Інвертор напруги для апаратури зв'язку
Види систем електричного живлення, планування та основні вимоги до них. Джерела безперебійного й гарантованого електроживлення. Електромеханічні перетворювачі напруги. Вибір схеми інвертора, опис принципу дії. Собівартість виготовлення блоку живлення.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | украинский |
Дата добавления | 21.02.2011 |
Размер файла | 3,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
Вінницьке ВПУ ДДСО при МВС України
ДИПЛОМНИЙ ПРОЕКТ
НА ТЕМУ
Інвертор напруги для апаратури зв'язку
ДИПЛОМНИК Артемчук Л.Л.
Вінниця 2011
Зміст
- Вступ
- 1. Системи електропостачання
- 1.1 Види систем електроживлення
- 1.2 Планування систем електроживлення
- 1.3 Вимоги до систем електроживлення
- 1.4 Вимоги до джерела безперебійного живлення
- 2. Огляд існуючих перетворювачів напруги
- 2.1 Джерела безперебійного та гарантованого електроживлення
- 2.2 Електромеханічні перетворювачі напруги
- 2.3 Інвертори
- 2.4 Конвертори - перетворювачі постійної напруги
- 3. Синтез структурної схеми
- 3.1 Опис структурної схеми інвертора
- 4. Вибір схеми інвертора
- 4.1 Вибір схеми інвертора, опис принципу дії
- 5. Вибір елементної бази
- 5.1 Вибір діодів
- 5.2 Вибір транзисторів
- 5.3 Вибір конденсаторів
- 5.4 Вибір резисторів
- 5.5 Вибір трансформаторів
- 5.6 Вибiр пристроїв індикації
- 5.7 Вибір запобіжників
- 5.8 Вибір акумулятора
- 6. Розрахункова частина
- 6.1 Розрахунок елементів мультивібратора
- 6.2 Розрахунок трансформатора
- 7. Економічна частина
- 7.1 Коротка характеристика собівартості продукції
- 7.2 Розрахунок собівартості виготовлення блоку живлення
- 8. Охорона праці
- 8.1 Безпечне ведення робіт
- 8.2 Пожежна безпека
- 8.3 Вимоги техніки безпеки до радіоелектронного обладнання
- 8.4 Вимоги безпеки при роботі ручними інструментами при збірних та монтажних роботах
- Висновок
- Список використаної літератури
Вступ
В даний час спостерігається збільшення потреби у високошвидкісних центрах обробки даних, системах телекомунікаційного зв'язку в реальному масштабі часу і застосуванні систем з безперервним автоматичним технологічним процесом. Зростання потреби в такому устаткуванні поряд із забезпеченням великою кількістю різноманітних можливостей висуває вимоги до їхніх джерел електроживлення.
Незважаючи на те, що при генерації електроенергії сигнал має чудову форму, у той момент, коли електроживлення досягає споживача, його якість далека від ідеального. Більшість типів перекручувань неприпустимі, наприклад, значні провали напруги і коливання частоти, що можуть призвести до непоправних втрат, викликаних ушкодженням устаткування в сполученні c неможливістю його подальшого використання по призначенню. Звичайно ж фінансові наслідки цього можуть бути просто страшними, впливаючи не тільки на поточну роботу, але, що є серйознішим, і на розвиток бізнесу в майбутньому.
При проектуванні радіоелектронної апаратури, одним з основних критеріїв економічності є зниження споживаної пристроєм потужності (зокрема, застосування нових технологій дозволило скоротити на кілька порядків споживання енергії побутовою апаратурою в порівнянні навіть з десятком років тому).
За минулі більш ніж 100 років від моменту появи першого електронного пристрою (радіо А.С. Попова) до наших днів змінилось кілька поколінь електронних пристроїв, що мають принципові відмінності по функціональних можливостях, типу застосовуваної елементної бази, конструктивно-технічному рішенню і т.д. Це рівною мірою відноситься до радіоелектронної апаратури побутового призначення, так і системам керування складними технічними об'єктами, такими як повітряні лайнери, космічні апарати та ін. Однак кожен вид електронних засобів, будь це комп'ютер, схема керування роботою системи життєзабезпечення, програвач компакт-дисків чи радіолокаційна станція всі вони мають пристрій який забезпечує електроживленням всіх елементів (електронних ламп, транзисторів, мікросхем), пристроїв які входять до тієї чи іншої системи. Отже наявність джерела живлення в будь-якому пристрої річ цілком очевидна і вимоги до нього досить великі, адже від його якісної роботи залежить робота пристрою в цілому. Особливу увагу на живлення стали звертати при побудові складних цифрових пристроїв (персональний комп'ютер чи будь-яка інша мікропроцесорна техніки) де виникла потреба забезпечення цих пристроїв безперервним і найголовніше - якісним живленням. Вимкнення напруги для пристроїв цього класу може бути фатальним: медичні системи життєзабезпечення потребують постійної роботи комплексу пристроїв, і вимоги до їх живлення дуже суворі; системи банківського захисту і охоронні системи; системи зв'язку і передачі інформації.
При створенні електронного пристрою окремого класу і призначення (електронно-обчислювальні машини, медична і побутова електронна техніка, засоби автоматизації) чи джерело системи забезпечення гарантованого живлення можуть бути підібрані з тих, які серійно випускаються промисловістю. У деяких країнах існують фірми, що спеціалізуються на промисловому випуску Джерел безперервного живлення, і споживач має можливість вибрати той, котрий йому найбільше підходить. Однак, якщо по в експлуатаційному, конструкторському чи іншому розуміннях джерела безперебійного живлення, що випускаються серійно, не задовольняють потреб споживача, необхідно розробити новий, з урахуванням усіх правил і обмежень, специфічних для цього виду.
Темою даного проекту є розробка джерела безперервного живлення яке б було універсальним. Універсальність його полягає в тому, що він би міг використовуватись в будь-якій апаратурі, починаючи з персонального комп'ютера і закінчуючи медичною апаратурою. Причина побудови джерела - це можливість його використання в будь-якій апаратурі, для якої є важливим фактором мати саме синусоїдальну напругу, напругу яка б при роботі джерела від мережі чи від внутрішніх батарей немала б провалів напруги при переході роботи з одного в інше.
За своїми технічними даними ПБЖ працює і як акумулятор. Під час своєї роботи ПБЖ накопичує електроенергію. У разі відсутності подачі струму із зовнішніх електромереж пристрій здатний автономно забезпечити протягом певного часу (до повної розрядки) безперебійне живлення для роботи техніки.
