Повышение эффективности работы котельной установки за счет автоматизации процесса розжига

Регулирование давления перегретого пара и тепловой нагрузки, экономичности процесса горения, разряжения в топке котла, перегрева пара. Выбор логического контроллера и программного обеспечения для него. Разработка функциональной схемы автоматизации.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 31.12.2015
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Анализ состояния вопроса и задачи исследования

1.1 Газовое месторождение «Медвежье»

1.2 Описание технологического процесса

1.2.1 Описание конструкции объекта

1.2.2 Обоснование необходимости автоматизации котельной установки

1.2.2.1 Необходимость применения общекотловой автоматики, технологической сигнализации и диспетчеризации

1.2.2.2 Обоснование необходимости контроля, регулирования и сигнализации технологических параметров

1.3 Классификация котельных установок

1.4 Цель и задачи проектирования

2. Технологический процесс котельной на УКПГ-8

2.1 Исследование объекта управления

2.1.1 Барабанный паровой котел, как объект управления

2.1.2 Регулирование процессов горения и парообразования

2.1.2.1 Регулирование давления перегретого пара и тепловой нагрузки

2.1.2.2 Регулирование экономичности процесса горения

2.1.2.3 Регулирование разряжения в топке

2.1.3 Регулирование перегрева пара

2.1.4 Регулирование питания и водного режима барабанных паровых котлов

2.1.4.1 Схемы регулирования

2.2 Газомазутные паровые котлы типа ДЕ

2.2.1 Преимущества паровых котлов типа ДЕ

2.2.2 Технические характеристики паровых котлов типа ДЕ

2.3 Принцип работы котла ДЕ-10-14 Г

2.4 Выбор технологического оборудования для котельной установки

2.4.1 Заслонка дроссельная с электроприводом БГ4.08.00

2.4.2 Клапан отсечной быстродействующий (ПЗК) 1256.100.00-02

2.4.3 Клапан электромагнитный нормально открытый 1256.20.00

2.4.4 Клапан электромагнитный нормально закрытый 1256.15.00

2.4.5 Заслонка дроссельная ЗД 80-11.00

2.4.6 Клапан трехходовой для манометра КМ 1.00

2.4.7 Заслонка дроссельная воздушная двухпоточная

2.4.8 Электрозапальник

2.4.9 Исполнительные механизмы однооборотные МЭО-16 и МЭО-40

3. Создание АСУ на УКПГ-8 Медвежьего газового месторождения

3.1 Анализ существующих контроллеров

3.1.1 Требования предъявляемые к контроллерам

3.1.1.1 Требования к информационным потокам

3.1.2 Выбор контроллера

3.1.2.1 Контроллер «Ремиконт Р-110»

3.1.2.2 Контроллер «GE-Fanuc»

3.1.2.3 Контроллер «TREI-5B-05»

3.1.2.4 Контроллер «ТЭКОН-17»

3.1.3 Результаты исследований

3.2 Программное обеспечение для контроллера «ТЭКОН-17»

3.2.1 Дополнительное алгоритмическое обеспечение для среды «ISaGRAF PRO»

3.2.2 Программное обеспечение для операторского интерфейса

3.2.3 Прикладное ПО для контроллера «ТЭКОН-17»

3.2.3.1 «Журнал учета»

3.2.3.2 «ТЭКОН-Имена»

3.2.3.3 «Пульт»

3.2.3.4 «Принт-Диалог»

3.2.3.5 «Hayes-ТЭКОН»

3.2.3.6 «Диалог-ТЭКОН»

3.2.3.7 «Телемост»

3.2.3.8 Программа настройки адаптера Ethernet

3.3 Разработка функциональной схемы автоматизации

3.3.1 Общие данные

3.3.2 Описание функциональной схемы автоматизации

3.4 Система управления котлом

3.4.1 Функциональные возможности ПТК «АМАКС»

3.5 Программное обеспечение для АСУ ТП

4. Расчет технико-экономических показателей

4.1 Экономическая целесообразность автоматизации котельной установки

4.2 Исходные данные для расчета экономической эффективности

4.3 Расчет затрат на электроэнергию

4.4 Капитальные вложения

4.5 Расчет расходов по содержанию и эксплуатации оборудования

4.6 Расчет фонда оплаты труда

4.7 Калькуляция себестоимости

4.8 Технико-экономические показатели

5. Безопасность труда

5.1 Анализ и обеспечение безопасных условий труда

5.2 Расчет тяжести труда диспетчера и его интегральная оценка

5.3 Возможные чрезвычайные ситуации

5.3.1 Расчет эвакуационных путей и выходов

Заключение

Список использованных источников

Введение

Автоматизация - это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживанию средств автоматизации и наблюдению за их действием.

По уровню автоматизации теплоэнергетика занимает одно из ведущих мест среди других отраслей промышленности. Теплоэнергетические установки характеризуются непрерывностью протекающих в них процессов. При этом выработка тепловой и электрической энергии в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на теплоэнергетических установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в тепловой энергетике.

Автоматизация параметров дает значительные преимущества:

- обеспечивает уменьшение численности рабочего персонала, т.е. повышение производительности его труда;

- приводит к изменению характера труда обслуживающего персонала;

- увеличивает точность поддержания параметров вырабатываемого пара;

- повышает безопасность труда и надежность работы оборудования;

- увеличивает экономичность работы парогенератора.

Автоматизация котельных установок включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.

Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, уровень воды в барабане котла, перегрев пара и других)

Дистанционное управление позволяет дежурному персоналу пускать и останавливать парогенерирующую установку, а так же переключать и регулировать ее механизмы на расстоянии, с пульта, где сосредоточены устройства управления.

