Полевой эффект и его применение
Эффект поля в Германии при высоких частотах, применение эффекта поля. Дрейфовый и диффузный токи в полупроводниках. Образование обедненных, инверсионных, обогащенных слоев в полупроводнике. Характеристики полевого транзистора, приборы с зарядовой связью.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 24.07.2010 |
Размер файла | 4,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
На низких частотах влиянием сопротивления rс вполне можно пренебречь и считать его малой частью сопротивления нагрузки, которое обычно достаточно велико. Сопротивление rи оказывает небольшое влияние на эффективную крутизну характеристики прибора, однако и этим влиянием обычно пренебрегают. Напряжение v'зи на рис. 36 связано с напряжением vзи на выводе прибора соотношением
(2.32)
Для полевого транзистора, у которого gm= l ма/в, а rи=75 ом, знаменатель выражения (2.32) равен 1,075.
Величина gси представляет собой тангенс угла наклона выходной характеристики в области насыщения и обычно мала по сравнению с проводимостью нагрузки.
Рис. 37. Общая эквивалентная схема четырехполюсника для вычисления y-параметров полевого транзистора.
У изготовителей вошло в практику указывать в качестве технических данных полевого транзистора комплексные параметры проводимости его эквивалентной схемы в режиме короткого замыкания. Общая эквивалентная схема четырехполюсника для вычисления параметров представлена на рис. 37. Напряжения и токи на выводах прибора в режиме малого сигнала, вычисленные для схемы с общим истоком, соответствуют следующим характеристическим уравнениям четырехполюсника :
iз=yвх иvзи+yобр иvси (2.33)
iс=yпр иvзи+yвых иvси (2.34)
Условия для определения отдельных параметров следующие:
короткое замыкание на выходе
увх и=iз /vзи , упр и=ic/vзи
короткое замыкание на входе
уобр и=iз/vси , увых и=iс/vси
Если эти условия воспроизвести на эквивалентной схеме рис. 36, то y-параметры можно выразить через величины сосредоточенных элементов -- сопротивлений, емкостей и э. д. с. Пренебрегая всеми проводимостями диодов и объемными сопротивлениями полупроводника, получим
(2.35-2.38)
Все эти параметры зависят от смещения. Мы уже видели, что зависимость gm от смещения в области насыщения легко найти, дифференцируя квадратичное приближение для тока по vзи :
(2,39)
Если желательно выразить gm через Iс нас, а не через Vзи, то путем простых алгебраических преобразований найдем
(2.40)
В гл. 1 мы установили, что получить аналитическое выражение для зависимости gси от смещения -- безнадежная задача. Нам остается только полагаться на результаты измерений, сообщаемых поставщиком приборов,- или принять допущение, что проводимость нагрузки велика и проводимостью gси можно пренебречь.