Більшість сучасних ПБЖ, крім свого основного завдання - забезпечувати безперебійне живлення, - ще й фільтрують напругу, що надходить на навантаження (виступають як фільтр мережевих перешкод), і стабілізують напругу (виступають як стабілізатор напруги)
Функціонально ПБЖ містить такі вузли, як блок силовий, блок контролю і управління, блок індикації, вхідний і вихідний фільтри, акумуляторна батарея, вентилятори.
Результатом виконання дипломного проекту є розробка конструкції і технології виготовлення блоку контролю та управління відповідно до технічного завдання.
1. Системи електропостачання
Електропостачання стаціонарних споживачів, як правило, централізоване, тобто від енергетичних систем.
Енергетичною системою (енергосистемою) називається сукупність електростанцій електричних і теплових мереж, з'єднаних між собою й зв'язаних спільністю режиму й безперервністю процесу виробництва й розподіли електричної енергії й теплоти.
Системою електропостачання називається сукупність електроустановок, призначених для забезпечення споживачів електричною енергією.
Забезпечення споживачів електричною енергією називається електропостачанням.
Апаратура зв'язку призначена для перетворення електричної енергії в енергію, що несе інформацію (енергію електромагнітних хвиль: аналогових, дискретних, відео, графічних і звукових сигналів), відноситься до електроприймачів, тобто до споживачів електричної енергії.
Джерела електроживлення діляться на первинні й вторинні, незалежні й автономні.
Первинні джерела електроживлення (ПДЕЖ) - це пристрою, що перетворять теплову, механічну або хімічну енергію в електричну. До них відносяться генератори із приводом від парової, газової або гідравлічної турбіни: електроагрегати й електростанції із двигунами внутрішнього згоряння, акумулятори, паливні елементи й ін.
Джерела вторинного електроживлення (ВДЕЖ) - це пристрої, що перетворять електричну енергію первинних джерел по частоті, величині напруги й інших параметрах, що забезпечують живлення електрокористувачів. До них відносяться випрямлячі, інвертори, трансформатори, стабілізатори, фільтри й ін.
інвертор напруга блок живлення
Сукупність функціонально зв'язаних первинних і вторинних джерел електроживлення, пристроїв керування, комунікацій розподілу, захисту, контролю й сигналізації утворюють систему електроживлення споживача електричної енергії.
Споживачі електричної енергії відносно забезпечення надійності електропостачання підрозділяються на перші, другу й третю категорії.
До першої категорії віднесені споживачі, перерив електропостачання яких може викликати перерву зв'язків, порушення передачі найважливішої інформації й, як наслідок, привести до зриву виконання завдання.
До другої категорії віднесені споживачі, переривши в електропостачанні яких допускається на час, необхідне для включення резервного (автономного) джерела живлення діями особового складу чергової зміни (вручну). Це, як правило, електрокористувачі, що забезпечують експлуатацію різних систем робочого освітлення, вентиляції, водопостачання й ін.
До третьої категорії віднесені всі інші електрокористувачі, зовнішнє й освітлення, зарядні пристрої та ін.
Зовнішнє електропостачання, як правило, здійснюється по кабельних лініях від двох незалежних районних ТП напругою 35/10 кВ або 110/10 кВ, розташовуваних не далі 10-12 км від вузла зв'язку.
Система внутрішнього електропостачання призначена для перетворення й розподілу електричної енергії, одержуваної від систем зовнішнього або резервного електропостачання по центрах (елементам) вузла зв'язку.
У тих випадках, коли зовнішнє електропостачання відсутнє, живлення вузла зв'язку здійснюється від системи автономного електропостачання - автономного джерела електроживлення (АВЕЖ). У якості АВЕЖ може використовуватись резервна електростанція.
На вузлі зв'язку система автономного електропостачання є складовою частиною системи внутрішнього електропостачання.
Стаціонарні вузли зв'язку відносяться до першої категорії споживачів. Основною схемою електропостачання їх є двомережна схема. За цією схемою на центральний розподільний пункт (ЦРП) або головну трансформаторну підстанцію (ГТП або ТП) заводяться дві високовольтні лінії, приєднані до двох і більше незалежних джерел енергосистеми. На трансформаторних підстанціях, звичайно на стороні низької напруги, обладнається централізоване автоматичне включення резерву (АВР), що у випадку ушкодження однієї з ліній забезпечує швидке (менш 1 с) перемикання навантаження на справну лінію. Таким чином, завдяки наявності двох незалежних мереж електропостачання забезпечується висока надійність живлення СУЗ.
Для забезпечення безперебійного живлення засобів зв'язку на ВУС обладнаються резервне й аварійне джерело електроенергії.
Як резервні джерела на СУЗ обладнуються власні електростанції (ВЕСТ) з теплоелектричними агрегатами типу АД, АСДА, ДГА, ЕСД (ЕСБ). Причому одною з вимог, пропонованих до електростанцій, є те, що станція повинна бути двоагрегатного виконання з потужністю кожного агрегату рівної номінальної потужності, споживаної ЦЕП і стандартної напруги, величина якої повинна відповідати напрузі, одержуваної від трансформаторної підстанції электросистеми.
Як аварійне джерело електроживлення найбільш перспективної є система, що складається з акумуляторної батареї й автономного інвертора на тиристорах, на виході якого повинен бути змінний струм стандартної напруги (статичний УГП). Аварійне джерело, як правило, забезпечує електроенергією апаратуру зв'язку пріоритетних абонентів і аварійного освітлення ВУС.
1.1 Види систем електроживлення
Багато проблем, характерних для традиційних централізованих систем електроживлення, можуть бути вирішені за допомогою переходу до розподілених систем електроживлення. У цей час провідні виробники сучасного телекомунікаційного обладнання впроваджують нові децентралізовані системи електропостачання, які дозволяють забезпечити більш високі експлуатаційні характеристики:
регулювання напруги на навантаженні,
резервування мереж постійного струму,
контроль і керування за допомогою мікропроцесорів,
використання силового обладнання, виконаного у вигляді компактних і легких модульних пристроїв.
1.2 Планування систем електроживлення
При плануванні системи електроживлення необхідно відповісти на наступні питання:
який тип електрообладнання буде забезпечуватися електроживленням (комутаційна техніка, контрольні пристрої та інше);
яка СВМ-арна потужність цих пристроїв і яке очікуване енергоспоживання цих пристроїв у найближчому майбутньому;
параметри вхідної мережі змінного струму: номінальна напруга, кількість фаз;
скільки відводів для споживача повинно бути реалізовано;
яка частка обладнання із твердим допуском напруги або іншого номіналу (замовлення DC-DC перетворювача);
потреба в наявності гарантованого електроживлення споживачів змінного струму і яка їхня СВМ-арна потужність (замовлення інверторів)
необхідність віддаленого моніторингу за роботою систем електроживлення;
який час задається при роботі від акумуляторних батарей, який максимальний час їхнього відновлення при їх повному розряді, скільки груп акумуляторних батарей передбачається встановити; визначення необхідності установки резервної дизельної або газової електростанції;
у яких умовах передбачається експлуатація електроживлячого обладнання (температура, вологість, вібрація й т.д.).