Теплотехнический контроль за работой котельных установок и оборудования осуществляется с помощью показывающих и самопишущих приборов, действующих автоматически. Приборы ведут непрерывный контроль процессов, протекающих в парогенераторной установке, или же подключаются к объекту измерения обслуживающим персоналом или информационно-вычислительной машиной. Приборы теплотехнического контроля размещают на панелях, щитах управления по возможности удобно для наблюдения и обслуживания.

Технологические блокировки выполняют в заданной последовательности ряд операций при пусках и остановках механизмов котельной установки, а так же в случаях срабатывания технологической защиты. Блокировки исключают неправильные операции при обслуживании парогенераторной установки, обеспечивают отключение в необходимой последовательности оборудования при возникновении аварии. Устройства технологической сигнализации информируют дежурный персонал о состоянии оборудования (в работе, остановлено и тому подобное.), предупреждают о приближении параметра к опасному значению, сообщают о возникновении аварийного состояния парогенератора и его оборудования. Применяются звуковая и световая сигнализация.

1. Анализ состояния вопроса и задачи исследования

1.1 Газовое месторождение «Медвежье»

Газовое месторождение «Медвежье» расположено в Надымском районе Ямало-Ненецкого национального округа, в 340 км к востоку от г. Салехарда. В 1967 году на нем было начато поисково-разведочное бурение и установлена газоносность отложений этого месторождения.

В геологическом строении месторождения участвуют песчано-глинисто-алевритовые породы верхнемелового, палеогенового и четвертичного возраста. В основании разреза бурением вскрыты отложения верхней части покурской серии, являющиеся продуктивными. Общая вскрытая мощность отложений составляет около 1200 метров. Структура месторождения приурочена к Ненецкому своду и представляет собой крупную брахиантиклинальную складку субмеридионального простирания, прослеживающегося по всему разрезу осадочного чехла. Она имеет размеры 33 х 10 км.

На месторождении промышленные залежи газа установлены в верхней части отложений покурской серии. Скважина № 1 на северной периклинали структуры вскрыла продуктивные отложения. Разрез газонасыщенной части слагается песчано-алевритовыми породами с подчиненными прослоями глин и известняков. Этаж газоносности достигает здесь высоты около 100 м. При опробовании скважины получен мощный фонтан газа дебитом 2500000 м3/сутки. Пластовое давление предполагается равным 110 кгс/см2. Площадь газонасыщенности месторождения «Медвежье» определена по положению контура газоносности и составляет 910 км2. Средневзвешенная эффективная газонасыщенная мощность принята равной 20 м. Запасы газа месторождения оцениваются в 1000 миллиардов кубических метров.

Газовое месторождение «Медвежье» является одним из крупнейших в мире, на долю которого приходится 86 % от общего объема отобранного газа, ежегодно здесь добывают 30 миллиардов кубических метров газа. Это первенец газовой промышленности Тюменского Севера, первое крупное месторождение газовой промышленности России и Союза. На данный момент из этого месторождения добыто свыше 80 % запасов газа. На сегодня на месторождении работают девять газовых промыслов.

С 1972 года «Медвежье» эксплуатирует ООО «Надымгазпром». Уже в начальном периоде эксплуатации стало ясно, что уточненные данные по величине и плотности распределения запасов, пластовым перетокам приведут к изменению в целом стратегии разработки месторождения. Первоочередно был изменен принцип распределения уровня годовой добычи по так называемой площади газоносности на различных участках. Затем пробурены десятки новых эксплуатационных скважин на периферийных зонах, укрупнены мощности установок комплексной подготовки газа (УКПГ), построены дожимные компрессорные станции (ДКС). Это позволило увеличить отбор газа до девяти миллиардов кубических метров в год и «растянуть» период постоянной добычи на несколько лет. И сейчас «Надымгазпром» тоже идет с превышением плановых показателей.

Сейчас ООО «Надымгазпром» ведет доразведку месторождения. Несмотря на то, что в настоящее время компания, в первую очередь, занимается подготовкой к освоению перспективных месторождений углеводородного сырья на полуострове Ямал, без должного внимания предприятия не остаются и месторождения Надым-Пур-Тазовского нефтегазоносного района. В планы компании на 2007 год входит запуск масштабных работ по реконструкции добывающих промыслов на месторождении «Медвежье». Для разработки проекта реконструкции выделены необходимые средства и уже сформирован проект, одобренный ОАО «Газпром» и прошедший государственную экспертизу. В то же время на месторождении ведутся геолого-разведочные работы, которые уже дали обнадеживающие результаты. Первый этап реконструкции будет включать в себя, в частности, модернизацию газосборных сетей. Второй будет состоять из оптимизации работы дожимного комплекса. Окончание работ планируется на 2020 год, при этом учитываются не только выработка промышленной добычи газа, но и работа с нижележащими пластами.

1.2 Описание технологического процесса

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара [1]. Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пар из воды, служит топливо.

Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:

- процесс горения топлива;

- процесс теплообмена между продуктами сгорания или самим горящим топливом с водой;

- процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.

Во время работы в котлоагрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя.

В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.

Одной из основных задач, возникающей при эксплуатации котельного агрегата, является обеспечение равенства между производимой и потребляемой энергией. В свою очередь процессы парообразования и передачи энергии в котлоагрегате однозначно связаны с количеством вещества в потоках рабочего тела и теплоносителя.

Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом, проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.

Расчет процесса горения обычно сводится к определению количества воздуха, необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.

Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения. Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием. Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхность нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева. Величина напряжения ограничена, во-первых, свойствами материала поверхности нагрева, во-вторых, максимально возможной интенсивностью теплопередачи от горячего теплоносителя к поверхности, от поверхности нагрева к холодному теплоносителю.

Интенсивность коэффициента теплопередачи тем выше, чем выше разности температур теплоносителей, скорость их перемещения относительно поверхности нагрева и чем выше чистота поверхности.

