного или стационарного секундомера.

Силы трения в машине Атвуда сведены к минимуму, но не равны нулю. Для возможно полной их компенсации масса одного из грузов (в нашей установке - правого) делается немного больше массы другого. Эта операция производится при помощи кусочков пластилина и выполняется с таким расчетом, чтобы а) грузы могли находиться в статическом положении сколь угодно долго, но б) от легкого толчка вниз правого груза вся система приходила в равномерное движение. Масса используемого пластилина столь мала, что в последующих расчетах в массу грузов не включается. Перегрузки m, с помощью которых системе задается движение, укладывают также на правый груз системы.

Для выполнения работы машина Атвуда должна быть установлена строго вертикально, что легко проверить по параллельности шкалы и нити.

2. Теоретическая часть

Второй закон Ньютона для каждого из тел системы (рис.2) в предположении невесомости блока и отсутствия трения дает

, (1)

где Т1,2 - силы натяжения нити, m - масса каждого груза, m - масса перегрузка, а - ускорение системы.

В проекциях на вертикальную ось ОY получаем соот3ношения

. (2)

Отсюда, так как Т1 = Т2, ускорение движения системы равно

. (3)

Из выражения (3) видно, во-первых, что ускорение не зависит от времени, что доказывает равноускоренный характер движения грузов. Во-вторых, видно, что изменять ускорение системы можно, меняя перегрузки m. В случае равноускоренного движения скорость грузов v и их перемещение S за время t определяются следующим образом:

(4)

Так как начальная скорость в опытах на машине Атвуда обычно равна нулю и движение условно начинается из начала координат, то

. (5)

Второе соотношение часто называют законом перемещений: «Перемещение при равноускоренном движении прямо пропорционально квадрату времени движения».

Соотношение (5) может быть проверено экспериментально на машине Атвуда. Кроме того, машина Атвуда дает возможность экспериментально проверить второй закон Ньютона для поступательного движения: «Ускорение, с которым движется тело, прямо пропорционально равнодействующей действующих на него сил и обратно пропорционально массе этого тела». Действительно, из соотношения (3) следует, что величина ускорения а движения грузов прямо пропорционально действующей силе mg и обратно пропорционально массе (2m+m) системы.

3. Экспериментальная часть

Задание 1. Проверка закона перемещений.

1. Проверьте вертикальность установки машины Атвуда и сбалансированность грузов.

2. На правый груз наложите перегрузок в 2-5 г.

3. Измерьте время прохождения грузом расстояний в 20, 40, 60 и т. д. см - всего 4-5 опытов. Полученные данные заносите в таблицу 1 отчета.

4. Зависимость S = f(t) - квадратичная функция, а ее график - парабола и ее наглядная идентификация («узнавание») невозможна. Поэтому постройте график зависимости S = f(t2). Точку (t=0, S=0) на графике не откладывать не надо.

5. Как правило, экспериментальные точки из-за погрешностей измерений не лежат на одной прямой, что затрудняет построение графика зависимости S = f(t2). Для линеаризации зависимости примените метод наименьших квадратов (МНК) (табл. 2 отчета). Проведите необходимые вычисления, запишите уравнение , где k и b - вычисленные с помощью МНК коэффициенты. Подставляя в полученное уравнение два произвольных значения t2, найдите координаты двух точек, которые отложите на графике и проведите через них прямую.

6. Значение коэффициента линейной корреляции, его близость к единице указывает на величину разброса экспериментальных точек и достоверность того, что полученный график действительно прямолинейный. Если экспериментальные точки ложатся на прямую с небольшим разбросом и прямая проходит через начало координат, то можно сделать вывод, выполняется ли закон перемещений, и если выполняется, то с каким коэффициентом корреляции.

Задание 2. Определение ускорения движения грузов

В полученном уравнении прямой коэффициент k равен половине ускорения системы: k=a/2. Это позволяет вычислить ускорение грузов (a =2k) в данном опыте и определить погрешность его измерения. Произведите необходимые вычисления и занесите результаты в отчет.