1.3 Вимоги до систем електроживлення
До використовуваного у галузі зв'язку ДБЖ пред'являється ряд додаткових вимог. Серед них - низьке тепловиділення, близький до одиниці вхідний коефіцієнт потужності навантаження й відповідність галузевим стандартам за рівнем електромагнітної емісії в радіочастотному діапазоні (EMI/RFI).
Зниження негативного впливу електромагнітних перешкод на роботу телекомунікаційного обладнання - питання аж ніяк не незначне, тому більшість виробників приділяють йому підвищену увагу. Деякою гарантією "радіоперешкоди" ДБЖ може служити відповідний сертифікат Мінзв'язку України.
Крім того, однією з найбільш важливих характеристик ДБЖ є наявність засобів віддаленого керування й моніторингу системи енергопостачання. Відповідно висувається ряд вимог до штатного програмного забезпечення, його СВМ-існості із прикладним ПО й операційними системами, найбільш часто використовуваними в галузі телекомунікацій.
Не можна забувати й про конструктивне виконання (масогабаритних характеристиках) ДБЖ, але тут багато чого залежить від типу телекомунікаційного обладнання. Якщо мова йде про захист комунікаційного вузла провайдера Internet, ДБЖ повинен без проблем монтуватися в стандартну стійку або апаратну шафу, займаючи мінімум робочого простору.
У цей час питанням забезпечення споживачів якісними послугами передачі даних, телефонії, Інтернету й інфраструктурою для електронної комерції приділяється все більша увага. Жорстка конкуренція на ринку дозволяє споживачам вибирати не в рамках альтернативи мати телефон взагалі або не мати, а звертатися до операторів, які можуть забезпечити не тільки якісний телефонний зв'язок, але ще й комплекс додаткових послуг з передачі даних, по доступу до інформаційних ресурсів в Інтернеті і т.д. Для рішення проблеми якості в телекомунікаціях електроживлення не є, звичайно, достатньою умовою, але хотілося б підкреслити, що це - необхідно для надання будь-якої надійної та конкурентоспроможної послуги в інфокомунікаційних системах.
Звичайно при створенні об'єктів телекомунікацій витрати тільки на забезпечення пристроями безперебійного електроживлення становлять СВМ у 10% і вище від вартості телекомунікаційного обладнання. Якщо ж об'єкт має потребу в гарантованому електроживленні, то витрати на обладнання зростуть ще на 10% і досягнуть 20%. Якщо ще врахувати, що рівень безвідмовності електроживлення істотно впливає на доступність системи зв'язку або передачі даних у цілому, то стає зрозумілим значення й місце електроживлення в інфокомунікаціях. Важливість надійного електроживлення в першу чергу пояснюється тим, що воно визначає надійність роботи обладнання електрозв'язку й, тим самим, забезпечення інформаційними й комунікаційними послугами. Обладнання електроживлення працює в найбільш важких умовах у порівнянні з іншими пристроями (по навантаженню, по температурі), і внаслідок цього для забезпечення необхідної надійності роботи систем електроживлення змушує застосовувати найбільш якісні й, відповідно, дорогі елементи. Це необхідний захід, тому що надійність роботи обладнання електрозв'язку принципово не може бути вище надійності системи електроживлення.
1.4 Вимоги до джерела безперебійного живлення
Блок повинен відповідати вимогам існуючих технічних вимог.
Джерело безперебійного живлення повинне забезпечувати контроль параметрів вхідної напруги в межах, які забезпечують нормальну роботу імпульсного джерела живлення. Це обумовлено особливостями імпульсних блоків живлення, а саме широким діапазоном вхідної напруги. Межа зміни напруги на вході, при якому забезпечується нормальна робота від мережі ІБП, повинна складати:
· нижній поріг - 30%;
· верхній поріг + 20%.
ІБП повинен забезпечувати контроль параметрів на виході при забезпеченні живлення від зовнішньої мережі і в режимі харчування від батарей:
· контролювати вихідну напругу;
· контролювати рівень навантаження.
Вимірювання параметрів дозволяє спостерігати за процесами, які відбуваються в мережі, своєчасно реагувати на зникнення напруги або відхід його величини від меж, перевищення яких викликає порушення роботи імпульсних джерел живлення.
Так, як характеристики напруги мережі мають певні параметри, встановлені стандартами (ГОСТ 3413-96), та напруга живлення ДБП повинна відповідати величині 220В, і мати відхилення напруги і частоти, які не перевищують граничних значень.
Так, як ми розраховуємо джерело безперебійного живлення, яке можна було б застосовувати з різноманітним навантаженням, передбачувана вихідна потужність складатиме 100 Вт.
Так, як необхідно забезпечити час резервного живлення, під час якого необхідно, наприклад, виконати можливий перехід на живлення від енергоємнішого джерела (наприклад, генератора), або завершення роботи тих або інших пристроїв, що від нього живляться мінімальний необхідний час резервування (резервного живлення) повинно бути не менше 5 мин., при 100% навантаженні. Основні технічні вимоги зводимо в таблицю3.1
Таблиця 3.1 Основні технічні вимоги.
№ |
Параметр |
Ед. вимірювання |
Величина параметра |
|
1 |
Вихідна потужність |
Вт |
100 |
|
2 |
Вхідна/вихідна напруга |
Вольт |
220/220 |
|
3 |
Вхідна частота |
Гц |
50 |
|
4 |
Діапазон змін вхідної частоти при роботі від мережі |
% |
+/-5 |
|
5 |
Діапазон змін вхідної напруги при роботі від мережі |
% |
+20/-30% |
|
6 |
Діапазон стабілізації вихідної напруги при живленні від батареї |
% |
+/ - 1,5% |
|
8 |
Час перемикання на батарею, не менше |
мс |
0 |
|
9 |
Час резервування (резервного живлення) від батарей при 100% навантаженні, не менше |
мин. |
25 |
2. Огляд існуючих перетворювачів напруги
Часто при живленні електронних пристроїв у резервному стані використовують акумуляторні батареї вони є низьковольтними, а для живлення ланцюгів вжитку потрібна значна напруга. При цьому удаються до перетворення напруги. Для цього використовують:
- інвертори
- конвертори
- електромагнітні перетворювачі
Електромагнітні перетворювачі виробляють напругу синусоїдальної форми, перетворюючи змінне магнітне поле. Такі перетворювачі використовуються на підприємствах зв'язку, банках і тому подібне. Недолік електромагнітного перетворювача: великі габарити і маса.
