Расчет теоретического цикла ДВС
Определение основных параметров состояния рабочего тела в характерных точках цикла. Вычисление удельной работы расширения и сжатия, количества подведенной и отведенной теплоты. Изменение внутренней энергии, энтальпии и энтропии в процессах цикла.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.10.2014 |
Размер файла | 134,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Расчет теоретического цикла ДВС
Исходные данные
Рассчитать цикл поршневого двигателя внутреннего сгорания, если начальное давление - P1=0,09МПа, начальная температура - T1=270К, степень сжатия - =16, степень повышения давления - =1,6, степень предварительного расширения - =1,9. Рабочее тело - воздух. Rв=287Дж/(кг·К); Ср=1,01 кДж/(кг·К); Сv=0,72кДж/(кг·К); n1=1,32 (сжатие); n2=1,4 (расширение);
А. Цикл ДВС с подводом теплоты при р=const.
Б. Цикл ДВС с подводом теплоты при .
В. Цикл ДВС со смешанным подводом теплоты.
Г. Цикл ДВС с турбонаддувом и продолженным расширением газов.
Определить:
- параметры состояния (p, v, T) рабочего тела в характерных точках цикла;
- удельную работу расширения, сжатия, работу цикла;
- удельное количество подведенной и отведенной теплоты;
- изменение внутренней энергии (u), энтальпии (h) и энтропии (s) в процессах, входящих в цикл;
- среднее индикаторное давление в цикле (pi);
- термический КПД цикла;
- термический КПД цикла Карно по условию задачи.
Для того чтобы рассматривать термодинамические циклы необходимо работу тепловых машин идеализировать. Эта идеализация сводится к тому, что в идеальных термодинамических циклах:
- процессы протекают во всех своих стадиях с постоянным количеством рабочего тела;
- отбрасывается возможность сгорания топлива, в связи с чем химический состав рабочего тела принимается постоянным при всех стадиях термодинамического цикла. Процесс сгорания при этом заменяется подводом теплоты к рабочему телу через стенки цилиндра от некоторого фиктивного горячего источника теплоты;
- процессы сжатия и расширения рабочего тела принимаются адиабатными;
- удаление отработавшего рабочего тела не учитывается и заменяется отводом теплоты от рабочего тела через стенки цилиндра к так называемому холодному источнику теплоты (холодильнику);
- теплоемкости рабочих тел принимаются не зависящими от температуры;
- рабочим телом является идеальный газ.
1. Цикл ДВС с подводом теплоты при р=const
Параметры точки 1:
Р1=0,09МПа; Т1=270К;
Параметры точки 2:
Параметры точки 3:
Р2=Р3=3,5МПа;
Параметры точки 4:
Удельная работа расширения:
Удельная работа сжатия:
Полезная удельная работа:
Удельное количество подведенной теплоты:
Удельное количество отведенной теплоты:
Полезно использованное удельное количество теплоты:
Среднее индикаторное давление в цикле:
Термический КПД цикла:
КПД цикла Карно:
Изменение внутренней энергии:
Изменение энтальпии:
Изменение энтропии:
Средняя интегральная температура подвода теплоты:
Средняя интегральная температура отвода теплоты:
2. Цикл ДВС с подводом теплоты при
Параметры точки 1:
Р1=0,09МПа; Т1=270К;
Параметры точки 2:
Параметры точки 3:
Параметры точки 4:
Удельная работа расширения:
Удельная работа сжатия:
Полезная удельная работа:
Удельное количество подведенной теплоты:
Удельное количество отведенной теплоты:
Полезно использованное удельное количество теплоты:
Среднее индикаторное давление в цикле:
Термический КПД цикла:
КПД цикла Карно:
Изменение внутренней энергии:
Изменение энтропии:
Средняя интегральная температура подвода теплоты:
Средняя интегральная температура отвода теплоты:
3. Цикл ДВС со смешанным подводом теплоты
Параметры точки 1:
Р1=0,09МПа; Т1=270К;
Параметры точки 2:
Параметры точки 3:
Параметры точки 4:
Параметры точки 5:
Удельная работа сжатия:
Удельная работа расширения:
Полезная удельная работа:
Удельное количество подведенной теплоты:
Удельное количество отведенной теплоты:
Полезно использованное удельное количество теплоты:
Среднее индикаторное давление в цикле:
Термический КПД цикла:
КПД цикла Карно:
Изменение энтропии:
Изменение внутренней энергии:
Средняя интегральная температура подвода теплоты:
Средняя интегральная температура отвода теплоты:
4. Цикл ДВС с турбонаддувом и продолженным расширением газов
Термодинамический цикл с продолженным расширением может быть осуществлен в комплексной установке двигателя и турбонагнетателя, состоящего из газовой турбины и компрессора (рис. 1, рис. 2). В газовой турбине происходит дальнейшее расширение газов, а полученная при этом энергия расходуется на привод нагнетателя для наддува двигателя. Циклы установки с продолженным расширением, переменным и постоянным давлением газов перед турбиной представлены соответственно на рис. 1 и на рис. 2. Расчет характерных точек аналогичен, рассмотрен выше циклам. Определим термический КПД цикла с продолженным расширением, переменным и постоянным давлением газов перед турбиной:
где bf - продолженное расширение газа на лопатках турбины; f0 - отвод теплоты при р = const; 0а - адиабатное сжатие воздуха в нагнетателе; - общая степень сжатия.