Задание 3. Определение ускорения свободного падения

(Выполняется по результатам измерений и вычислений, проведенных в первом и втором заданиях). Зная массы грузов и перегрузка, а также ускорение движения системы, из формулы (3) найдите ускорение свободного падения. Учитывая погрешности измерения масс грузов, перегрузка и ускорения грузов, определите относительную и абсолютную погрешность измерения ускорения свободного падения. Результаты занесите в отчет. В выводе сравните полученный результат с табличной величиной.

Задание 4. Проверка второго закона Ньютона

Поскольку ускорение движения является функцией двух переменных - силы и массы, то изучение второго закона Ньютона выполняется путем двух раздельных исследований

4.1.Исследование зависимости ускорения от силы при постоянной массе

1. Тщательно сбалансируйте грузы, выбрав их массы в пределах 150 - 200 г каждый.

2. Затем на правый груз наложите первый перегрузок m. В результате в системе появляется движущая сила, равная mg. При этом, конечно, общая масса системы незначительно увеличивается, но этим изменением массы по сравнению с массой грузов можно пренебречь и считать массу движущихся грузов постоянной.

3. Измерьте время равноускоренного движения системы на пути, например, 80 см. Все данные заносят в таблицу 3 отчета.

4. Пользуясь законом путей (5), вычисляют ускорениесистемы.

5. Поведите еще 4-5 опыта, увеличивая массу перегрузков. Заполните табл. 3.

6. В координатных осях [а,F] постройте график зависимости ускорения движения от действующей силы. Точку (F=0, a=0) на графике откладывать не надо. Если экспериментальные точки ложатся на прямую с небольшим разбросом и прямая проходит через начало координат, то можно сделать вывод о том, что ускорение грузов действительно прямо пропорционально действующей на них силе.

7. Проанализируйте результаты своих исследований и сделайте вывод.

4.2. Исследование зависимости ускорения от массы при постоянной силе

1. Все опыты проводят с одним и тем же перегрузком. На систему в этом случае действует сила F=m(g-a), но с учетом малости ускорения а в сравнении с g, можно считать, что на грузы действует не зависящая от ускорения, постоянная по величине сила. Ускорение системы измеряется также как и в предыдущем задании - через путь и время.

2. Для изменения массы системы одновременно на правый и левый груз накладывают дополнительные одинаковые грузы. Масса система обозначена М. Все данные записывают в таблицу 4 отчета.

3. График зависимости ускорения от массы представляет собой кривую (гиперболу), которую идентифицировать визуально невозможно. Для определения вида зависимости между ускорением и массой необходимо построить график в координатных осях [1/M, a]. Если экспериментальные точки ложатся на прямую с незначительным разбросом, то это - прямое подтверждение обратной зависимости между ускорением и массой.

4. Проанализируйте результаты своих наблюдений и сформулируйте вывод.

Контрольные вопросы и упражнения

Какое движение называется поступательным?

Запишите уравнения координат и скоростей для одномерного и двумерного, равномерного и равноускоренного движений.

Дайте определение инерциальной системы отсчета. Приведите примеры ИСО и НИСО.

Сформулируйте первый закон Ньютона. Приведите примеры его проявления.

Дайте определение инертной массы тела. Гравитационной? От чего и как зависит масса тела?

Сформулируйте второй закон Ньютона. Приведите варианты его математической формы.

Покажите все силы, действующие на один из грузов в машине Атвуда, и составьте для него уравнение динамики.

Запишите систему уравнений динамики для машины Атвуда с учетом момента инерции блока. Силы трения в блоке?

Графики, полученные при выполнении вами работы, скорее всего не проходят через нуль. Чем это можно объяснить?

Выполните дополнительную проверку достоверности выводов задания 4.1. По угловому коэффициенту F/a графика 2 определите массу М грузов и сравните ее с реальной массой.

Выполните дополнительную проверку достоверности выводов задания 4.2. По угловому коэффициенту a/(1/M) графика 3 определите значение приложенной силы F и сравните ее с реально действовавшей в системе силой.

Отчет по лабораторной работе № 1

«Изучение поступательного движения»

выполненной студент . ……….. . . . . курса, ...... Ф. И. ...........