Образование пара в котлоагрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. Явление испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие высокими скоростями, а, следовательно, и большей по сравнению с другими молекулами кинетической энергией, преодолевая силовые воздействия соседних молекул, создающее поверхностное натяжение, вылетают в окружающее пространство. С увеличением температуры интенсивность испарения возрастает. Процесс обратный парообразованию называют конденсацией. Жидкость, образующуюся при конденсации, называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Пар, образуемый в котлоагрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Так как на теплоэлектростанциях требуется перегретый пар, то для его перегрева устанавливается пароперегреватель, в данном случае ширмовой и коньюктивный, в которых для перегрева пара используется тепло, полученное в результате сгорания топлива и отходящих газов. Полученный перегретый пар при температуре Т = 540 °С и давлении Р = 100 атмосфер идет на технологические нужды.

1.2.1 Описание конструкции объекта

Паровые котлы типа ДЕ паропроизводитсльностью 10 т/ч, с абсолютным давлением 1,4 МПа (14 кгс/см2) предназначены для выработки насыщенного или перегретого пара, используемого для технологических нужд промышленных предприятий, на теплоснабжение систем отопления и горячего водоснабжения. Котлы двухбарабанные вертикально-водотрубные выполнены по конструктивной схеме «Д», характерной особенностью которой является боковое расположение конвективной части котла относительно топочной камеры.

Основными составными частями котлов являются верхний и нижний барабаны, конвективный пучок и образующие топочную камеру левый топочный экран (газоплотная перегородка), правый топочный экран, трубы экранирования фронтальной стенки топки и задний экран.

Снизу в топку подается нужный для сгорания топлива воздух посредством дутьевых вентиляторов. Процесс горения топлива протекает при высоких температурах, поэтому экранные трубы котла воспринимают значительное количество тепла путем излучения.

Продукты сгорания топлива, называемые иначе газами, поступают в котельные газоходы, при этом обогревается поверхность пароперегревателя, омывают трубы экономайзера, в котором происходит подогрев питательной воды до температуры, близкой к 200 єС, поступающей в барабаны котла. Далее дымовые газы проходят в дымоход и поступают в воздухоподогреватель. Из него газы через дымовую трубу выходят в атмосферу. Вода в котел подается по трубопроводу, газотрубопроводу. Пар из барабана котла, минуя пароперегреватель, поступает на паропровод.

Одним из важнейших показателей конструкции котлоагрегата является его циркуляционная способность. Равномерная и интенсивная циркуляция воды и паровой смеси способствует смыванию со стены пузырьков пара и газа, выделяющихся из воды, а так же препятствует отложению на стенках накипи, что в свою очередь обеспечивает невысокую температуру стенок - до (200-400) єС, ненамного превышающую температуру насыщения и еще не опасную для прочности котельной стали. Паровой котел ДЕ -10-14 Г принадлежит к котлам естественной циркуляцией, основные технологические параметры котла представлены в таблице 1.1 [2].

Таблица 1.1 - Технологические параметры котла ДЕ -10-14 Г

Параметр

Ед. изм.

min

норма

max

Производительность

т/ч

9,51

10,00

10,50

Температура перегретого пара

єС

535,00

540,00

545,00

Давление в барабане котла

МПа

1,33

1,40

1,47

Температура питательной воды после экономайзера

°С

190,00

200,00

210,00

Расход природного газа

м/ч

237,53

250,00

262,52

Содержание СО в отходящих газах

%

1,33

1,40

1,47

Температура отходящих газов

єС

180,58

190,00

199,54

Давление газа перед горелками

кПа

47,50

50,00

52,50

Разрежение в топке

мм водного столба

4,75

5,00

5,25

Уровень в барабане

мм

-100,0

0,00

+100,0

Расход питательной воды

м/ч

17,00

Давление питательной воды

МПа

1,81

1,90

1,99

1.2.2 Обоснование необходимости автоматизации котельной установки

Котельные относятся к опасным производственным объектам и лавное требование к ним это обеспечение должного уровня безопасности Эксплуатация котлов должна обеспечивать надежную и эффективную выработку пара требуемых параметров.

Исходя из этих требований стали широко применяться автоматизированные системы управления технологическими процессами (АСУ ТП), которые без постоянного присутствия человека поддерживают оптимальность технологического процесса и повышают эффективность, они базируются на использовании современных средств вычислительной и микропроцессорной техники, то есть - это совокупность аппаратно-программных средств, осуществляющих контроль и управление технологическим процессом. АСУ ТП поддерживает обратную связь и воздействует на ход процесса при отклонении его от заданных режимов [8].

Схема автоматизации регулирования и контроля парового котлоагрегата должна предусматривать следующие системы:

- система автоматического регулирования и контроля тепловой нагрузки котла;

- система автоматического регулирования и контроля питания котла;

- система автоматического регулирования и контроля соотношения газ-воздух;

- система автоматического регулирования и контроля разрежения в топке котла;

- система автоматического контроля давления;

- система автоматического контроля температуры;

- система автоматической отсечки газа.

Использование программно-логических контроллеров позволяет изменить и подстроить алгоритм работы котельной при помощи ввода новой программы, либо простой коррекцией запрограммированной программы.

Опыт автоматизации промышленных котельных свидетельствует о том, что регулирование процесса горения и питание котлов дает до 8 % экономии топлива, увеличивает к. п. д. котла на (7-8) %, обеспечивает работу топки с избытками воздуха, близкими к оптимальным, сокращает расходы электроэнергии на дутье и тягу, уменьшает объем ремонтных работ и повышает культуру обслуживания.