В даний час є статичні перетворювачі з вихідною напругою формою близьким до синусоїдального.
Конвертор - перетворювач постійної напруги в змінну, але іншого рівня (з проміжним перетворенням вхідної напруги в змінне і трансформацією до потрібного рівня).
Інвертор - пристрої, що перетворюють постійний струм в змінний з незмінною або регульованою частотою і що працюють на автономне (не пов'язану з мережею змінного струму) навантаження. Як навантаження автономного інвертора може виступати як одиничний споживач, так і розгалужена мережа споживачів.
2.1 Джерела безперебійного та гарантованого електроживлення
Під гарантованим живленням (ГЖ) варто розуміти забезпечення апаратури зв'язку й засобів автоматизації електроенергією в будь-яких режимах роботи системи електроживлення, за винятком короткочасних перерв при роботі комутаційних пристроїв, пуску автоматизованих дизельних електроагрегатів і струморозподільчої мережі (СРС).
Під безперебійним живленням (БЖ) варто розуміти забезпечення засобів зв'язку й автоматизації електроенергією в будь-яких режимах роботи СЕЖ, за винятком аварій агрегатів безперебійного живлення й струморозподільчої мережі.
Таблиця 2.1.1 Основні види неполадок у мережах електроживлення і їх наслідки.
Найменування неполадки |
Визначення |
Можлива причина |
Наслідки |
|
Сплески напруги |
Короткочасні підвищення напруги в мережі на величину більше 10% на час більше 20 мс. |
Відключення енергоємного обладнання, короткі замикання в мережі електропостачання |
Втрата інформації, вихід апаратури з ладу. |
|
Високовольтні викиди |
Короткочасні імпульси напруги до 6000 В і тривалістю до 10 мс. |
Удар блискавки, іскріння перемикачів, статичний розряд. |
Втрата інформації, вихід з ладу елементів апаратури. |
|
Просідання напруги |
Короткочасне зниження напруги до величини менш 80-85% від номінального |
Включення енергоємного обладнання, запуск потужних електродвигунів. |
Втрата інформації, вихід апаратури з ладу. |
|
Високочастотний шум |
Радіочастотні перешкоди. Перешкоди електромагнітного або іншого походження |
Електромотори, реле, силова комутаційна техніка, передавачі, магнітні бури. |
Вихід з ладу дискових накопичувачів, зависання комп'ютерів. |
|
Вибіг частоти |
Відхід частоти на В Величину більше3Гц від номінального (50 Гц). |
В Підключення енергоємного обладнання, запуск потужних електродвигунів, перевантаження в лінії електроживлення. |
Вихід з ладу дискових накопичувачів, зависання комп'ютерів, втрата даних |
|
Підсадження напруги |
Спадання напруги в мережі на тривалий час |
Нестабільність генератора. |
Втрата даних, при вихіді з ладу апаратури. |
|
Провалля напруги |
Відсутність напруги в Електромережі протягом більше 40 мс. |
Неполадки в лінії, спрацьовування систем захисту. |
Втрата даних, вихід з ладу апаратури. |
Обчислювальні пристрої, об'єднані в мережі, більше піддані помилкам через проблеми з електроживленням. Це відбувається через те, що, наприклад, з різних причин обладнання мережних вузлів зберігає дані різного роду в оперативній пам'яті, і ймовірність втрати або спотворення цих даних, а також імовірність збою в роботі обладнання істотно зростає при зниженні якості електроживлення. Фінансові втрати від таких збоїв тим більше, чим більш відповідальну функцію виконує мережний вузол.
У таблиці представлені основні види неполадок у мережах електроживлення і їх наслідки.
Для забезпечення споживачів гарантованим живленням використовуються резервні джерела живлення (резервна мережа або резервна електростанція). Запровадження в дію резервних джерел відбувається автоматично. Пристрою, що забезпечують автоматичне включення резервного джерела, одержали назву пристроїв автоматичного включення резерву. Принцип побудови системи гарантованого живлення за допомогою пристроїв АВР показаний на Рис.1.1 Пристрої АВР складаються із двох контакторів - КМ1 (нормальної роботи), КМ2 (аварійні роботи) і ланцюгів керування цими контакторами, які забезпечують контроль напругі джерел живлення, їхнє перемикання й блокування.
Рис.1.1 Принцип побудови системи гарантованого живлення з допомогою АВР
З розглянутого принципу видно, що в кожному разі перехід на резервне джерело (мережа, агрегат) пов'язаний з повною перервою в живлення споживачів. Тривалість цієї перерви залежить від типу використовуваних пристроїв АВР і ступеня автоматизації резервних електростанцій. Існуючі пристрої АВР із використанням електромеханічних реле й контакторів забезпечують перемикання на резервну мережу за 0,6.0…0,7с.
При аварійному переході від джерел зовнішнього електропостачання на резервну автоматизовану по другому й третьому ступені електростанцію перерва може досягати 15.60…60 с.
Пристрої, що забезпечують безперебійність живлення засобів зв'язку й автоматизації при аварійних режимах роботи зовнішніх джерел і резервних електростанцій називаються агрегатами безперебійного живлення. Деякі типи АБЖ на практиці одержали назву джерел безперебійного живлення (ДБЖ).
Досвід і практика застосування сучасної апаратури зв'язку й засобів автоматизації при живленні їх від електромереж загального призначення 220/380 В показують, що АБЖ необхідно застосовувати не тільки й не стільки тоді, коли напругу в мережі повністю зникає, але головним чином для забезпечення необхідного апаратурі якості електроенергії. Про це свідчать середні статичні дані розподіли несправностей в електромережах 220/380 В, (табл.2.2).
З табл.1.2 видно, що така несправність, як відключення (провалля) напруги мереж, у загальному обсязі всіх несправностей займає всього лише близько 12 %.
Таблиця 1.2. Розподіл несправностей в електромережах 230/380 В
Несправності |
% |
|
Тривале або короткочасне відключення напруги Високочастотні перешкоди Високовольтні викиди Провали (відключення) Спотворення Сплески |
45 20 16 12 5 2 |
|
Всього |
100 |
Зараз на практиці знаходять застосування два типи АБЖ: електромашинні АБЖ і статичні ДБЖ із випрямляючи-інверторними перетворювачами.
На нашому підприємстві використовуються ДБЖ із випрямляючи-інверторними перетворювачами.
У цей час такі ДБЖ розроблені й впроваджуються в СЕЖ вузлів зв'язку й об'єктів автоматизації ДБЖ на основі статичних перетворювачів, які практично за всіма показниками перевершують електромашинні ДБЖ. Вони мають більш високий ККД, значно менші габарити й масу, більший термін служби. У них відсутні обертові частини, що істотно спрощує експлуатаційне обслуговування й зменшує шум при роботі.