группа …. «…»…………. 200...г.

Цель работы: .............................................................................................................................

Задание 1. Проверка закона перемещений

Таблица 1

m1 = … г, m2 =… г, m= … г

№ п/п

S, м

t , c

t2 , c2

1

2

3

МНК Таблица 2

Обозначения: t2 = x , S = y

№ п/п

xi

yi

1

2

3

=

=

=

=

=

=

=

Коэффициенты: , .

Уравнение прямой S= kt2 + b S = ... (t2) + …

Вычисление коэффициента линейной корреляции и погрешностей измерений

; ; … .

; .

k = … … м/с2 ; b=......м

Выводы: .................................................................................................................................……..

Задание 2. Определение ускорения движения грузов.

а =…… м/с2 ; а =… %

Задание 3. Вычисление ускорения свободного падения (формула и расчет)

g =…… м/с2 , g =… %

Выводы: ........................................................................................................................................

Задание 4. Проверка второго закона Ньютона

4.1. Исследование зависимости ускорения от силы при постоянной массе

Таблица 3

Суммарная масса системы М = … г

№ п/п

m

10-3 ,кг

F =mg, Н

S , м

t, с

a , м/с2

1

2

3

Выводы: ………………………………………………………………………………………………

4.2. Исследование зависимости ускорения от массы при постоянной силе

Таблица 4

Действующая сила F = mg = …Н

№ п/п

M, кг

M-1,

кг-1

S, м

t, c

a, м/с2

1

2

3

Выводы: ………………………………………………………………………………………….

Дополнительная проверка результатов измерений

1. Вычисление массы системы по углу наклона прямой: M=F/a=

Комментарии:

2. Вычисление силы по углу наклона прямой: F=a/(1/M) =

Комментарии:

Цель работы

Углубить и закрепить теоретические представления о кинематике и динамике вращательного движения, экспериментально проверить основные законы вращательного движения, продолжить отработку навыков протоколирования, оформления и анализа результатов экспериментальных наблюдений.

1. Экспериментальная установка

В эксперименте вращательное движение исследуется на специальной установке - маятнике Обербека, представляющем собой систему тел с закрепленной осью вращения, у которой можно изменять момент инерции, задавать разные по величине моменты вращающих сил и измерять скорости и ускорения вращательного движения.

Основная часть маятника Обербека (рис.1) - диск 1, укрепленный в подшипнике на горизонтальной оси. Соосно с диском закреплены шкивы 2. Момент вращающих сил можно регулировать, меняя шкив или набор грузов 5.

Момент инерции системы можно изменять, для чего по стержням 3, укрепленным по диаметру диска, могут передвигаться цилиндры 4 одинаковой массы.

Для определения ускорения падения грузов по шкале измеряют высоту h и секундомером - время падения t грузов. Высота падения грузов обычно берется неизменной и максимальной для всех опытов.

Перед каждым опытом маятник следует тщательно сбалансировать. Для этого, сняв платформу со шкива, устанавливают подвижные цилиндры на стержнях симметрично и так, чтобы маятник оказался в безразличном равновесии.

2. Теоретическая часть

Основное уравнение динамики вращательного движения твердого тела с моментом инерции J имеет вид

, (1)

где - угловое ускорение, М - полный момент внешних сил.

Полный момент внешних сил равен

M = Mн - Мтр , (2)

где Мн - вращающий момент (в данном случае - момент силы натяжения нити), Мтр - момент силы трения. С учетом этого основное уравнение динамики вращательного движения принимает вид , которому можно придать форму линейной зависимости момента силы натяжения Мн от :

. (3)

Измерив продолжительность t падения и перемещение h груза, можно определить ускорение его поступательного движения

. (4)

Это ускорение равно линейному ускорению точек шкива и связано с угловым ускорением маятника соотношением:

(5)

Момент Мн силы натяжения Т нити равен

н R . (6)

Силу Т можно определить из второго закона Ньютона для поступательного движения, который в проекциях на ось 0Y дает

, (7)

где m - масса груза.

