Расчет цепей постоянного тока
Определение всех неизвестных токов и сопротивления, величины и полярности с помощью законов Кирхгофа и Ома. Электрическая схема, получающаяся при замыкании ключей. Расчет схемы с двумя узлами методом узлового напряжения. Уравнение баланса мощностей.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 06.04.2009 |
Размер файла | 65,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
3
Федеральное агентство образования и науки Российской Федерации
Южно-Уральский государственный университет
Кафедра системы управления
Контрольная работа ПО ЭЛЕКТРОТЕХНИКе
Руководители:
Яковлев В.А.
Выполнила: студентка группы ПС-286
Левшунова Ю. ______________
Работа защищена на оценку____
"___",_______________2007г
Челябинск, 2007
Контрольное задание №1 "Расчет цепей постоянного тока"
Задача 1. В схеме (рис.1) R1 = 2 Ом, R2 = 3 Ом, R5 = 2 Ом, I3 = 1,5 A. Остальные исходные данные приведены в таблице 1. На схемах показаны принятые положительные направления токов в ветвях; номера токов соответствуют номерам ветвей.
Пользуясь законами Кирхгофа и законом Ома, определить все неизвестные токи и сопротивления, величину и полярность ЭДС E и величину напряжения U, приложенного к схеме. Для проверки правильности расчета составить уравнение баланса мощностей. Определить показание вольтметра.
Рис.1
Таблица 1
Варианты |
R3, Oм |
R4, Oм |
R6, Oм |
I1, А |
I2, А |
I5, А |
I6, А |
|
9 |
- |
4,5 |
2,7 |
- |
1,8 |
- |
0,3 |
Задача 2. В схеме (рис.2) Е1 = 60 В, E6 = 120 В, Е11 = 90 В, R1 = 4 Ом, R2 = 65 Ом, R3 = 9 Ом, R6 = 12 Ом, R8 = 48 Ом, R9 = 5 Ом. Значения остальных сопротивлений даны в таблице 2. Начертить расчетную электрическую схему, получающуюся при замыкании ключей, указанных в таблице 2.
Рис.2
Таблица 2
Вар. |
R4, Ом |
R5, Ом |
R7, Ом |
R10,Ом |
R11, Ом |
Замкнуты ключи |
|
9 |
16 |
28 |
4 |
24 |
15 |
S2, S3, S7 |
Упростить схему, заменяя последовательно и параллельно соединенные сопротивления эквивалентными, используя при необходимости преобразование треугольника сопротивлений в эквивалентную звезду. Полученную схему с двумя узлами рассчитать методом узлового напряжения, определить величину и направление токов в источниках. Зная токи источников, используя законы Ома и Кирхгофа, определить все токи и напряжения в исходной расчетной схеме. Для проверки правильности расчета составить для исходной схемы уравнение баланса мощностей.
Задача 1
Рис. 3 Исходная схема.
Дано: R1 = 2 Ом, R2 = 3 Ом, R4 = 4.5 Ом, R5 = 2 Ом, R6 = 2.7 Ом,
I2 = 1.8 А, I3 = 1.5 А, I6 = 0.3 А.
Найти: I1, I5, R3, U, E, Ub-c.
По первому закону Кирхгофа (для узлов):
для узла а: I1 = I3 + I2=> I1 = 3.3 A
для узла d: I5 = I6 + I2=> I5 = - 1.5 A
Вывод: так как I5 < 0 то направление тока I5 противоположно показному на схеме (рис.3)
По второму закону Кирхгофа (для контуров):
для контура I : U = R1*I1 + R3*I3
для контура II+III: E = - R5*I5 - R3*I3 + (R2 + R4) *I2
для контура IV: - E = R6*I6 + R5*I5=> E = 2. 19 В
Из уравнений для II +III контура выразим R3:
R3 = (-R5*I5 + (R2 + R4) *I2-E) / I3=> R3 = 9.54 В
U = R1*I1 + R3*I3 => U = 20.91 В
Рассчитаем Ub-c по второму закону Кирхгофа для контура II:
Ub-c = R3*I3 - R2*I2 => Ub-c = 8.91 В
Проверка результатов:
по первому закону Кирхгофа для узла b: I1 = I3 - I5 + I6 = 3.3 A
по второму закону Кирхгофа для контура II+III+IV:
0 = - I3*R3 + I2*(R2 + R4) + I6*R6 = 0
составим уравнение баланса мощностей:
U*I1 + E*I5 = R1*I12 + (R2 + R4) *I22 + R3*I32 + R5*I52 + R6*I62 =>
72.288 = 72.288
Вывод: проведённые проверки подтверждают что результаты решения задачи 1 верны.