Аналіз всіх типономіналів сучасних статичних ДБЖ показує, що за принципом роботи й можливостям їх можна класифікувати за трьома типами: перемикаються з мережним фільтром, що перемикаються з мережним стабілізатором і фільтром, з подвійним перетворенням енергії.
Перерва в електроживленні при перемиканні на резервне джерело завдяки використанню електронних ключів вдалося звести до 2,5…5 мс. Звичайно така перерва не страшна для споживачів, що мають безтрансформаторний вхід джерел вторинного електроживлення. Такими споживачами є більшість сучасних персональних комп'ютерів, для яких в основному й призначений даний тип ДБЖ.
2.2 Електромеханічні перетворювачі напруги
Електромеханічні перетворювачі енергії з обертальним рухом - електричні машини - складають найбільш важливий клас компонент електромеханічних систем. Електричні машини вельми всілякі по конструкції і призначенню, процеси в них відрізняються великою складністю. Електромеханічні перетворювачі енергії, дія яких заснована на законах електромагнітної індукції, підкоряються принципу оборотності. Один і той же пристрій може працювати як електрогенератор, якщо до нього підводиться механічна енергія, або як двигун, якщо до нього підводиться електрична енергія.
Електромеханічні перетворювачі енергії - електричні машини працюють в космосі, глибоко під землею і у воді.
Електромеханічні перетворювачі енергії, що працюють в космосі, знаходяться в умовах невагомості і мають сумірні моменти інерції якоря і індуктора, тому можуть рухатися в просторі обоє частини машини. Електрична машина в космосі отримує декілька мір свободи, і рівняння електромеханічного перетворення енергії ускладнюються, набуваючи загальнішого вигляду. Співвідношення моментів і швидкостей в різних режимах роботи двигунів. Механічні характеристики двигуна і механізму в загальній системі координат. Електромеханічним перетворювачем енергії в приводах є електрична машина. У електромеханічних перетворювачах енергії частини, що взаємно переміщаються, розділені повітряним зазором. У повітряному зазорі зосереджена енергія електромагнітного поля, що зв'язує обмотки, що обертається і нерухому. Далі читач переконається в тому, що саме в повітряному зазорі відбувається перетворення енергії з електричної в механічну і назад. У цій книзі будуть розглянуті машини, в яких визначає є магнітне поле.
У практиці вивчення електромеханічних перетворювачів енергії знайшов вживання і інший вигляд моделювання, використання якого частенько пред'являє менш жорсткі вимоги до знання параметрів, а у ряді випадків дозволяє взагалі відмовитися від необхідності знаходження аналітичного опису явища. Цей метод - фізичне моделювання - встановлює відповідність між об'єктами однієї фізичної природи. Величини моделі, що кількісно характеризують явище, при цьому можуть вельми істотно відрізнятися від аналогічних величин оригінала. Якщо предметом дослідження є потужні електричні машини і системи, масштаби звичайна істотно менше одиниці; при моделюванні пристроїв малих розмірів і потужностей доцільно масштаби моделювання вибирати великими одиниці. Асинхронна машина є загальним електромеханічним перетворювачем енергії. Дійсно, вона може працювати як наступних перетворювачів.
Головними функціональними елементами є електромеханічні перетворювачі енергії - ЕП змінного і постійного струму. Робочі процеси ЕП базуються на фундаментальних законах електродинаміки і механіки. Для аналізу процесів в ЕПЕ можуть застосовуватися методи теорії електромагнітного поля і методи теорії електромеханічних систем. Далі використовується головним чином другий підхід, який дозволяє записати диференціальні рівняння для перехідних процесів електричних ланцюгів і руху ЕПЕ. Загальна структурна схема електричного приводу. Таким чином, ЕД є електромеханічним перетворювачем енергії. Електромагнітна потужність ЕПЕ, як і будь-якого електромеханічного перетворювача енергії, залежить від струму в обмотці якоря. Проведений розгляд показує, що узятий нами електромеханічний перетворювач енергії задовольняє всім основним вимогам, сформульованим на початку цього параграфа, і може бути використаний як кроковий двигун. Необхідно, проте, встановити циклічну повторюваність станів перетворювача і виявити види циклів. Однією з тенденцій розвитку електроприводу є поступове зближення електромеханічного перетворювача енергії (електричної машини) і споживача цієї енергії машини-знаряддя. У міру такого зближення як електрична машина, так і машина-знаряддя випробовують весь більший взаємний вплив.
Принципові схеми ЕПЕ з обертальним (а. Перехідний процес в ЕПЕ, як і в будь-якому електромеханічному перетворювачі енергії, описується системою диференціальних рівнянь електричної рівноваги і динаміки руху ротора. Значення відносного навантаження, як і в будь-якому електромеханічному перетворювачі енергії, впливає на ефективність роботи ЕПЕ. У двох крайніх положеннях:
1 - коротке замикання
2 - холостий хід, енергія в навантаженні не виділяється. Магнітозв'язність ланцюга. Для багатьох електромеханічних перетворювачів енергії характерне взаємне переміщення котушок. Хоча визначення повної картини поля реальної машини, що обертається, є практично неможливим, математична модель електромеханічного перетворювача енергії дозволяє вирішувати багато завдань, задаючись напругою на вхідних затисках перетворювача. Виходячи в своїх виставах з картини поля в повітряному зазорі, робимо в рівняннях незалежно змінними напруги на статорі або роторі. Електромашинний підсилювач (ЕМП) з поперечним полем є електромеханічним перетворювачем енергії, якого можна використовувати як силовий перетворювач в установках малої потужності до 10 кВт і як проміжний підсилювач в установках великої потужності. Реалізація елементів ЕП. Система управління ЕП - сукупність пристроїв, що управляють і інформаційних, і пристроїв сполучення ЕП, призначена для управління електромеханічним перетворювачем енергії з метою забезпечення заданого руху виконавського органу робочої машини. Тут лише коротко розглянемо вплив зворотних зв'язків на характеристики машини в тій мірі, скільки це необхідно для розуміння роботи електромеханічних перетворювачів енергії. Математичні моделі електричних машин в перехідних і сталих режимах; узагальнені досягнення в області аналізу і синтезу електромеханічних перетворювачів енергії; показано вживання нових математичних методів у вирішенні оптимізаційних завдань; освітлені останні досягнення у вживанні обчислювальних машин для вирішення завдань електромеханіки. Моделі електромеханічних систем складаються, як і при прямій реалізації, а саме з моделей електричного ланцюга і механічної системи, об'єднаних моделлю електромеханічного перетворювача енергії, - електричної машини. Для систем приводу змінного струму модель електричної машини складається по рівняннях. Для об'єднання електричної і механічної частин тут не вимагається джерел струму, оскільки струми і моменти зображаються напругою.