Таким образом, момент сил натяжения нити равен

. (8)

Момент инерции маятника J может быть определен из экспериментальных наблюдений. С другой стороны, его можно рассчитать суммированием моментов инерции диска, стержней, шкивов и подвижных цилиндров. Суммарные моменты инерции диска, шкива и стержней J0 указаны в «паспортах» приборов. Момент инерции одного подвижного цилиндра относительно оси маятника определяются с помощью теоремы Штейнера:

J=m1 r2+m1 l2/12, (9)

где m1 - масса одного цилиндра, r расстояние от его середины до оси маятника, l - длина цилиндра. Вторым слагаемым в этой формуле можно пренебречь ввиду его малости. Таким образом, момент инерции всего маятника вычислять по формуле:

J=J0+Nm1r2, (10)

где N - число подвижных цилиндров.

3. Экспериментальная часть

Задание 1. Оценка момента силы трения, действующей в системе

1. Установите подвижные цилиндры m1 на минимальном расстоянии от оси вращения. Сбалансируйте маятник.

2. Накладывая на легкую платформу, подвешенную к нити, небольшие грузы определите минимальную массу m0 (сумма масс платформы и грузов), при которой маятник начнет вращаться. Оцените момент сил трения из соотношения:

Мтр = m0gR , (11)

где R - радиус шкива, на который намотана нить.

С целью минимизировать влияние силы трения на экспериментальные результаты все последующие наблюдения следует проводить с грузами массой m 10m0.

Задание 2. Проверка основного уравнения динамики вращательного движения

Поскольку угловое ускорение вращающегося тела является функцией двух переменных - момента силы и момента инерции, то изучение динамики вращательного движения выполняется путем раздельного исследования двух зависимостей.

2.1. Зависимость углового ускорения от действующего момента

силы М при постоянном моменте инерции системы J = const

1. Заранее измерьте высоту h падения груза, которая может быть оставлена во всех последующих опытах одинаковой.

2. Укрепите цилиндры m1 на стержнях на минимальном расстоянии от оси вращения. Сбалансируйте маятник.

3. Первый опыт проводится при минимальном значении массы груза m. Намотайте нить на шкив. Расположите нижний край груза на уровне верхней метки. Отпустите груз, предоставив ему возможность падать. Засеките время падения груза. Измерения повторите трижды. Значения m, r, h и среднее значение времени заносите в таблицу 1 отчета.

4. Измените значение момента сил Мн, увеличив массу груза. Снова трижды измерьте времени падения. (Момент силы можно также изменить, перенеся нить на шкив другого радиуса).

5. Проведите еще не менее трех опытов, постепенно увеличивая момент силы Мн.

6. Пользуясь формулами (4), (5), (8), определите для каждого опыта значения линейного ускорения а, углового ускорения и момента силы натяжения нити Мн. Завершите заполнение таблицы 1.

Обсуждение результатов, полученных в опытах 2.1

Постройте график зависимости углового ускорения от момента силы Мн при постоянном моменте инерции J =const. (график 1).

Поскольку = fн) - линейная функция (см. (3)), то ее графики в координатных осях [М,,] - прямые линии. Если экспериментальные точки не ложатся на прямую, график надо провести так, чтобы «разброс» точек был приблизительно одинаков по обе стороны прямой. Если «разброс» мал, то это свидетельство того, что угловое ускорение действительно прямо пропорционально моменту сил, приложенных к вращающемуся телу, что подтверждает закон динамики вращательного движения.

Если разброс велик и это затрудняет построение графика, обработайте результаты методом наименьших квадратов или проделайте новую серию измерений.

2.2. Зависимости углового ускорения от момента

инерции J системы при постоянном моменте силы М=const.

1. Все измерения в данном опыте должны проводятся при неизменном значении момента силы Mн, который зависит не только от массы груза m, радиуса шкива R, но и от ускорения падения груза (формула (10)). Но поскольку ускорение а оказывается гораздо меньше ускорения свободного падения g (что видно по результатам первого опыта), момент силы Мн можно считать приблизительно постоянным, если не менять значения m и R. При этом его можно вычислять по формуле:

(12)

Таким образом, масса груза и радиус шкива во всех последующих опытах берутся одинаковыми.