Найдено: I1 = 3.3 А, I5 = 1.5 А и протекает в противоположном показному на схеме(рис.3) направлений, R3 = 9.54 Ом, U = 20.91 В, E =2. 19 В, Ub-c=8.91 В.
Задача 2
Рис.4 Исходная схема.
Дано: R1 = 4 Ом, R3 = 9 Ом, R4 = 16 Ом, R5 = 28 Ом, R7 = 4 Ом, R8 = 48 Ом
R10 = 24 Ом, R11 = 15 Ом, E1 = 60 B, E11 = 90 B.
Объединим сопротивления:
R(1,3) = R1 + R3, => R(1,3) = 13 Ом
R(5,7) = R5 +R7, => R(5,7) = 32 Ом
R(8,10) = (R8*R10) / (R8 + R10). => R(8,10) = 16 Ом
Рис.5 Схема после объединения сопротивлений.
Преобразуем треугольник сопротивлений R4, R(5,7), R(8,10) в эквивалентную звезду:
R(4-5,7) = (R4 * R(5,7)) / (R4 + R(5,7) + R(8,10)) =>
R(4-5,7) = 8 Ом
R(5,7-8,10) = (R(5,7) * R(8,10)) / (R4 + R(5,7) + R(8,10)) =>
R(5,7-8,10) = 8Ом
R(4-8,10) = (R(4) * R(8,10)) / (R4 + R(5,7) + R(8,10)) =>
R(4-8,10) = 4 Ом
Рис. 6 Схема после преобразования треугольника в звезду
По первому закону Кирхгофа:
для узла а: I3 = I1 +I2 (1)
По второму закону Кирхгофа:
для контура I: E1 = (R(4-5,7) + R(1,3)) *I1 + R(4-8,10) *I3(2)
для контура II: - E11 = - R(4-8,10) *I3 - (R(5,7-8,10) + R11) *I2(3)
Запишем уравнения для Ua-b:
Ua-b = R(4-8,10) *I3(4)
из (2) выразим I1 = (E1 - R(4-8,10) *I3) / (R(4-5,7) + R(1,3)) (5)
из (3) выразим I2 = (E11 - R(4-8,10) *I3) / (R(5,7-8,10) + R11) (6)
подставим в (1)
I3 = (E1 - R(4-8,10) * I3) / (R(4-5,7) + R(1,3)) +
+ (E11 - R(4-8,10) * I3) / (R(5,7-8,10) + R11)
=>
I3 = 4.962 A
из (5) I1 = 1.912 A
из (1) I2 = 3.05 A
из (4) Ua-b = 19.848 В
Проверка результатов:
по первому закону Кирхгофа для узла b: I3 = I1 +I2 = 4.962 A
по второму закону Кирхгофа для контура I+II:
E1-E11=(R(4-5,7) +R(1,3)) *I1+R(4-8,10) *I3-R(4-8,10) *I3-(R(5,7-8,10) +R11) *I2
30 ? - 30
составим уравнение баланса мощностей:
E1*I1 + E11*I2 = (R(4-5,7) +R(1,3)) *I12 + R(4-8,10) *I32 + (R(5,7-8,10) +R11) *I22
397,2 ? 397,2
Вывод: проведённые проверки подтверждают что результаты решения задачи 2 верны.
Найдено: I1 = 1.912 А, I2 = 3.05 А, I3 = 4.962 А, Uа-b = 19.848 В.
Определим остальные токи и напряжения в схеме, для этого зададимся направлениями токов в схеме.
Рис.7 Исходная схема с обозначенными токами.
По первому закону Кирхгофа (для узлов):
для узла с: I1= - I5 + I4(7)
для узла d: I2= - I5 + I8 + I10(8)
По второму закону Кирхгофа:
Ue-c = E1 - R(1,3) *I1=> Ue-c = 35.144 B
Ue-d = E11 - R11*I2=> Ue-d = 44.249 B
По закону Ома:
I4 = Ue-c / R4=> I4 = 2. 197 A
I10 = Ue-d / R10=> I10 = 1.844 A
I8 = Ue-d / R8=> I8 = 0.922 A
из(7) I5 = 0.285 А
На данном этапе мы рассчитали все токи в исходной схеме теперь по закону Ома заполним таблицу 3
Таблица 3.