Если можно ввести допущение, что суммарная емкость перехода канал -- затвор равна (Ссз + Сиз), то ее можно выразить через постоянные полевого транзистора и характеристики, зависящие от смещения, которые связывают токи и напряжения на выводах прибора. Уравнение (1.44) мы записали в следующем виде:
а уравнение (1.47) было записано в форме
Подставляя выражение (1.47) в уравнение (1.44), получаем
(2,41)
Теперь из уравнения (1.6) следует
(2.42)
Подставляя это выражение в уравнение (2.41), имеем
(2,43)
Уравнение (2.43) можно непосредственно проинтегрировать:
(2,44)
а это соотношение, пользуясь уравнением (1.25), можно переписать, введя gm:
(2,45)
Величины L и -- постоянные. Длина L для транзисторов, изготовляемых двойной диффузией, определяется размерами шаблона, используемого в фотолитографическом процессе; у полевых транзисторов типов 2N2497 и 2N3329 она равна приблизительно 0,013 мм. Величина (j,для дырок в кремнии р-типа равна 500 см2/в * сек. Уравнение (2.45) справедливо для полевого транзистора, имеющего идеальную геометрию. Полевой транзистор, изготовляемый при помощи двойной диффузии, имеет нижний затвор, или затвор-подложку большой площади, ввиду чего полная емкость затвора будет несколько больше рассчитанной. В будущем метод вывода контактных площадок на окисную пленку даст возможность в значительной степени уменьшить площадь нижнего затвора, а следовательно, обеспечить емкость затвора, более согласующуюся с расчетами, сделанными для идеальной модели. С целью дальнейших упрощений было бы соблазнительно использовать квадратичные приближения для h нас и gm в уравнении (2.45). Это сделать можно, но только надо с большой осторожностью толковать получаемые результаты. Вспомним, что квадратичное приближение является достаточно точным лишь для тех приборов, у которых толщина канала мала по сравнению € толщиной обедненного слоя, обусловленного контактной разностью потенциалов. Оно вполне точно для того предельного случая, когда канал имеет бесконечно малую толщину, т. е. для рассмотренного нами в гл. 1 распределения примесей, имеющего пик. Следовательно, мы должны ожидать, что если ввести квадратичное приближение в уравнение (2.45), то емкость затвор-канал не будет изменяться в зависимости от смещения.
Чтобы установить зависимость С3 от смещения, необходимо оценить величину gm и по приведенным в гл.. 1 данным о геометрии прибора и распределении в нем примесей. Мы используем здесь квадратичное приближение потому, что оно позволяет весьма быстро произвести оценку частотных свойств тех полевых транзисторов, о которых изготовитель в каталоге приводит только данные, относящиеся к статическим характеристикам. В настоящее время еще распространено несколько каталогов такого типа, однако все они, в конце концов, будут вытеснены новой регистрационной формой, введенной Ассоциацией электронной промышленности.
Подставляя квадратичные приближения для gm и в уравнение (2.45), получаем
(2,46)
4.8 Эффекты второго порядка на высоких частотах
Изображенные на схеме рис. 36 объемные сопротивления rс и rи приводят к появлению членов второго порядка в приолиженных уравнениях (2.35) --(2.38) для y-параметров полевого транзистора. Причины этого объясняет простой пример, показанный на рис. 38. Фундаментальная теорема из курса теории электрических цепей утверждает, что любую последовательную схему, например схему рис. 38а, можно для фиксированной частоты заменить некоторой параллельной схемой, например схемой, изображенной на рис. 38,б.
Рис 38 Последовательное (а, и параллельное (б) соединение конденсатора и резистора.
На любой частоте
(2-47)
Где
Подставляя эти комплексные величины вместо упар и Zпосл в уравнение (2.47) и приравнивая попарно действительные и мнимые члены, получаем
(2.48-2.49)
На частотах, при которых 2C2послR2посл1, упар можно приблизительно представить выражением
упар = (2С2посл Rпосл +jCпосл (2.50)
Таким образом, действительная часть, содержащая квадрат частоты, является членом второго порядка, а мнимая часть представляет собой член первого порядка, зависящий от первой степени угловой частоты. Если учесть в выражениях для у-параметров влияние сопротивлений rс и rи (рис. 36) и принять подходящие упрощающие допущения, то выражения для увхи, уобр и и увыхи с учетом эффектов второго порядка можно практически сразу переписать в следующем виде:
(2,51-2,53)
Эти приближенные выражения очень хорошо объясняют характер изменения у-параметров на высоких частотах, не слишком усложняя модель прибора. На рис. 2.11--2.13 приведены зависимости этих у-параметров от частоты для транзистора типа 2N2499. Отметим, что наклон кривой, представляющей мнимую часть каждого из трех предыдущих уравнений, равен примерно 20 дб на декаду, а действительные части имеют наклон около 40 дб на декаду, что объясняется наличием в соответствующих выражениях членов, содержащих 1-ю и 2-ю степени частоты. Численные значения величин приведенных на графиках, можно проверить, пользуясь техническими данными, представленными изготовителем полевого транзистора 2N2499: сопротивления rс и rи у этого прибора равны каждое примерно 50 ом.