2. Укрепите цилиндры m1 на стержнях на минимальном расстоянии от оси вращения. Сбалансируйте маятник. Измерьте расстояние r от середины подвижных цилиндров до оси вращения. Вычислите по формуле (10) момент инерции маятника в данном случае.

2. Трижды проведите измерение времени падения груза. Используя среднее значение времени падения, рассчитайте по формулам (4) и (5) линейное и угловое ускорение.

3. Переместите цилиндры m1 на стержнях на несколько сантиметров. Проверьте балансировку маятника. Измерьте расстояние r и вычисляют момент инерции маятника. Измерьте время падения груза.

4. Вновь переместите цилиндры на стержне, сбалансируйте маятник, вычислите момент инерции и измерьте время падения груза. Шаг перемещения цилиндров должен быть выбран таким образом, чтобы получить еще 3-4 значения момента инерции маятника. Заполните таблицу 2 отчета.

Обсуждение результатов, полученных в опытах 2.2.

В соответствии с законом динамики угловое ускорение обратно пропорционально моменту инерции, т. е. график зависимости = f(J) представляет собой гиперболу и визуально не идентифицируется. Поэтому проверку зависимости =f(J) лучше провести в координатных осях [,J-1]. В этом случае график должен представлять собой прямую линию, проходящую через начало координат. Поэтому следует вычислить величины J-1 = 1/J и построить соответствующий график 2.

Если построенный по вашим измерениям график = f(J-1) представляет собой прямую линию, то этот факт подтверждает справедливость второй части закона динамики вращательного движения - угловое ускорение обратно пропорционально моменту инерции вращающегося тела.

Если разброс велик и это затрудняет построение графика, обработайте результаты методом наименьших квадратов или проделайте новую серию измерений.

Дополнительная проверка достоверности результатов

Определение момента силы трения, действующей в системе

1. В идеальном случае все графики =f(Mн) должны проходить через начало координат. Однако реальные прямые отсекают некоторое значение момента сил - существует некоторое минимальное значение момента сил, которое соответствует началу движения маятника. Координата этой точки дает величину момента силы трения скольжения в подшипнике маятника.

Определите по графику 1 значение момента силы трения и сравните полученный результат с Мтр, измеренном ранее в задании 1.

2. Угловой коэффициент наклона графика 1 равен моменту инерции маятника в данной его конфигурации: J=M/.

Определите момент инерции системы по графику и сравните с его значением, рассчитанным по формуле (10) для этой конфигурации. Если между ними есть различие, то объясните причину и укажите границу погрешности измерений.

3. Угловой коэффициент наклона графика 2 равен моменту приложенных к маятнику сил: .

Определите по графику момент сил, приложенных к маятнику, и сравните его со значением, рассчитанным по формуле (12.)

Контрольные вопросы и упражнения

1. Назовите основные характеристики вращательного движения, укажите их обозначения, дайте им определения и назовите единицы измерения. Выделите из них векторные.

2. Запишите уравнения, свзывающие угловую и линейную скорости, угловое и линейное ускорение, период и частоту.

3. Дайте определение момента инерции материальной точки. Назовите единицы измерения момента инерции.

4. Дайте определение момента силы, укажите его направление и назовите единицы измерения.

5. Что исследовалось в данной работе? Из каких заданий состоит вся работа? Как выполняется задание 1? Задание 2? Задание 3?

6. Каковы погрешности использованной в работе экспериментальной установки?

7. Какие выводы сделаны вами на основании анализа экспериментальных результатов?

8. Выполните дополнительно следующие задания контрольного характера.

8.1. Момент силы трения: По результатам задания 1

По графику 1

8.2. Момент инерции системы: По результатам вычислений

По графику 1

8.3. Момент силы: По результатам вычислений

По графику 2

Отчет по лабораторной работе № 2

«Изучение вращательного движения»

выполненной студент . . . . . курса, …...... Ф. И. ...........

группа …. «…»…………. 200...г.

Цель работы: .............................................................................................................................