- |
R1 |
R3 |
R4 |
R5 |
R7 |
R8 |
R10 |
R11 |
|
R(Oм) |
4 |
9 |
16 |
28 |
4 |
48 |
24 |
15 |
|
U(B) |
7.65 |
17.21 |
35.15 |
7.98 |
1.14 |
44.256 |
44.256 |
45.75 |
|
I(A) |
1.912 |
1.912 |
2. 197 |
0.285 |
0.285 |
0,922 |
1,844 |
3.05 |
|
P(Вт) |
14.62 |
32.9 |
77.23 |
2.27 |
0.23 |
40.8 |
81.61 |
139.54 |
Проверка результатов:
составим уравнение баланса мощностей для исходной схемы
E1*I1 + E11*I2=P1 + P3 + P4 + P5 + P7 + P8 + P10 + P11
397,23 ? 389.87
Вывод: проведённые проверки подтверждают что результаты решения задачи 2 верны.
Найдено: Все найденные величины приведены в таблице 3.
Рассчитаем схему (Рис.6) методом узлового напряжения.
Запишем формулу для Ua-b:
Ua-b = 19.85 В
из формулы (4) выразим I3 и найдём его I3 = 4.962 A
используя формулы (4) и (5) найдём I1 = 1.912 A
используя формулы (4) и (6) найдём I2 = 3.05 А
Вывод: результаты расчёта схемы методами узлового напряжения и по законам Кирхгофа получились идентичными что говорит о том что результат независим от метода расчётов.
Подобные документы
Анализ электрических цепей постоянного тока. Расчёт токов с помощью законов Кирхгофа. Расчёт токов методом контурных токов. Расчёт токов методом узлового напряжения. Исходная таблица расчётов токов. Потенциальная диаграмма для контура с двумя ЭДС.
курсовая работа [382,3 K], добавлен 02.10.2008Система уравнений для расчётов токов на основании законов Кирхгофа. Определение токов методами контурных токов и узловых потенциалов. Вычисление баланса мощностей. Расчет тока с помощью теоремы об активном двухполюснике и эквивалентном генераторе.
практическая работа [276,5 K], добавлен 20.10.2010Составление на основании законов Кирхгофа системы уравнений для определения токов во всех ветвях схемы. Определение токов во всех ветвях схемы, используя метод контурных токов и на основании метода наложения. Составление баланса мощностей для схемы.
контрольная работа [60,3 K], добавлен 03.10.2012Порядок расчета цепи постоянного тока. Расчет токов в ветвях с использованием законов Кирхгофа, методов контурных токов, узловых потенциалов, эквивалентного генератора. Составление баланса мощностей и потенциальной диаграммы, схемы преобразования.
курсовая работа [114,7 K], добавлен 17.10.2009Составление на основании законов Кирхгофа системы уравнений для нахождения токов во всех ветвях расчетной схемы. Определение токов во всех ветвях схемы методом узловых потенциалов и контурных токов. Расчет суммарной мощности источников электроэнергии.
практическая работа [375,5 K], добавлен 02.12.2012Расчет электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, методом узловых потенциалов. Расчет реактивных сопротивлений, комплексов действующих значений токов, баланса активных и реактивных мощностей цепи.
курсовая работа [143,9 K], добавлен 17.02.2016Составление по данной схеме на основании законов Кирхгофа уравнений, необходимых для определения всех токов. Определение токов всех ветвей методом контурных токов. Расчет потенциалов узлов, построение графика зависимости мощности, выделяемой на резисторе.
контрольная работа [697,6 K], добавлен 28.11.2010Свойства резистора. Расчет резистивной цепи постоянного тока методом эквивалентного генератора. Изучение методов уравнений Кирхгофа, контурных токов, узловых потенциалов, наложения и двух узлов. Расчет тока в электрических цепях и баланса мощностей.
контрольная работа [443,9 K], добавлен 07.04.2015Определение напряжения на нагрузки и токи во всех ветвях цепи методом узловых напряжений. Проверка соблюдения второго и третьего законов Кирхгофа для каждого контура схемы. Составление баланса мощностей источников и потребителей электрической энергии.
контрольная работа [1,0 M], добавлен 07.11.2013Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.
лабораторная работа [44,5 K], добавлен 23.11.2014