Конструкція генератора братів Пікси.
У останні десятиліття з'явилися нові конструктивні видозміни електричних машин: лінійні двигуни, машини з декількома мірами свободи, з рідким і газоподібним ротором і ін. Інженер-електромеханік повинні уміти підійти до створення і дослідження будь-якої електричної машини - електромеханічного перетворювача енергії, тому основи загальної теорії електромеханічного перетворювача енергії повинні викладатися не лише в спеціальних курсах, але і в загальному курсі електричних машин. Дані хвилевих крокових електродвигунів для прецизійних швидкодіючих систем управління, автоматичних цифрових спостережних систем, за устаткування. Електромеханічний перетворювач енергії в цих двигунах поєднується з одноступінчатою хвилевою зубчастою передачею. Двигуни характеризуються: високими точністю, швидкодією, роздільною здатністю; підвищеною надійністю, обумовленою відсутністю швидко обертаючихся частин; великим моментом, що обертає, при малих масі і габаритних розмірах, що дуже важливе для їх вживання в інших двигунів закрите, кріплення - фланцеве, можуть займати в просторі будь-яке робоче положення, режим роботи - тривалий.
Енергія з мережі (від включеного десь генератора) спочатку запасається в магнітному полі (у електричній машині енергія електромагнітного поля зосереджена, в основному, в повітряному зазорі), а потім перетвориться в механічну і теплову. Тому в ненасиченому лінійному електромеханічному перетворювачі енергії лише половина енергії, що забирається з мережі, перетвориться в механічну енергію, якщо вважати, що електрична енергія, що перетворюється в теплову, дорівнює нулю. Фізично це означає, що в мить, коли машина здійснює механічну роботу, така ж кількість енергії має бути запасена в електромагнітному полі. Пропонована увазі читачів книга присвячена математичному опису процесів, що відбуваються в електричних машинах. Основна увага приділена диференціальним рівнянням електромеханічних перетворювачів енергії і рішенню їх за допомогою аналогових і цифрових обчислювальних машин. У класичних підручниках по електричних машинах виклад теорії починається з комплексних рівнянь, схем заміщення і векторних діаграм. Почавши виклад з диференціальних рівнянь, що описують як динамічні режими, так і сталі, підвести читача до комплексних рівнянь електричних машин. Лінійні електричні машини застосовуються практично лише в руховому режимі. У генераторному режимі знаходить вживання МГД-генератор - електромеханічний перетворювач енергії. Але при пульсаціях магнітного поля або швидкості плазми на виході можна отримати змінні напруга і струм. Такий генератор за принципом дії і конструкції близький до лінійних двигунів і МГД-насосам.
Розглянемо приклад електромеханічного перетворювача.
Найбільш повні і різносторонні характеристики електроприводів при їх синтезі і аналізі можуть бути отримані у разі, коли електрична машина розглядатиметься як узагальнена. Для подальшого аналізу розглянемо машину з трифазними обмотками на статорі і роторі, які створюють магнітні поля, що складаються з головних полів і полів розсіяння. Головним полем - називають поле, магнітний потік якого бере участь в електромеханічному перетворенні енергії. При цьому його можна представити як два взаємодіючі поля: головного поля обмотки статора і головного поля роторної обмотки. У свою чергу головне поле обмотки статора або роторної можна представити як результуюче поле, утворене дією окремо кожної фази цих обмоток. Останні поля, які не створюють головного поля, тобто безпосередньо не беруть участь в електромеханічному перетворенні енергії, називають-полями розсіяння. Представимо електричну машину у вигляді, зручному для здобуття вихідних положень електромеханічного перетворення енергії. Виходячи з того, що всякий результуючий вектор сили, що намагнічує, від дії сил, що намагнічують, в багатофазній обмотці можна замінити дією однієї обмотки з таким же модулем сили, що намагнічує, вектор якої направлений в ту ж сторону, що і вектор результуючих сил багатофазної обмотки, представимо багатофазну узагальнену машину її еквівалентом - однофазною машиною. При цьому виходитимемо з того, що магнітне поле статора і ротора, що обертається, створюватиметься надалі трифазною обмоткою. Така машина і складові її магнітного потоку представлені на рис.1, де прийняті наступні позначення:
U1 і U2 - напруга, прикладена до статору і роторній обмоткам відповідно;
Ф1 - повний потік, пронизливий обмотку статора і викликаний всіма струмами в обмотках електричної машини;
Ф2 - повний потік, пронизливий обмотку ротора і викликаний всіма струмами в обмотках електричної машини;
Ф11 - частина потоку Ф1, викликаного струмом І1;
Ф 22 - частини потоку Ф2, викликаного струмом І2;
Ф12 - частина потоку Ф1, викликаного струмом І2;
Ф 21 - частини потоку Ф2, викликаного струмом І1;
Ф 01 - потоку розсіяння обмотки статора, викликаного струмом статора І1, і пов'язаний з обмоткою статора, але не зчеплений з обмоткою ротора;
Ф 02 - потоку розсіяння обмотки статора, викликаного струмом ротора І2, і пов'язаний з обмоткою ротора, але не зчеплений з обмоткою статора;
Рис.1. Магнітні потоки, утворені обмотками статора і ротора в електричній машині
Ф - взаємний потік, зчеплений з обмоткою статора і з обмоткою ротора, тобто загальний для обох обмоток потік, створюючий головне поле і що бере участь в електромеханічному перетворенні енергії.
На рис.1 кожна замкнута лінія із стрілками змальовує відповідну складову магнітного потоку, вказаного на цьому ж малюнку.
Співвідношення між потоками наступне:
(1.1)
де з цих же співвідношень виходить, що
(1.2)
2.3 Інвертори
Інвертор - це пристрій, призначений для перетворення постійного струму в змінний. На відміну від джерел безперебійного живлення, інвертори забезпечують значно більший час автономної роботи при меншій або порівнянній вартості. У перетворювальних пристроях режим інвертування дуже часто чергується з режимом випрямляння, тобто один і той же перетворювач може працювати і у випрямних і інверторних режимах. Наприклад, якщо керований випрямляч працює на двигун, то при розгоні двигуна перетворювач працює у випрямному режимі, енергія поступає з мережі змінного струму в навантаження. При гальмуванні двигуна, рух під уклон і так далі перетворювач працює в режимі інвертування, а потужність (енергія) та, що генерується двигуном, що гальмується, передається в мережу змінного струму.