Задание 1. Определение момента силы трения

m0 = …. кг, R = … м, Мтр = Нм

Задание 2. Проверка основного уравнения динамики вращательного движения

2.1. Зависимость углового ускорения от момента действующих сил при J = const

Таблица 1

r = …м

J = …кгм 2

h= … м

t1,

c

t2 ,

c

t3 ,

c

,

c

a,

м/с2

Mп ,

Нм

,

с-1

R =… м m =… кг

R =… м m =… кг

R =… м m =… кг

R =… м m =… кг

R =… м m =… кг

R =… м m =… кг

Вывод:…………………………………………………………………………………………

2.2. Зависимость углового ускорения от момента инерции при M = const

Таблица 2

h = … м

m = …кг

R = … м

М = …Нм

t1,

c

t2,

c

t3,

c

c

a,

м/с2

,

с-1

J,,

кгм2

J-1,,

(кгм2)-1

r =… м

r =… м

r =… м

r =… м

r =… м

r =… м

Вывод: ………………………………………………………………………………………………

Дополнительная проверка достоверности результатов

Момент силы трения: По результатам задания 1 Мтр=

По графику 1 Мтр=

Комментарии:

Момент инерции системы: По результатам вычислений J =

По графику 1 J =

Комментарии:

Момент силы: По результатам вычислений М =

По графику 2 М =

Комментарии:

Лабораторная работа №3

ИЗУЧЕНИЕ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Цель работы:

Углубить знания по теории гармонических колебаний; освоить методику экспериментальных наблюдений и проверить законы незатухающих гармонических колебаний на примере математического, крутильного или физического маятников; закрепить навыки обработки, оформления и представления экспериментальных результатов.

Часть I. Математический маятник

1.1. Теоретическая часть

Маятник - тело, совершающее колебательное движение под действием упругой или подобной ей, «квазиупругой» силы. Простейший маятник - массивный груз на подвесе, находящийся в поле силы тяжести. Если подвес нерастяжим, размеры груза пренебрежимо малы по сравнению с длиной подвеса и масса нити пренебрежимо мала по сравнению с массой груза, то груз можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса О. Такой маятник называется математическим.

На груз действуют силы: натяжения нити и тяжести , которые в положении равновесия (точка С, рис.1) компенсируют друг друга . Для возбуждения колебаний маятник выводят из положения равновесия, например, в точку С`. Теперь на него действует сила , направленная к положению равновесия и пропорциональная смещению, маятник обладает избыточной потенциальной энергией mgh по отношению к положению равновесия. Эта энергия обуславливает колебание, происходящее по дуге окружности и описываемое основным уравнением динамики вращательного движения

, (1)

где - результирующий вращающий момент, модуль этого вектора равен ; - угловое ускорение, J = ml2 - момент инерции груза относительно оси ОО, проходящей через точку подвеса О, перпендикулярно плоскости колебаний (плоскости чертежа).

Дифференциальное уравнение колебаний математического маятника в отсутствии сил сопротивления имеет вид

, (2)

откуда получаем

(3)

Для достаточно малых углов (5-6) sin (в радианах), тогда

, (4)

где .

Уравнение (4) представляет собой однородное дифференциальное уравнение второго порядка. Его решением является функция

, (5)

где 0 - амплитуда, 0 - начальная фаза. В этом можно убедиться, подставив (5) в (4).

Из (5) следует, что угол отклонения маятника из положения равновесия изменяется по гармоническому закону. Величина является циклической частотой собственных колебаний маятника, тогда величина

(6)

- период колебаний математического маятника.1

Из выражения (6) следуют три закона колебаний математического маятника:

При малых углах отклонения (sin или 60) и в отсутствие сторонних сил

период колебаний не зависит от массы маятника;

период колебаний не зависит от амплитуды;

период колебаний определяется формулой .

Две из этих закономерностей подлежат проверке в данной работе.

1.2. Экспериментальная часть

Используемый в работе маятник представляет собой модель математического маятника - груз, подвешенный на тонкой нити. В работе используются не менее трех грузов, размеры которых значительно меньше длины нити (примерно как 1:50) и которые существенно отличаются по массе (примерно как 1:2:4), но близки по форме и размерам, чтобы силы сопротивления, возникающие при их движении, были примерно одинаковыми. Следует помнить, что длина маятника - это расстояние от точки подвеса до центра массы груза. Начальный угол отклонения маятника из положения равновесия не следует брать больше, чем 10-15.