1.2.2.1 Необходимость применения общекотловой автоматики, технологической сигнализации и удаленной диспетчеризации

Автоматизация позволяет работать без постоянного присутствия обслуживающего персонала. Для этого в автоматизированных котельных кроме обязательной котловой автоматики должна быть общекотловая автоматика, технологическая сигнализация и удаленная диспетчеризация.

Общекотловая автоматика должна в отсутствии людей управлять всей котельной, то есть:

- автоматически производить ротацию (попеременную работу) котлов;

- при отключении котла его насос должен работать еще примерно 10 минут;

- автоматически производить ротацию (попеременную работу) насосовотопления, вентиляции, горячего водоснабжения (технологического процесса);

- в зависимости от нагрузки автоматически включать (отключать) дополнительный котел;

- автоматически поддерживать температуру (заданную заводом изготовителем котла) теплоносителяна обратном трубопроводе котла;

- автоматически осуществлять подпитку системы при понижении давления теплоносителя;

-автоматически поддерживать температурный график теплоносителя в системе отопления, вентиляции, горячего водоснабжения, технологического процесса.

Технологическая сигнализация должна фиксировать все аварийные ситуации и выдавать световую и звуковую сигнализацию. В технологическую сигнализацию входят сигналы:

- утечка газа (метан);

- появление угарного газа (СО);

- понижение либо повышение давления газа (выход за уставки);

- понижение либо повышение давления теплоносителя (выход за уставки);

- понижение, повышение (выход за уставки) либо пропадание фазы питающей сети;

- авария котла;

- пожар;

- охрана.

Удаленная диспетчеризация должна дублировать состояние технологической сигнализации в помещении дежурного и включать звуковую и световую сигнализацию.

1.2.2.2 Обоснование необходимости контроля, регулирования и сигнализации технологических параметров

Автоматическое регулирование процесса горения значительно повышает экономичность газоиспользующих установок. Применение автоматики обеспечивает безопасность использования газа, улучшает условия труда обслуживающего персонала и способствует повышению его технического уровня.

Регулирование питания котельных агрегатов и регулирование давления в барабане котла главным образом сводится к поддержанию материального баланса между отводом пара и подачей воды. Параметром, характеризующим баланс, является уровень воды в барабане котла. Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. При повышении давления снижение уровня ниже допустимых пределов может привести к нарушению циркуляции в экранных трубах, в результате чего произойдет повышение температуры стенок обогреваемых труб и их пережег.

Повышение уровня также ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим, к точности поддержания заданного уровня предъявляются очень высокие требования. Качество регулирования питания также определяется равенством подачи питательной воды. Необходимо обеспечить равномерное питание котла водой, так как частые и глубокие изменения расхода питательной воды могут вызвать значительные температурные напряжения в металле экономайзера.

Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются изменение расхода питательной воды, изменение паросъема котла при изменении нагрузки потребителя, изменение паропроизводительности при изменении нагрузки топки, изменение температуры питательной воды.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1,1. При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть, чтобы поддерживать постоянство разряжения (примерно 4 мм водного столба). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам - твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.

Сигнализация параметров и защиты, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла. Вследствие этого может возникнуть аварийная ситуация. Например, при упуске воды из барабана, уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция и вызван пережег труб донных кранов. Сработавшая без промедления защита, предотвратит выход из строя парогенератора. При уменьшении нагрузки парогенератора, интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела. Надежность защиты в значительной мере определяется количеством, схемой включения и надежностью используемых в ней приборов. По своему действию защиты подразделяются на: действующие на останов парогенератора (снижение нагрузки парогенератора), выполняющие локальные операции.

1.3 Классификация котельных установок

Котельными установками называется комплекс оборудования, предназначенный для превращения химической энергии топлива в тепловую с целью получения горячей воды или пара заданных параметров.

В зависимости от назначения котельная установка состоит из котла соответствующего типа и вспомогательного оборудования, обеспечивающего его работу. Котел - это конструктивно объединенный в одно целое комплекс устройств для получения пара или для нагрева воды под давлением за счет теплоты сжигаемого топлива, при протекании технологического процесса или преобразовании электрической энергии в тепловую.

Классификация котельных установок представлена на листе 1 графического материала дипломного проекта.

По роду вырабатываемого теплоносителя котельные установки разделяют на три основных класса [3]:

- паровые, предназначенные для производства водяного пара;

- водогрейные, предназначенные для получения горячей воды и смешанные (оборудованные паровыми и водогрейными котлами), предназначенными для получения пара и горячей воды;

По характеру теплоносителя:

- энергетические, вырабатывающие пар для паровых двигателей;

- производственно-отопительные, вырабатывающие пар для технологических целей производства, отопления и вентиляции;

- отопительные, вырабатывающие пар для отопления, вентиляции и горячего водоснабжения производственных, жилых и коммунально-бытовых помещений;

- смешанные, вырабатывающие пар для снабжения одновременно паровых двигателей, технологических нужд, отопительно-вентиляционных установок и горячего водоснабжения.

По роду основного вида сжигаемого топлива:

- угольные;

- газовые;

- мазутные.

По размерам обслуживания:

- индивидуальные,

- групповые;

- районные.

Более подробная классификация представлена на первом листе графической части.

Котельные установки состоят из котлоагрегата и вспомогательного оборудования. Котельных агрегатов бывает не менее двух, а вспомогательное оборудование общее для всей котельной. Основное оборудование котельной установки представлено на рисунке 1.1.

Рисунок 1.1 - Технологическая схема котельной установки: В - вентилятор, Д - дымосос, ЭК - экономайзер, Фил - фильтры химической обработки воды, Дэаэр - деаэратор, Пн - питательный насос, НСВ - насос сырой воды, РО - регулирующий орган, ИМ - исполнительный механизм, РУ - редукционная установка.