Інвертор значно дешевший за міні-електростанцію, мініатюрний і легкий. Спільно з одним, або декількома акумуляторами він може працювати як автономне джерело безперебійного живлення для будинку, котельної, пожежних і охоронних систем. Якщо є мережева напруга 220 Вольт, він просто пропускає його "крізь" себе і, при необхідності, заряджає акумулятори. Якщо напруга в мережі зникла, миттєво починає генерувати змінну напругу 220 Вольт від акумуляторів. Час автономної роботи залежить від потужності навантаження і ємкості акумуляторів. Так, наприклад, чотирьох акумуляторів по 190 А/ч вистачить на 17 годин автономної роботи при постійному навантаженні 500 Вт. При появі мережевої напруги прилад автоматично перемкнеться в початковий стан очікування і зарядить акумулятори.
Класифікація інверторів.
Розрізняють два типи інверторів: інвертори, ведені мережею, мережні (залежні інвертори) і автономні (незалежні інвертори). Перші (залежні) віддають енергію з ланцюга постійного струму тільки в мережу змінного струму, яка необхідна інвертору принципово, для комутації струму з одного тиристора на іншій. Частота інвертування рівна частоті мережі. У автономних інверторах енергія з ланцюга постійного струму передається в навантаження змінного струму, що не має інших джерел змінної напруги. Комутація струму тиристорів здійснюється або по ланцюгу управління (керовані ключі), або спеціальним комутуючим пристроєм. Частота інвертування визначається тільки схемою управління.
Також існує класифікація інверторів за формою вихідної напруги. Розрізняють інвертори з квадратичною (square), з трапецієвидною (modifed sine ware) і з синусоїдальною формою (sine ware) вихідної напруги. Для навантаження з магнітними сердечниками (двигуни, трансформатори) модифікація форми напруги приводить до деякої зміни потужності. Для телевізорів, комп'ютерів, ламп розжарювання і нагрівальних приладів вказаний чинник значення не має. Особливий випадок - двигуни асинхронного типу (насоси, холодильники, кондиціонери), що вимагають достатньо високої якості електроживлення.
Інвертор - прилад перетворює постійну напругу в змінну. Потреба в інверторах існує для вирішення завдання живлення пристроїв для побутової мережі 220В 50Гц від джерел постійної напруги, наприклад акумуляторів. З розвитком електроніки це завдання вирішувалося усе більш складними методами, що дають якісніші параметри вихідної електроенергії. Проте на практиці застосовуються як сучасні, так і більш архаїчні прилади, тому розглянемо основних типів інверторів в історичному порядку.
Першими з'явилися інвертори на основі трансформаторів тих, що працюють на частоті мережі 50Гц. Блок-схема інвертора приведена на мал. №1.
Рис 2.3.1 Блок-схема трансформаторного інвертора.
Джерело енергії постійного струму, в найпоширенішому випадку акумулятор 12В, підключається до трансформатора через трипозиційний комутатор. Комутатор є набором електронних ключів, що забезпечує 3 стани: до первинної обмотки трансформатора підключено джерело живлення позитивною полярністю, до первинної обмотки трансформатора підключено джерело живлення негативною полярністю і стан коли первинна обмотка закорочена. Послідовно перемикаючи ці стани, на первинній обмотці формується змінна напруга частотою 50Гц і амплітудою 12В. На вторинній обмотці трансформатора при цьому формується напруга з тією ж частотою і формою, проте ефективна напруга складає 220В. Графіки напруги на трансформаторі приведені на мал. №2. Вихідна напруга знімається з вторинної обмотки, тому має такі ж параметри.
Рис.2.3.2 Графіки напруги на трансформаторі
Дана форма напруги називається "Модифікована синусоїда" і широко застосовується в інверторах для мережі 50Гц, тому параметри, що описують її, розглянуті детальніше. Взагалі параметри, задаючі форму модифікованої синусоїди, це амплітуда вихідної напруги і коефіцієнт заповнення, що показує відношення тривалості імпульсу до періоду сигналу. Ці параметри задаються при конструюванні інверторів. З міркувань того, що інвертор повинен замінювати мережу 220В 50Гц, зазвичай вибирається амплітудне значення напруги модифікованої синусоїди таке ж, як і в мережі, тобто 311В. При цьому, аби забезпечити ефективну напругу 220в, таке ж як і в мережі, коефіцієнт заповнення виходить 0.5. Проте в інверторі цього типа амплітуда вихідної напруги виходить залежною прямо пропорційно від напруги джерела. Якщо як джерело енергії використовується акумулятор, а це найпоширеніший випадок, то його напруга при розряді знижується, і амплітуда модифікованої синусоїди на виході перетворювача також знижується, відповідно знижується і ефективне значення напруга на виході перетворювача. Для того, щоб поліпшити якість енергії на виході перетворювача в цих умовах часто застосовують схеми управління, які змінюють коефіцієнт заповнення вихідної напруги так, щоб підтримувати ефективну напругу незмінним. Наприклад, інвертор, розрахований на напругу джерела 12В, працює від розрядженого акумулятора з напругою 10В. При цьому амплітудна напруга на виході знижується пропорційно до 259В. Схема управління змінює коефіцієнт заповнення вихідної напруги до 0.72, при цьому ефективна напруга залишається рівним 220В. Проте форма напруги і його амплітуда міняється, що може бути недопустимо для деяких навантажень, що буде показане далі.
Оскільки основним елементом інвертора цього типа є трансформатор 50Гц, можливості по мініатюризації, зменшенні матеріаломісткості і підвищенні ефективності роботи інвертора вельми обмежені. Тому на основі сучасної елементної бази були розроблені інвертори з вч перетворенням. Блок-схема такого інвертора приведена на мал. №3.
Рис.2.3.3 Блок-схема інвертора з вч перетворенням.
Джерело енергії постійного струму підключається на вхід високочастотного перетворювача постійної напруги (dcdc перетворювач). Даний блок перетворить вхідну напругу в напругу, відповідну амплітуді мережевої напруги, 311В. Це перетворення відбувається за допомогою трансформатора, що працює на підвищеній (десятки і сотні кілогерц) частоті, тому габарити і матеріаломісткість інвертора значно зменшилися. Вихідна напруга перетворювача подається на комутатор, аналогічний комутатору в інверторі трансформаторного типа. Графік вихідної напруги комутатора має такий же вигляд, як і напруга на виході комутатора в трансформаторному інверторі, проте амплітуда напруги досягає 311В. Вихід комутатора є виходом інвертора, і графік вихідної напруги відповідає напрузі на вторинній обмотці трансформатора в трансформаторному інверторі (рис.2). Міркування щодо форми вихідної напруги, викладені вищі, справедливі і для даного типа інвертора. Зміна ж форми вихідної напруги залежно від величини вхідної напруги може відбуватися або немає, це залежить від топології dcdc перетворювача. Якщо перетворювач стабілізований, то при зміні вхідної напруги вихідна напруга перетворювача не змінюється. При цьому також форма і амплітуда вихідної напруги інвертора не змінюється. Проте існують і простіші різновиди dcdc перетворювачів, які не є стабілізованими, і вихідна напруга яких пропорційно вхідному. Для інверторів, зібраних на основі таких перетворювачів, справедливі висновку щодо зміни вихідної напруги для трансформаторних інверторів.