4.9 Шумовые характеристики
В полевом транзисторе действуют три основных вида шумов:
1. Полный дробовой шум, вызываемый током утечки затвора.
2. Напряжение теплового шума, генерируемое в проводящем канале и модулирующее толщину обедненного слоя.
3. Шум генерации-рекомбинации в обедненном слое; величина этого шума обратно пропорциональна частоте, и он также модулирует толщину обедненного слоя.
Ток дробового шума, обусловленный случайными изменениями плотности носителей, собираемых по обе стороны перехода, определяется выражением
(2.54)
где i3 -- прямой или обратный ток затвора; q -- заряд электрона, равный 1,6019- 10-19 к и f -- эффективная ширина полосы шумов, гц. В униполярном полевом транзисторе, который обычно работает при обратном смещении на затворе, обратный ток перехода может изменяться от 10~8 до 10-10 а. В приборе с поверхностным барьером ток i3 очень мал, порядка 10-15 а или менее, так что этим источником шума можно пренебречь, так как он не является определяющим.
Как показал Ван дер Зил [2.2], тепловой шум, генерируемый в проводящем канале, приблизительно эквивалентен шуму, 'создаваемому внешним сопротивлением в цепи истока, равным l/gm . Напряжение теплового шума в таком резисторе дается выражением
(2.55)
Генерационно-рекомбинационный шум в обедненном слое существенно изменяет выражение (2.55) для напряжения теплового шума; чтобы учесть его, надо в предыдущее уравнение ввести член, зависящий от 1/f:
(2.56)
где fгрнижн -- частота нижней границы полосы. Эти физические механизмы позволяют охарактеризовать полевой транзистор так называемым двухгенераторным методом. Основная теорема этого метода гласит, что любой активный линейный четырехполюсник можно представить последовательным генератором напряжения шума и параллельным генератором шумового тока, присоединенными к входу идеального четырехполюсника, не содержащего источников шумов. Данный способ исследования шумовых свойств годится только для случая малого сигнала, однако поскольку шумовые сигналы обычно слабы, никаких трудностей здесь не возникает. Величина представляет собой коэффициент корреляции между двумя источниками шумов, с помощью которого учитывается наличие или отсутствие влияния этих источников друг на друга. Если равно 1, между выходами обоих генераторов имеется функциональная связь. Если же равно нулю, генераторы совершенно не зависят один от другого.
К счастью, в полевом транзисторе имеет место слабая корреляция между дробовым шумом, обусловленным током утечки затвора, и тепловым шумом в канале. Величины еш и iш можно измерить непосредственно, однако измерение iш осуществить очень трудно. Для измерения е вывод затвора . полевого транзистора соединяют с истоком через малое сопротивление, предпочтительно через короткозамыкающую перемычку, удовлетворяющую следующим условиям:
Первое условие гарантирует, что все напряжение шума еш будет приложено ко входу усилителя, второе ограничивает величину тока сигнала, обусловленного источником iш. Выходной ток полевого транзистора содержит шумовую компоненту, которая представляет собой произведение эффективного напряжения теплового шума, генерируемого в канале и обедненном слое, на величину gm- Следовательно, чтобы найти еш, надо просто поделить результат измерения на gm:
(2-57)
Известно, что у полевого транзистора 2N2500 величина fгрнижн равна 32 кгц. Наличие этих данных позволяет с помощью уравнения (2.57) достаточно точно определять эквивалентное входное напряжение шума этого и, вообще говоря, большинства других полевых транзисторов, изготовляемых двойной диффузией. Не следует только путать величину fгрнижн с граничной частотой коэффициента шума.