Котлоагрегат включает топочное устройство, трубную систему с барабанами, пароперегреватель, водяной экономайзер, воздухонагреватель, дымосос, вентилятор, запорно-регулировочную арматуру, контрольно-измерительные приборы и регуляторы.

К вспомогательному оборудованию относятся редукционная установка, фильтры химической обработки воды, деаэратор, насосы сырой воды и питательные насосы, мазутное хозяйство, газорегуляторная станция, арматура, контрольно-измерительные приборы и регуляторы.

Рабочими телами, участвующими в процессе получения горячей воды или пара для производственно - технических целей и отопления, служат вода, топливо и воздух.

Паровой котел является основным элементом котлоагрегата, он представляет собой теплообменное устройство, через металлические стенки которого происходит передача тепла от горячих продуктов горения топлива к воде для получения пара.

Паропроизводительность котельной установки или ее мощность представляет собой сумму паропроизводительностей отдельных котлоагрегатов, входящих в её состав. Паропроизводительность котлоагрегата определяется количеством килограммов или тонн пара, производимого им в час, обозначается буквой D и измеряется в кг/ч или т/ч.

Топочное устройство котлоагрегата служит для сжигания топлива и превращения его в химической энергии в тепло наиболее экономичным способом.

Пароперегреватель предназначен для перегрева пара, полученного в котле за счет передачи ему тепла дымовых газов. Водяной экономайзер служит для подогрева поступающей в котел питательной воды теплом уходящих из котла дымовых газов.

Воздухоподогреватель предназначен для подогрева поступающего в топочное устройства воздуха теплом уходящих газов.

Топливный склад предназначен для хранения топлива; его оборудуют механизмами для разгрузки и подачи топлива в котельную или к топливоподготовительному устройству. Топливоподготовительное устройство в котельных, работающих на пылевидном топливе, служит для измельчения топлива до пылевидного состояния; его оборудуют дробилками, сушилками, мельницами, питателями, вентиляторами, а также системой транспортеров и пылегазопроводов.

Устройство для удаления золы и шлаков состоит из механических приспособлений: вагонеток или транспортеров или тех и других, вместе взятых.

Устройство для подготовки питательной воды состоит из аппаратов и приспособлений, обеспечивающих очистку воды от механических примесей и растворенных в ней накипеобразующих солей, а также удаления из неё газов.

Питательная установка состоит из питательных насосов для подачи воды в котел под давлением, а также соответствующих трубопроводов.

Тягодутьевое устройство состоит из дутьевых вентиляторов, системы газовоздуховодов, дымососа и дымовой трубы, обеспечивающих подачу необходимого количества воздуха в топочное устройство, движение продуктов сгорания по газоходам и удаления продуктов сгорания за пределы котлоагрегата.

Устройство теплового контроля и автоматического управления состоит из контрольно - измерительных приборов и автоматов, обеспечивающих бесперебойное и согласованную работу отдельных устройств котельной установки для выработки необходимого количества пара определенно температуры и давления.

Котлы классифицируют в зависимости от вида соответствующего тракта и его оборудования. По виду сжигаемого топлива и соответствующего топливного тракта различают котлы для газообразного, жидкого и твердого топлива.

По газовоздушному тракту различают котлы с естественной и уравновешенной тягой и с наддувом. В котле с естественной тягой сопротивление газового тракта преодолевается под действием разности плотностей атмосферного воздуха и газа в дымовой трубе. Если сопротивление газового тракта (так же, как и воздушного) преодолевается с помощью дутьевого вентилятора, то котел работает с наддувом. В котле с уравновешенной тягой давление в топке и начале газохода поддерживается близким к атмосферному совместной работой дутьевого вентилятора и дымососа. В настоящее время стремятся все выпускаемые котлы, в том числе и с уравновешенной тягой, производить газоплотными.

По виду пароводяного тракта различают барабанные (рисунок 1.2, а, б) и прямоточные (рисунок 1.2, в) котлы. Во всех типах котлов через экономайзер 1 и перегреватель 6 вода и пар проходят однократно. В барабанных котлах пароводяная смесь в испарительных поверхностях нагрева 5 циркулирует многократно (от барабана 2 по опускным трубам 3 к коллектору 4 и барабану 2). Причем в котлах с принудительной циркуляцией (рисунок 1.2, б) перед входом воды в испарительные поверхности 5 устанавливают дополнительный насос 8. В прямоточных котлах (рисунок 1.2, б) рабочее тело по всем поверхностям нагрева проходит однократно под действием напора, развиваемого питательным насосом 7.

Рисунок 1.2 - Схемы пароводяного тракта котла: 1 - экономайзер, 2 - барабан, 3 - отпускные трубы, 4 - коллектор, 5 - испарительный экран, 6 - перегревательный экран, 7 - питательный насос, 8 - дополнительный насос, а - барабанный котел с естественной циркуляцией; б - барабанный котел с принудительной циркуляцией; в - прямоточный котел; г - прямоточный котел с принудительной циркуляцией

В прямоточных котлах докритического давления испарительные экраны 5 располагают в нижней части топки, поэтому их называют нижней радиационной частью (НРЧ). Экраны, расположенные в средней и верхней частях топки, преимущественно являются перегревательными 6. Их соответственно называют средней радиационной частью (СРЧ) или верхней радиационной частью (ВРЧ).

Для увеличения скорости движения воды в некоторых поверхностях нагрева (как правило, НРЧ) при пуске прямоточного котла или работе на пониженных нагрузках обеспечивают принудительную рециркуляцию воды специальным насосом 8 (рисунок 1.2, г). Это котлы с рециркуляцией и комбинированной циркуляцией.

По фазовому состоянию выводимого из топки шлака различают котлы с твердым и жидким шлакоудалением. В котлах с твердым шлакоудалением (ТШУ) шлак из топки удаляется в твердом состоянии, а в котлах с жидким шлакоудалением (ЖШУ) - в расплавленном.