Задание 1. Проверка влияния массы математического

маятника на период его колебаний

1. Закрепив тело на подвесе, измеряют время 10 - 20 полных колебаний при возможно большей длине маятника. Повторяют измерения для других грузов. Данные заносят в таблицу 1.1 отчета.

2. Вычисляют период колебаний с точностью до 0,001 секунды.

3. Вычисляют оценочно относительную инструментальную погрешность измерений .

4. Сравнивают периоды колебаний. Если различие в периоде колебаний не превышает 1% (приблизительно 0,01 с), то можно сделать вывод о практической независимости периода колебаний математического маятника от его массы.

Задание 2. Изучение зависимости периода колебаний

математического маятника от его длины

1. Подвешивают на нити стальной шарик. Длину подвеса изменяют с таким шагом, чтобы получить с данной нитью 5-6 экспериментальных точек. Число колебаний в каждом опыте 10-15. Угол отклонения маятника из положения равновесия не должен превышать 5-6. Полученные данные заносят в таблицу 1.2 отчета.

2. Зависимость Т=f(l) нелинейная. Поэтому для удобства экспериментальной проверки эту зависимость следует линеаризировать. Можно, например, построить график зависимости квадрата периода колебаний от длины маятника Т2=f(l). Если экспериментальные точки ложатся на прямую с небольшим разбросом, то можно сделать вывод о выполнении формулы (6) и следовательно, одного из законов математического маятника. Если разброс велик, то следует повторить всю серию измерений.

Контрольное задание. Определение ускорения свободного падения.

С помощью полученного графика можно определить ускорение свободного падения. Предварительно следует получить точное уравнение экспериментальной прямой. Для этого применяют метод наименьших квадратов (МНК) и определяют угловой коэффициент прямой, т.е.

k=T2/l = 42/g , откуда g=42/k.

Определите из графика k =T2/l и вычислите ускорение свободного падения.

По формулам МНК определите погрешность измерения g.

Часть II. Физический маятник

2.1. Теоретическая часть

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси О, не проходящей через центр масс С тела (рис.2).

Если маятник выведен из положения равновесия на некоторый угол , то составляющаясилы тяжести уравновешивается силой реакции оси О, а составляющая стремится возвратить маятник в положение равновесия. Все силы приложены к центру масс тела. При этом

. (7)

Знак минус означает, что угловое смещение и возвращающая сила имеют противоположные направления. При достаточно малых углах отклонения маятника из положения равновесия sin , поэтому сила F -mg и она ведет себя подобно упругим силам.

Поскольку маятник в процессе колебаний совершает вращательное движение относительно оси О, то оно может быть описано основным законом динамики вращательного движения

, (8)

где М - момент силы F относительно оси О, J - момент инерции маятника относительно оси О, - угловое ускорение маятника.

Момент силы в данном случае равен

M = Fl = -mgl , (9)

где l - расстояние между точкой подвеса и центром масс маятника.

С учетом (9) уравнение (8) можно записать в виде

(10)

или

, (11)

где

Решением дифференциального уравнения (11) является функция

=0cos(0t+) , (12)

позволяющая определить положение маятника в любой момент времени t. Из выражения (12) следует, что при малых колебаниях физический маятник совершает гармонические колебания с амплитудой колебаний 0, циклической частотой , начальной фазой и периодом

T=2/0= 2{J0+ml2)/mgl}1/2, (13)

Анализ формулы (13) позволяет сформулировать следующие закономерности колебаний физического маятника:

При малой амплитуде и в отсутствие сторонних сил

период колебаний физического маятника зависит от момента инерции маятника относительно оси вращения (качания);

период колебаний физического маятника при малых смещениях не зависит от амплитуды колебаний;

период колебаний физического маятника сложным образом зависит от положения центра масс маятника относительно точки подвеса Анализ формулы (13) показывает наличие минимума у периода колебаний при ml2=J0. .