Из сравнения выражений для КПД обобщенного цикла и цикла с продолженным расширением газов видно, что КПД последнего выше. Это относится также к циклу с продолженным расширением, когда давление перед турбиной поддерживается постоянным, и кинетическая энергия отработавших газов не используется на лопатках турбины (рис. 2).
Список литературы
1. В.В. Нащекин. Техническая термодинамика и теплопередача.
2. Методическое пособие и задания для студентов специальностей 1-43 01 05 «Промышленная теплоэнергетика», Минск 2010.
Размещено на Allbest.ru
Подобные документы
Принципиальная схема двигателя внутреннего сгорания и его характеристика. Определение изменения в процессах цикла внутренней энергии и энтропии, подведенной и отведенной теплоты, полезной работы. Расчет термического коэффициента полезного действия цикла.
курсовая работа [209,1 K], добавлен 01.10.2012Расчёт оптимального значения степени повышения давления в компрессоре газотурбинного двигателя. Изменение внутренней энергии, энтальпии и энтропии в процессах цикла, параметров состояния рабочего тела в промежуточных точках процессов сжатия и расширения.
курсовая работа [278,4 K], добавлен 19.04.2015Молярная масса и массовые теплоемкости газовой смеси. Процесс адиабатного состояния. Параметры рабочего тела в точках цикла. Влияние степени сжатия, повышения давления и изобарного расширения на термический КПД цикла. Процесс отвода теплоты по изохоре.
курсовая работа [35,7 K], добавлен 07.03.2010Определение параметров рабочего тела методом последовательных приближений. Значения теплоемкостей, показатели адиабаты и газовой постоянной. Изменение в процессах внутренней энергии, энтальпии и энтропии. Термический коэффициент полезного действия.
курсовая работа [1,1 M], добавлен 03.05.2011Расчет эффективности работы паросилового цикла Ренкина. Определение параметров состояния рабочего тела в различных точках цикла. Оценка потери энергии и работоспособности в реальных процесса рабочего тела. Эксергетический анализ исследуемого цикла.
реферат [180,6 K], добавлен 21.07.2014Определение показателя политропы, начальных и конечных параметров, изменения энтропии для данного газа. Расчет параметров рабочего тела в характерных точках идеального цикла поршневого двигателя внутреннего сгорания с изохорно-изобарным подводом теплоты.
контрольная работа [1,1 M], добавлен 03.12.2011Расчет параметров рабочего тела в цикле с подводом теплоты при постоянном объеме. Анализ результатов для процесса сжатия. Значения температуры рабочего тела в отдельно взятых точках термодинамического цикла. Температура в произвольном положении поршня.
контрольная работа [36,2 K], добавлен 23.11.2013Определение состава газовой смеси в массовых и объемных долях; ее плотности и удельного объема, процессных теплоемкостей и показателя адиабаты. Изменение внутренней энергии, энтальпии и энтропии в процессах, составляющих цикл. Термический КПД цикла Карно.
контрольная работа [38,9 K], добавлен 14.01.2014Расчет параметров газовой смеси: ее молекулярной массы, газовой постоянной, массовой изобарной и изохорной теплоемкости. Проверка по формуле Майера и расчет адиабаты. Удельная энтропия в характерных точках цикла и определение термического КПД цикла Карно.
контрольная работа [93,6 K], добавлен 07.04.2013- Расчет параметров теплоэнергетической установки с промежуточным перегревом пара и регенерацией тепла
Параметры рабочего тела во всех характерных точках идеального цикла. Определение КПД идеального цикла Ренкина. Энергетические параметры для всех процессов, составляющих реальный цикл. Уравнение эксергетического баланса. Цикл с регенеративным отводом.
курсовая работа [733,4 K], добавлен 04.11.2013