Стационарные котлы характеризуются следующими основными параметрами: номинальной паропроизводительностью, давлением, температурой пара (основного и промежуточного перегрева) и питательной воды. Под номинальной паропроизводительностью понимают наибольшую нагрузку (в т/ч или кг/с) стационарного котла, с которой он может работать в течение длительной эксплуатации при сжигании основного вида топлива или при подводе номинального количества теплоты при номинальных значениях пара и питательной воды с учетом допускаемых отклонений.

Номинальные значения давления и температуры пара должны быть обеспечены непосредственно перед паропроводом к потребителю пара при номинальной паропроизводительности котла (а температура также при номинальном давлении и температуре питательной воды).

Номинальная температура промежуточного перегрева пара - это температура пара непосредственно за промежуточным перегревателем котла при номинальных значениях давления пара, температуры питательной воды, паропроизводительности и остальных параметров пара промежуточного перегрева с учетом допускаемых отклонений.

Номинальная температура питательной воды - это температура воды, которую необходимо обеспечить перед входом в экономайзер или другой подогреватель питательной воды котла (или при их отсутствии - перед входом в барабан) при номинальной паропроизводительности.

По давлению рабочего тела различают котлы низкого (менее 1 МПа), среднего ((1-10) МПа), высокого ((10-22,5) МПа) и сверхкритического давления (более 22,5 МПа). Наиболее характерные особенности котла и основные параметры введены в его обозначение. Согласно ГОСТ 3619-82 Е тип котла и вид сжигаемого топлива обозначают следующим образом: Е - естественной циркуляции; Пр - с принудительной циркуляцией; П - прямоточный; Пп - прямоточный с промежуточным перегревом; Еп - барабанный с естественной циркуляцией и промежуточным перегревом; Т - с твердым шлакоудалением; Ж - с жидким шлакоудалением; Г - газообразное топливо; М - мазут; Б - бурый уголь; К - каменный уголь. Например, котел прямоточный с промежуточным перегревом производительностью 2650 т/ч с давлением 25 МПа температурой пара 545 °С и промежуточного перегрева пара 542 °С на буром угле с твердым шлакоудалением обозначают: Пп-2650-25-545/5420 БТ.

1.4 Цель и задачи

Целью дипломного проекта является повышение эффективности работы котельной установки за счет автоматизации процесса розжига.

Для достижения поставленной цели необходимо решить следующие задачи:

- определить к какому классу относится котельная установка на Медвежьем газовом месторождении;

- провести сравнительный анализ программируемых контроллеров;

- разработать функциональную схему автоматизации установки;

- разработать схему соединений электрических проводок;

- создать комбинированную общую схему контроллера «ТЭКОН-17»;

- создать экранные формы прикладного программного обеспечения выбранного логического контроллера;

- осуществить план расстановки оборудования;

- построить комбинированную общую схему одного из датчиков расхода digitalYEWFLOW, на основе которого выполнен узел учета пара от котла;

- провести технико-экономическое обоснование.

логический контроллер котел автоматизация

2. Технологический процесс котельной на УКПГ- 8

2.1 Исследование объекта управления

2.1.1 Барабанный паровой котел, как объект управления

Принципиальная схема технологического процесса, протекающего в барабанном паровом котле, показана на рисунке 2.1, схема циркуляционного контура - на рисунке 2.2 [5].

Рисунок 2.1 - Принципиальная технологическая схема барабанного котла: 1 - топка, 2 - циркуляционный контур, 3 - опускные трубы, 4 - барабан, 5, 6 - пароперегреватели, 7 - пароохладитель, 8 - водяной экономайзер, 9 - воздухоподогреватель, ГПЗ - главная паровая задвижка; РПК - регулирующий питательный клапан

Топливо поступает через горелочные устройства в топку 1, где сжигается обычно факельным способом. Для поддержания процесса горения в топку подается воздух в количестве QВ, с помощью вентилятора ДВ. Воздух предварительно нагревается в воздухоподогревателе 9. Дымовые газы QГ отсасывается из топки дымососом ДС. Дымовые газы проходят через поверхности нагрева пароперегревателей 5, 6, водяного экономайзера 8, воздухоподогревателя 9 и удаляются через дымовую трубу в атмосферу. Процесс парообразования протекает в подъемных трубах циркуляционного контура 2, экранирующих камерную топку и снабжаемых водой из опускных труб 3. Насыщенный пар Dб из барабана 4 поступает в пароподогреватель, где нагревается до установленной температуры за счет радиации факела и конвективного обогрева топочными газами. При этом температура перегрева пара регулируется в пароохладителе 7 с помощью впрыска воды Dвпр.

Рисунок 2.2 - Принципиальная схема циркуляционного контура: 1 - водяной экономайзер, 2 - испарительная часть, 3 - барабан, 4 - ступени пароперегревателя, 5 - пароохладитель

Основными регулируемыми величинами котла является расход перегретого пара Дпп, его давление Рпп и температура Tпп. Кроме того, следует поддерживать в пределах допустимых отклонений значения следующих величин:

- уровня воды в барабане Нб (регулируется изменением подачи питательной воды Dпв);

- разрежение в верхней части топки Sт (регулируется изменением производительности дымососов);

- оптимального избытка воздуха за пароперегревателем О2 (регулируется изменением производительности дутьевых вентиляторов);

- солесодержания котловой воды (регулируется изменением расхода воды Дпр, выпускаемой из барабана в расширитель непрерывной продувки).