При измерении iш необходимо разомкнуть входную цепь транзистора настолько, чтобы сопротивление Rразомкн при этом удовлетворяло следующим условиям:
Rразомкн>Rвх
iшRразомкн>eш
Первое требование выполнить чрезвычайно трудно. В большинстве случаев достаточно измерить ток утечки затвора при желаемом смещении и вычислить iш, используя уравнение (2.54), где iш=(i2др)1/2, а i3 = IзиХ, т. е. равно статическому току затвора при наличии смещения.
Глава 5 Приборы с зарядовой связью
Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл -- диэлектрик-- полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис.41). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур [1--3].
Принцип действия ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение, то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности в глубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей -- дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик -- полупроводник и локализуются в узком приповерхностном слое.
Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента (электрод 1 на рис.41), либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода (электрод п на рис.41.). Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.
Естественно, что заряд, введенный в МДП-структуру, не может храниться в ней неограниченно долго. Процесс термогенерации электронно-дырочных пар в объеме полупроводника и на границе раздела диэлектрик -- полупроводник ведет к накоплению в потенциальных ямах паразитных зарядов и, следовательно, к искажению зарядовой информации, а с течением времени и к полному ее «стиранию». Это время может достигать сотен миллисекунд и даже десятков секунд, но, тем не менее, оно конечно и определяет существование нижней граничной частоты. Таким образом, работа прибора основана на нестационарном состоянии МДП-структуры, и ПЗС являются элементами динамического типа.
Устройство и физика работы ПЗС определяют целый ряд очень интересных и полезных (а нередко и уникальных) особенностей этих приборов.
К числу важнейших функциональных особенностей ПЗС относятся возможность хранения, зарядовой информации; возможность направленной передачи зарядов вдоль поверхности полупроводникового кристалла; возможность преобразования светового потока в электрический заряд и последующего его считывания (сканирования). Достоинством ПЗС является малая потребляемая мощность (5--10 мкВт/бит в режиме передачи информации и практически полное отсутствие затрат энергии в режиме хранения), что обусловлено МДП-структурой этих устройств. Простота конфигурации и регулярность системы элементов в ПЗС ведет к тому, что быстродействие этих приборов может быть очень высоким (у специально сконструированных образцов предельные тактовые частоты лежат в гигагерцевом диапазоне) [14].
Пожалуй, еще более важными являются конструктивно-технологические достоинства ПЗС, основными из которых являются технологическая ясность и простота (малое число фотолитографических, термодиффузионных и эпитаксиальных процессов при изготовлении прибора) -- обязательное условие при создании качественных многоэлементных (с числом элементов 104--106) устройств; высокая степень интеграции (превышающая 105 элементов на одном кристалле) и высокая плотность упаковки (более 105 бит/см2); малое количество внешних выводов, что является определяющим при построении высоконадежных систем; отсутствие p-n-переходов (немногочисленные p-n-переходы ПЗС выполняют «подсобные» функции и к ним предъявляются достаточно «слабые» требования), что, в частности, открывает широкие возможности для использования наряду с кремнием других полупроводниковых материалов (например, арсенида галлия).[14]
Все эти свойства открывают широкие перспективы для разнообразных применений ПЗС.
Для цифровой техники интересны сдвиговые регистры, оперативные запоминающие устройства, логические схемы. Линии задержки аналоговых сигналов на ПЗС по техническим характеристикам значительно превосходят свои акустические и магнитные аналоги.[6,7]
В оптоэлектронной технике преобразования изображений ПЗС открывают принципиальные новые возможности для создания безвакуумных полупроводниковых формирователей видеосигналов. Присущее им самосканирование позволяет избавиться от громоздких и ненадежных высоковольтных вакуумных трубок со сканированием электронным лучом. ПЗС являются уникальными аналогами ЭЛТ, позволяющими одновременно с уменьшением массы, габаритных размеров, потребляемой мощности повысить надежность и качество формирователей видеосигналов. Дополнительное достоинство фотоприемников на основе ПЗС заключается в принципиальной возможности использовать разнообразные полупроводниковые материалы, что позволит перекрыть широкую область электромагнитного спектра (включая и ИК-область).[6]
Создание передающих телевизионных камер на основе ПЗС приведет в будущем не только к оснащению техники надежным «электронным глазом» (отметим, что в проекте создания средств искусственного зрения для человека ориентация делается также на ПЗС), но и к действительно широкому использованию средств телевидения в быту.
Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.
На этой основе создаются, учитывающие устройства для фототелеграфа, а также, передающие камеры (вплоть до камер полноформатного цветного телевидения). В будущем ПЗС найдут применение в качестве удобных матричных фотоприемников в сверхпроизводительных оптоэлектронных вычислительных машинах с параллельной обработкой информации.
Появление ПЗС (1969 г.) явилось результатом исследований в области физики и технологии МДП-приборов[13]. Разработка этого нового направления полупроводниковой техники занимаются многие научные коллективы в разных странах мира и уже достигнуты весьма заметные результаты.
Созданы быстродействующие однокристальные ЗУ на ПЗС емкостью 8192, 16384 и 65536 бит с временем выборки 64--200 мкс и скоростью выдачи информации 1--5 МГц; на базе кристаллов емкостью 16 К (килобит) сконструировано ЗУ емкостью 1 Мбит с блочной выборкой по 256 бит. Разработана широкополосная линия задержки аналоговых сигналов емкостью 128 разрядов, предназначенная для использования в системах цветного телевидения; опробован коррелятор на ПЗС, позволяющий одновременно обрабатывать 40 000 дискретных значений сигнала с общей погрешностью менее 1%.[6]
Имеются многочисленные сообщения о начале промышленного выпуска рядом фирм США (в первую очередь Bell и RCA) передающих телекамер с числом элементов разложения 200X200 и 500x500. [13]
В то же время нельзя не заметить, что на пути широкого использования ПЗС стоит еще много нерешенных проблем -- и в первую очередь технологическая: проколы диэлектрической пленки и закоротки электродных шин все еще не позволяют уверенно с высоким процентом выхода получать бездефектные ПЗС достаточно большой информационной емкости. Важнейшей технологической проблемой создания больших ПЗС с однослойной металлизацией является проблема получения узких (2--3 мкм) зазоров между электродами; основной технологический брак в таких структурах -- закоротки. В структурах с многослойными кремниевыми затворами трудно получить высококачественный изолирующий диэлектрик между всеми уровнями поликремния.
В заключение хотелось бы отметить, что создание устройств на приборах с зарядовой связью, в особенности оптоэлектронных, является важным этапом в развитии больших интегральных схем и одним из первых реальных шагов по пути к функциональной микроэлектронике[16].
5.1 Физические основы работы и конструкции приборов с зарядовой связью
Динамику перемещения зарядовых пакетов в ПЗС проследим на примере трехкратного сдвигового регистра (рис.42).
В этой схеме каждый третий электрод подключается к соответствующей шине тактовых импульсов. В исходном состоянии (рис.42,а) под напряжением хранения
Uхр. =-U2 находятся электроды 1, 4, 7, а все остальные -- под напряжением - U1 (U1<U2); подложка заземлена. Напряжение U1 выбирается немного большим порогового напряжения U0 (величина U0 для МДП-структуры определяется как
минимальное напряжение на затворе, при котором наступает инверсия поверхности полупроводника) для того, чтобы вся ^поверхность полупроводника была обеднена и на поверхностных состояниях отсутствовали электроны. Допустим, что в потенциальных ямах 1, 7 есть зарядовые пакеты, а в 4 их нет. На следующем такте к электродам 2, 5, 8 прикладывается напряжение записи Uзап. = -U3(U3>U2) и заряды перетекают от ПЗС1 (строго говоря, в данном случае следует использовать термин «ПЗС-элемент» или «МДП-структура», так как речь идет об одном элементе прибора с зарядовой связью. Однако для сокращения здесь и в дальнейшем (если из контекста ясно, что речь идет об элементе) используется термин «ПЗС», а слово «элемент» опускается.) к ПЗС2 и от ПЗС7 к ПЗС8 (рис.43,б).