2.2. Экспериментальная часть

Применяемые в данной работе физические маятники представляют собой:

1) однородный стержень, достаточно длинный, чтобы момент инерции относительно центра его массы можно было рассчитывать по формуле J0 = ml2/12;

2) плоские тела правильной геометрической формы, момент инерции которых может быть рассчитан исходя из их геометрии и массы.

Стержни закрепляются в специальной оправе с призматическим основанием, и после установки на платформу превращаются в маятники.

Плоские тела имеют отверстия для подвешивания на ось вращения.

Период колебаний маятника измеряют с помощью секундомера.

Задание 1. Изучение зависимости периода колебаний физического маятника от его

момента инерции и расстояния между осью качаний и центром тяжести

маятника

1. Закрепите оправу на конце стержня и установите его на вилку. Измерьте расстояние l1 от оси качаний до центра тяжести стержня.

2. Отклоните стержень на 5 -6 и измерьте время 5-10 полных колебаний. Определите период колебаний.

3. Переместите оправу ближе к центру тяжести стержня. Измерьте расстояние l2. Снова измерьте период колебаний стержня.

4. Тем же образом необходимо провести 5-6 опытов, постепенно перемещая опорную призму к середине стержня. Все результаты измерений занесите в таблицу 2.1. отчета.

4. По результатам опыта вычислите величины l2 и (T2l).

5. Следует построить два графика. Первый график зависимости T=f(l) отображает сложную зависимость периода колебаний физического маятника от его момента инерции и расстояния до оси качания. Второй график - линеаризация той же зависимости. Если точки на втором графике ложатся на прямую с небольшим разбросом, что объясняется погрешностями измерений, то можно сделать вывод о правильности формулы (13) для периода колебаний физического маятника.

Задание 2. Определение моментов инерции тел различной формы методом


Подобные документы

  • Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.

    методичка [1,3 M], добавлен 10.03.2007

  • Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.

    презентация [2,1 M], добавлен 24.10.2013

  • Механика и элементы специальной теории относительности. Кинематика и динамика поступательного и вращательного движений материальной точки. Работа и механическая энергия, законы сохранения в механике. Молекулярная физика и термодинамика, теплоемкость.

    курс лекций [692,1 K], добавлен 23.09.2009

  • Два основных вида вращательного движения твердого тела. Динамические характеристики поступательного движения. Момент силы как мера воздействия на вращающееся тело. Моменты инерции некоторых тел. Теорема Штейнера. Кинетическая энергия вращающегося тела.

    презентация [258,7 K], добавлен 05.12.2014

  • Механика твёрдого тела, динамика поступательного и вращательного движения. Определение момента инерции тела с помощью маятника Обербека. Сущность кинематики и динамики колебательного движения. Зависимость углового ускорения от момента внешней силы.

    контрольная работа [1,7 M], добавлен 28.01.2010

  • Динамика вращательного движения твердого тела относительно точки, оси. Расчет моментов инерции некоторых простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.

    презентация [913,5 K], добавлен 26.10.2016

  • Обзор разделов классической механики. Кинематические уравнения движения материальной точки. Проекция вектора скорости на оси координат. Нормальное и тангенциальное ускорение. Кинематика твердого тела. Поступательное и вращательное движение твердого тела.

    презентация [8,5 M], добавлен 13.02.2016

  • Сущность механического, поступательного и вращательного движения твердого тела. Использование угловых величин для кинематического описания вращения. Определение моментов инерции и импульса, центра масс, кинематической энергии и динамики вращающегося тела.

    лабораторная работа [491,8 K], добавлен 31.03.2014

  • Поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики. Изучение движения материальной точки по окружности. Понятие динамики вращательного движения твердого тела вокруг неподвижной оси.

    курсовая работа [1,7 M], добавлен 04.05.2011

  • Изучение основных задач динамики твердого тела: свободное движение и вращение вокруг оси и неподвижной точки. Уравнение Эйлера и порядок вычисления момента количества движения. Кинематика и условия совпадения динамических и статических реакций движения.

    лекция [1,2 M], добавлен 30.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.