Перечисленные величины изменяются в результате регулирующих воздействий и под действием внешних и внутренних возмущений. Котел как объект управления (ОУ) представляет собой сложную динамическую систему с несколькими взаимосвязанными входными и выходными величинами (рисунок 2.3). Однако явно выраженная направленность отдельных участков по основным каналам регулирующих воздействий, таким как расход воды на впрыск Dвпр - перегрев tпп, расход топлива Вт - давление pпп и другие, позволяет осуществлять стабилизацию регулируемых величин с помощью независимых одноконтурных систем, связанных лишь через объект управления.

Рисунок 2.3 - Схема взаимосвязей между выходными и входными величинами в барабанном котле

Система управления барабанным паровым котлом (БПК) включает автономные системы автоматического регулирования (САР):

- САР процессов горения и парообразования;

- САР температур перегрева пара;

- САР процессов питания и водного режима.

2.1.2 Регулирование процессов горения и парообразования

Регулирование процесса горения и парообразования осуществляется следующим образом.

Процессы горения и парообразования тесно связаны. Количество сжигаемого топлива в установившемся режиме должно соответствовать количеству вырабатываемого пара Dб. Косвенным показателем тепловыделения Q'т служит тепловая нагрузка Dq. Количество пара в свою очередь должно соответствовать расходу пара на турбину Dпп. Косвенным показателем этого соответствия служит давление пара перед турбиной. Регулирование процессов горения и парообразования в целом сводится к поддержанию вблизи заданных значений следующих величин:

- давления перегретого пара pпп и тепловой нагрузки Dq;

- избытка воздуха в топке (содержания О2, %) за пароперегревателем, влияющего на экономичность процесса горения;

- разрежения в верхней части топки Sт.

2.1.2.1 Регулирование давления перегретого пара и тепловой нагрузки

Котел, как объект регулирования давления и тепловой нагрузки, может быть представлен в виде простых участков, топочный камеры; парообразующей части, состоящей из поверхностей нагрева, расположенных в топочной камере; барабана и пароперегревателя (рисунок 2.1).

Изменение тепловыделений Q'т приводит к изменению паропроизводительности Dб и давления пара в барабане Pб.

Тепловая нагрузка характеризуется количеством теплоты, воспринятое поверхностью нагрева в единицу времени и затраченное на нагрев котловой воды в экранных трубах и парогенератора. В динамическом отношении интерес представляет не значение тепловой нагрузки в определенный момент времени, а ее изменение или приращение DDq после нанесения внутреннего или внешнего возмущающего воздействия. Приращения DDq называется также сигнал по теплоте.

Имеется несколько способов измерения DDq. Самые распространенные из них - по излучению факела (непрерывный) и по перепаду давления на циркуляционном контуре барабанного котла и другие. Принципиальная схема формирования DDq приведена на рисунке 2.4.

Рисунок 2.4 - Схема формирования сигнала по теплоте: 1 - датчик давления пара, 2 - дифференциатор, 3 - датчик расхода пара, 4 - измерительный блок регулирующего прибора

Существующие способы и схемы автоматического регулирования тепловой нагрузки и давления пара в магистрали основаны на принципах регулирования по отклонению (базовой режим) и возмущению (регулирующей режим).

Базовым называют режим поддержания паровой нагрузки котла на заданном уровне вне зависимости от изменения общей электрической или тепловой нагрузки ТЭС.

В регулирующем режиме котел воспринимает колебания тепловой и электрической нагрузок турбин. Регулирования давления пара в регулирующем режиме является воздействие на расход топлива, подаваемого в топку, в зависимости от отклонения давления пара в магистрали.

Рисунок 2.5 - Принципиальная схема регулирования давления пара: 1 - топка, 2 - регулятор частоты вращения, 3 - механизм управления регулирующим клапаном, 4 - регулятор давления, 5 - электропривод

Принципиальная схема замкнутой САР давления приведена на рисунке 2.5. В регулирующем режиме давления пара поддерживает регулятор давления 4, воздействующий на регулятор подачи топлива в топку 1, а частота вращения ротора турбины - регулятор частоты вращения 2 (вариант а). В базовом режиме воздействие регулятора давления 4 должно быть переключено на механизм управления регулирующими клапанами турбины 3 через электропривод синхронизатора турбины 5 (вариант б).

Поддержание постоянства давления пара в общей магистрали группы котлов обеспечивается при отклонении давления в общей магистрали подачей заданного количества топлива в топку каждого котла.

2.1.2.2 Регулирование экономичности процесса горения

Экономичность работы котла оценивается по его КПД, равному отношению полезной теплоты, затраченной на генерирование и перегрева пара, к располагаемой теплоте, которая могла быть получена при сжигании всего топлива. Поддержание оптимального избытка воздуха не только повышение КПД, но и уменьшает коррозии поверхности нагрева, образование вредных соединений и другие нежелательные изменения.

Одним из наиболее представительных косвенных способов оценки экономичности процесса горения является анализ состава топочных газов, покидающих топку.

Основным способом регулирования оптимального значения избытки воздуха за пароперегревателем служит изменение количества воздуха, подаваемого в топку с помощью дутьевых вентиляторов (Dв). Существует несколько вариантов схем автоматического управления подачи воздуха в зависимости от способов косвенной оценки экономичности процесса горения по соотношению различных сигналов.

Регулирование экономичности по соотношению топливо-воздух происходит следующим образом.

При постоянном качестве топлива его расход и количество воздуха, необходимое для обеспечения требуемой полноты сгорания, связаны прямой пропорциональной зависимостью, устанавливаемой в результате режимных испытаний. При газообразном топливе требуемое соотношение между количеством газа и воздуха осуществляется наиболее просто. Однако непрерывное измерение расхода пылевидного твердого топливо является трудной проблема. Поэтому применение схема топливо-воздух оправдано жидкого или газообразного топлива постоянного состава (рисунок 2.6, а).

Регулирование экономичности по соотношению пар-воздух описано ниже.