На следующем такте на электродах устанавливаются напряжения и начинается фаза хранения зарядовой информации в элементах 2, 5, 8.
Таким образом, для ПЗС характерны два режима работы: хранение и передача зарядовых пакетов. В режиме хранения ПЗС эквивалентен МДП-емкости. Зонная диаграмма поверхности полупроводника для режима хранения приведена на рис.35,а. Величина поверхностного потенциала, характеризующая изгиб зон и глубину потенциальной ямы, в начальный момент максимальна. При инжекции пакета дырок их положительный заряд экранирует подложку от поля, в результате чего происходит перераспределение внешнего напряжения: увеличивается часть напряжения, падающего на слое диэлектрика, поверхностный потенциал уменьшается (по абсолютной величине), и обедненная область сужается. С течением времени потенциальная яма заполняется до насыщения термогенерируемыми дырками и у поверхности образуется стационарный инверсный слой (рис.35,б). Величина поверхностного потенциала уменьшается (по абсолютной величине) до потенциала инверсии поверхности полупроводника ц0
В нестационарном состоянии поверхностный потенциал ц зависит от напряжения на затворе U3, плотности (на единицу поверхности) заряда дырок Qp и от электрофизических характеристик диэлектрической пленки и подложки:
(54)
где U'3 = U3 - UП3 = U3 - Uo - ц0 + UВ - напряжение плоских зон; - коэффициент подложки; UB = BOC ; Сд = еде0хд - удельная емкость диэлектрика затвора толщиной хд . В (1) и последующих выражениях используются абсолютные значения потенциалов и зарядов, что делает их применимыми для р- и n-канальных ПЗС.
Зависимости ц(QP) для разные значений напряжений затвора приведены на рис.44.
При увеличении заряда дырок Qp от нуля до стационарного значения поверхностный потенциал уменьшается по абсолютной величине до потенциала инверсии ц0. Из графиков рис.44 видно, что зависимости ц(QP) практически линейны. Аппроксимированное выражение для ц имеет вид:
ц=(U'3-QP/Cд)(1+x), (55)
где х=0,1--0,2 -- линеаризованный коэффициент подложки.
Максимальный заряд QPM, который может быть помещен в потенциальную яму при заданном напряжении U3, определяется из (56) при условии насыщения потенциальной ямы, т. е. при ц=ц0,
QPM = Сд (U3, -- U0) (56)
Обычно QPM= (1--5) 10-3 пКл/мкм2.
Наглядным представлением потенциальной ямы ПЗС может служить прямоугольный сосуд с жидкостью. Максимальная глубина потенциальной ямы соответствует высоте пустого сосуда; но мере заполнения сосуда жидкостью его эффективная глубина уменьшается. Допустимое время хранения заряда определяется процессами, приводящими к накоплению паразитного заряда QP. В основном это термогенерация электронно-дырочных пар в обедненном слое и на поверхности, а также до некоторой степени диффузия неосновных носителей из объемной нейтральной области.
Расчет показывает, что при малых значениях накапливаемого паразитного заряда QP его зависимость от времени близка к линейной, в дальнейшем кривые становятся сублинейными, приближаясь к постоянному значению QPM, определяемому соотношением (56).