З розвитком електроніки з'явилася можливість створити інвертори з синусоїдальною формою напруги на основі вч перетворення електричної енергії. За допомогою даних інверторів можливе здобуття вихідної напруги, що задовольняє стандартам на якість електроенергії в енергетиці, що неможливе для перетворювачів раніше розглянутих типів. Блок-схема інвертора приведена на мал. №4.
Рис.2.3.4 Блок-схема інвертора з синусоїдальною вихідною напругою.
Джерело енергії постійного струму підключається на вхід високочастотного перетворювача постійної напруги, як і в інверторі з вч перетворенням, розглянутому раніше. Вихідна напруга інвертора може бути різною залежно від конструкції, проте воно має бути вище за амплітудну напругу мережі, тобто вище 311В. Вихідна напруга перетворювача поступає на вч інвертор (dc/ac), керований знижуючий імпульсний перетворювач, що є. Даний перетворювач може встановлювати на своєму виході напругу по сигналу від схеми управління в діапазоні від нуля до напруги живлення, тобто до напруги більше 311В. Вч інвертор зазвичай містить два таких каналу за мостовою схемою, таким чином, напруга між їх виходами може досягати від - 311В до +311В, як і в мережі 220В. Графіки вихідної напруги по обох вихідних дротах і результуюча вихідна напруга інвертора представлені на Рис.2.3.5 З графіків виходить, що схема управління подає особливий сигнал на кожен канал вч перетворювача, що змінюється в часі таким чином, що вихідна напруга кожного каналу вч перетворювача змінюється по синусоїдальному закону з частотою 50Гц, і зміщено по фазі на 180? між каналами. Напруга ж між виходами є синусоїдою без постійною складовою амплітудою 311В. Зміна форми вихідної напруги залежно від величини вхідної напруги не відбувається унаслідок того що або dc/dc перетворювач або вч інвертор виконуються стабілізованими, тобто вихідна напруга не залежить від вхідної.
Рис.2.3.5 Графіки напруги на виходах інвертора.
Види електроприладів з активним характером навантаження і особливості роботи різних типів інверторів з даним виглядом навантаження.
Електричні прилади з активним характером опору поширені повсюдно. До них відносяться різні види нагрівальних приладів, а також освітлювальні прилади на основі ламп розжарювання. Також поширені комбіновані навантаження, в яких окрім основного споживача з активним характером опору присутні інші споживачі з різним характером опору, проте потужність цих споживачів значно нижча. Наприклад, нагрівальний елемент з схемою контролю температури. Такі навантаження також можна вважати наближеними до активними, міра наближення визначається відношенням потужностей основного активного навантаження і не додатковою активною. Взагалі активне навантаження є найбільш простим виглядом навантаження для інвертора, тому що вихідний струм інвертора у будь-який момент часу, тобто при будь-якому миттєвому значенні вихідної напруги, обмежений і визначається законом Ома. Тому допустима будь-яка форма вихідної напруги інвертора, наприклад модифікована синусоїда. Також весь вихідний струм інвертора йде на створення вихідної активної потужності, тому ефективність роботи (величина коефіцієнта корисної дії) інверторів будь-якого типа буде максимальна при даному типові навантаження.
Подобные документы
Види систем електроживлення, вимоги до них. Огляд існуючих перетворювачів напруги. Опис структурної схеми інвертора. Вибір елементної бази: транзисторів, конденсаторів, резисторів та трансформаторів. Розрахунок собівартості виготовлення блоку живлення.
дипломная работа [3,8 M], добавлен 08.02.2011Несправності блоків живлення, методи їх усунення. Вимір напруг всередині блоку. Перевірка резисторів, діодів. Електромеханічні вимірювальні перетворювачі. Вимірювальні трансформатори струму та напруги, їх класифікація та метрологічні характеристики.
курсовая работа [3,2 M], добавлен 27.07.2015Вибір системи електроживлення будинку зв’язку за типом резервування, побудови і експлуатації. Розрахунок потужності та елементів схеми підтримання напруги на вході апаратури в заданих межах. Вибір схеми, типу резервного дизель-генераторного агрегату.
дипломная работа [129,9 K], добавлен 21.07.2015Вивчення принципів перетворення змінної напруги в постійну. Дослідження основ функціональної побудови джерел живлення. Аналіз конструктивного виконання випрямлячів, інверторів, фільтрів, стабілізаторів. Оцінка коефіцієнтів пульсації за даними вимірювань.
методичка [153,2 K], добавлен 29.11.2010Вибір та обґрунтування силової схеми тягового електропривода локомотива. Удосконалення сучасних систем асинхронного електропривода. Вибір форми напруги для живлення автономного інвертора. Розрахунок фазних струмів двофазної системи. Гармоніки напруги.
курсовая работа [1,0 M], добавлен 10.11.2012Структурна схема низьковольтного джерела вторинного електроживлення. Розрахунок елементів силового ланцюга і параметрів однофазного мостового автономного тиристорного інвертора струму. Двотактна напівмостова схема перетворювача напруги з самозбудженням.
курсовая работа [1,3 M], добавлен 25.05.2014Класифікація систем безперебійного електроживлення: одиночна та паралельна. Типи джерел безперебійного електроживлення, їх порівняльна характеристика: побудовані за схемою off-line (резервні), із подвійним перетворенням енергії, взаємодіючі з мережею.
курсовая работа [1,5 M], добавлен 13.07.2013Джерело живлення як елемент електричного кола, в якому зосереджена електрорушійна сила, його різновиди та функціональні особливості. Регульований стабілізатор 0–10В /3А на LM123. Індикатор напруги на 572ПВ2 (ПВ6). Операційний підсилювач і його параметри.
контрольная работа [273,6 K], добавлен 17.06.2014Галузі застосування стабілізованих джерел живлення. Основне призначення блоку живлення. Огляд існуючих елементів. Розрахунок компенсаційного стабілізатора послідовного типу. Синтез структурної схеми. Розрахунок однофазного випрямляча малої потужності.
курсовая работа [612,7 K], добавлен 21.11.2010Розрахунок робочого освітлення в сільськогосподарських приміщеннях. Вибір напруги і схеми живлення, розміщення освітлювальних щитів, трас прокладки освітлювальної мережі, марок проводів і способу їх прокладки. Розрахунок пускової та захисної апаратури.
курсовая работа [1,0 M], добавлен 13.06.2010