На единицу расхода различного по составу топлива (газа) необходимо различное количество воздуха. На единицу теплоты, выделяющейся при сгорании любого вида топлива, требуется одно и то же количество воздуха. Поэтому, если оценивать тепловыделение в топке по расходу пара и изменять расход пара, то тем самым можно поддерживать оптимальный избыток воздуха (рисунок 2.6, б).

Регулирование экономичности по соотношению теплота-воздух осуществляется следующим образом.

Если тепловыделение в топке Q'т оценивать по расходу перегретого пара и скорости изменения давления пара в барабане, то инерционность этого суммарного сигнала при топочных возмущениях будет существенно меньше инерционности одного сигнала по расходу пара Dпп. Соответствующее заданному тепловыделению количество воздуха измеряется по перепаду давлений на воздухоподогревателе или по давлению воздуха в напорном патрубке вентилятора. Разность этих сигналов используется в качестве входного сигнала регулятора экономичности (рисунок 2.6, в). Регулирование экономичности по соотношению задание-воздух (нагрузка-воздух) с коррекцией О2 осуществляется следующим образом.

Содержание О2 в продуктах сгорания топлива характеризует избыток воздуха и слабо зависит от состава топлива. Поэтому использование О2 в качестве входного сигнала автоматического регулятора, воздействующего на расход воздуха, представляется вполне целесообразным.

Однако реализация этого способа затруднена из-за отсутствия надежности и быстродействующих газоанализаторов кислорода. В схемах задание-воздух c дополнительной коррекцией по О2 в целом совмещаются принципом регулирования по возмущению и отклонению (рисунок 2.6, г). Регулятор подачи воздуха 1 изменяет его расход по сигналу от главного или корректирующего регулятора давления 5, являющего автоматическим датчиком регуляторов по нагрузке котла.

Рисунок 2.6 - Регулирование подачи воздуха по соотношению: 1 - регулятор подачи воздуха, 2 - регулирующий орган, 3 -дифференциатор, 4 - корректирующий регулятор воздуха, 5 - корректирующий регулятор давления перегретого пара (регулятор задания по нагрузке); а - топливо-воздух, б - пар-воздух, в - теплота-воздух, г - нагрузка-воздух с коррекцией по O2

Сигнал, пропорциональный расходу воздуха ДPвп, действует, как и в других схемах: во-первых, устраняет возмущение по расходу воздуха, не связанные с регулированием экономичности; во-вторых, способствует стабилизации самого процесса регулирования подачи воздуха, т.к. служит одновременно сигналом жесткий отрицательной обратной связи. Дополнительный сигнал по содержания О2 повышает точность поддержания оптимального избытка воздуха.


Подобные документы

  • Способы и схемы автоматического регулирования тепловой нагрузки и давления пара в котле. Выбор вида сжигаемого топлива; определение режима работы котла. Разработка функциональной схемы подсоединения паропровода перегретого пара к потребителю (турбине).

    практическая работа [416,1 K], добавлен 07.02.2014

  • Построение процесса расширения пара в h-s диаграмме. Расчет установки сетевых подогревателей. Процесс расширения пара в приводной турбине питательного насоса. Определение расходов пара на турбину. Расчет тепловой экономичности ТЭС и выбор трубопроводов.

    курсовая работа [362,8 K], добавлен 10.06.2010

  • Анализ существующих систем автоматизации процесса регулирования давления пара в барабане котла. Описание технологического процесса котлоагрегата БКЗ-7539. Параметрический синтез системы автоматического регулирования. Приборы для регулирования параметров.

    дипломная работа [386,2 K], добавлен 03.12.2012

  • Сущность технологического процесса, осуществляемого в котельной установке. Описание работы схемы автоматизации. Устройство и работа составных частей. Исполнительный механизм МЭО-40. Расчет и выбор регуляторов. Выбор приборов и исполнительных устройств.

    курсовая работа [1023,3 K], добавлен 02.04.2014

  • Расчет тепловой схемы конденсационной электростанции высокого давления с промежуточным перегревом пара. Основные показатели тепловой экономичности при её общей мощности 35 МВт и мощности турбин типа К-300–240. Построение процесса расширения пара.

    курсовая работа [126,9 K], добавлен 24.02.2013

  • Общая характеристика парогазовых установок (ПГУ). Выбор схемы ПГУ и ее описание. Термодинамический расчет цикла газотурбинной установки. Расчет цикла ПГУ. Расход натурального топлива и пара. Тепловой баланс котла-утилизатора. Процесс перегрева пара.

    курсовая работа [852,9 K], добавлен 24.03.2013

  • Расчет горения топлива. Тепловой баланс котла. Расчет теплообмена в топке. Расчет теплообмена в воздухоподогревателе. Определение температур уходящих газов. Расход пара, воздуха и дымовых газов. Оценка показателей экономичности и надежности котла.

    курсовая работа [4,7 M], добавлен 10.01.2013

  • Выбор и обоснование принципиальной тепловой схемы блока. Составление баланса основных потоков пара и воды. Основные характеристики турбины. Построение процесса расширения пара в турбине на hs- диаграмме. Расчет поверхностей нагрева котла-утилизатора.

    курсовая работа [192,9 K], добавлен 25.12.2012

  • Техническая характеристика котлоагрегата ТП-38. Синтез системы управления. Разработка функциональной схемы автоматизации. Производстенная безопасность объекта. Расчет экономической эффективности модернизации системы управления котлоагрегатом ТП-38.

    дипломная работа [2,6 M], добавлен 30.09.2012

  • Построение процесса расширения пара в турбине в H-S диаграмме. Определение параметров и расходов пара и воды на электростанции. Составление основных тепловых балансов для узлов и аппаратов тепловой схемы. Предварительная оценка расхода пара на турбину.

    курсовая работа [93,6 K], добавлен 05.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.