На рис.44 приведены расчетные кривые для U3 = 10 В, Nд=5·1014 см-3, U0=3,8 В, тепловая скорость хт=107 см/с, сечение захвата уv = 2,2-10-16 см2, плотность объемных центров Nоб=l,8·1014 см-3, плотность поверхностных центров Nпов=6·1010 см-2. При этих параметрах и при QP = 0 время накопления паразитного заряда, составляющего 1 % от QpM, равно 20 мс (для многоэлементных ПЗС, и в особенности для аналоговых устройств, большее накопление паразитного заряда недопустимо).[6]
Максимальное время хранения можно определить и экспериментально, измерив время релаксации МДП-емкости, сформированной в тех же условиях, что и ПЗС, и включаемой таким же импульсом напряжения. Приближенно время накопления паразитного заряда, равного по величине информационному, на порядок меньше времени релаксации МДП-емкости. Опыт показывает, что в зависимости от качества обработки поверхности кремния и совершенства структуры подложки время релаксации лежит в пределах 1--60 с и соответственно время накопления паразитного заряда составляет 0,1-- 6 с. Задаваясь требуемым соотношением между величинами информационного и паразитного зарядов, нетрудно рассчитать максимальное время хранения информации в ПЗС. При соотношении 100: 1 это время составляет десятки миллисекунд.
Еще раз отметим, что процессы накопления паразитного заряда определяют максимальное время хранения и минимальную частоту работы цифровых и аналоговые устройств на ПЗС, а также темновые токи в фотоприемных ПЗС. Передача заряда из элемента в элемент осуществляется приложением к соседнему электроду большего по амплитуде напряжения записи Uзап (рис.46). В зазоре между электродами (обозначим его длину через l) возникает тянущее поле, под действием которого дырки перетекают в более глубокую потенциальную яму.
По мере перетекания зарядов поверхностный потенциал в ПЗС1 увеличивается (по абсолютной величине), а в ПЗС2 уменьшается, в результате чего поле в зазоре уменьшается.
Очевидно, что напряжение записи Uзап должно превышать напряжение хранения Uхр тем значительнее, чем больше расстояние между электродами и чем сильнее легирована кремниевая подложка (рис.38). Из рисунка видно, что практически для работоспособных ПЗС ширина зазора не должна превышать l = 2-3 мкм, a Nд?1015 см-3. Минимальная амплитуда импульса записи Uзап линейно увеличивается при возрастании UXP и QP.
Рассмотрим динамику переноса заряда из одного элемента (ПЗС1) в другой (ПЗС2) (рис.45). В режиме хранения к ПЗС1 приложен потенциал UXP, к ПЗС2 - нулевой потенциал. Заряд дырок плотностью Qp равномерно локализован в ПЗС1. После приложения к ПЗС2 потенциала записи Uзап>Uхр в зазоре между ячейками устанавливается тянущее поле, причем обычно напряженность его столь высока, что дырки, находящиеся вблизи левой границы ПЗС1, практически мгновенно переходят в ПЗС2. Концентрация дырок вблизи правой границы ПЗС2 очень быстро спадает до нуля (т. е. поле зазора действует аналогично полю обратного смещенного коллекторного p-n-перехода в транзисторе). Резкое изменение равномерности распределения дырок в ПЗС1 вызывает их интенсивный дрейф и диффузию внутри потенциальной ямы слева на право.
Если положить l<<L и рассматривать одномерный случай, то, как обычно при таких процессах, для времени передачи заряда приближенно должно выполняться:
tпер ~ L2/мpэ (57)
где L -- длина затворов (электродов) ПЗС;
мрэ--поверхностная эффективная подвижность.
Очевидно, что коэффициент пропорциональности в (57) зависит от того, какой коэффициент эффективности передачи требуется получить. Обычно для многоэлементных ПЗС этот уровень очень высок и составляет
= QРППЗС2/ QРП ПЗС1 = 0,99-0,9999, (58)
где QPП -- полный заряд в одной ячейке.
По мере перетекания заряда из ПЗС1 в ПЗО2 концентрация дырок в ПЗС1, а следовательно, и дрейфовая составляющая тока уменьшаются и процесс передачи, определяемый только диффузией, замедляется -«хвост» переходного процесса всегда более затянут по сравнению с начальной фазой (рис.48). Чем больше начальная плотность заряда Qp, тем большая его часть «вытечет» за время первой быстрой стадии и тем меньше (при заданном допустимом значении ) будет время передачи tпер. Эпюры распределения плотности Заряда дырок в различные моменты времени представлены на рис.49. Через левую границу ПЗС1 потока дырок нет, поэтому на графиках рис.46 в любой момент времени градиент концентрации дырок в этой точке равен нулю.
Наглядной аналогией процесса передачи заряда является вытекание вязкой жидкости из прямоугольного сосуда, торцевая стенка которого (соответствующая правой границе потенциальной ямы ПЗС) отодвинута так же, как и в ПЗС, чем больше начальный уровень жидкости, тем быстрее выльется заданная ее часть.
Для большинства реальных структур ПЗС размеры L и l соизмеримы и очень малы; при этих условиях; становится существенным эффект проникновения краевого поля Еkр (которое мы выше считали полностью сосредоточенным в зазоре) в область ПЗС1, что оказывает определяющее влияние на перетекание оставшейся части зарядового пакета.
Рассмотрим важнейшую характеристику ПЗС -- эффективность передачи заряда , представляющую собой часть заряда дырок, перешедшую из ПЗС1 в ПЗС2 за время передачи. При заданном допустимом уменьшении ^зарядового пакета значение определяет максимальное количество элементов, через которое информация может быть передана без восстановления. Часто оказывается удобнее использовать понятие потери (неэффективности) передачи е =1--. При конечном времени передачи потери заряда обусловлены, во-первых, тем, что за t=tnep часть заряда е1 просто не успевает перетечь в соседнюю ячейку и, во-вторых, захватом части носителей е2 поверхностными ловушками. Составляющая е1 определяет потери передачи на высоких частотах, е2--на низких и средних частотах работы[6,7].
Рассмотрим подробнее захват носителей поверхностными ловушками. Если, например, в ПЗС1 поступает информационный пакет, то часть дырок захватывается
границей раздела диэлектрик -- полупроводник. На следующем такте зарядовый пакет перетекает в ПЗС2, равновесие между инверсным слоем и поверхностными ловушками нарушается, и они начинают разряжаться. Те носители, которые освобождаются ловушками за t=tnep, успевают вернуться в зарядовый пакет, остальные образуют потери передачи е2 . Потери е2зависят не только от плотности поверхностных ловушек и величины зарядового пакета, но и от характера предшествующей зарядовой информации, передаваемой через данный элемент. Если передается серия логических 1 (которой соответствуют большие зарядовые пакеты), то потери е2 будут максимальны в первом зарядовом пакете и будут уменьшаться в последующих, так как часть ловушек, захвативших заряды от первого пакета, не успеет разрядиться к приходу следующего и эти ловушки не будут участвовать в захвате носителей. Наихудшим случаем с точки зрения потерь е2 является передача чередующейся последовательности логических 1 и 0. В этом случае выражение для е2 имеет вид:
(59)
где Nл -- плотность поверхностных ловушек; т = 2, 3 ... -- количество управляющих тактов; Сд(U3--U0) -- величина зарядового пакета. В типичных структурах е2=(2--3) 10-3 и в первом приближении не зависит от тактовой частоты.
Влияние поверхностных состояний может быть уменьшено, если в цепочку ПЗС (в каждый зарядовый пакет) ввести некоторый фоновый заряд, заполняющий поверхностные ловушки. В результате потери информационного заряда при передаче уменьшаются. Неполное устранение влияния ловушек объясняется рядом причин, главными из которых являются краевой эффект и захват носителей не только при хранении, но и во время протекания зарядового пакета через ПЗС и зазор.
Краевой эффект возникает из-за двумерности распределения электрического поля в реальных ПЗС, что делает потенциальные ямы не прямоугольными, а закругленными. Следовательно, площадь поверхности занимаемая пакетом, будет зависеть от величины заряда и всегда будет больше площади, занимаемой меньшим по величине фоновым зарядом. Поэтому поверх постные ловушки, расположенные у краев электрода, где фонового заряда нет, будут пустыми и смогут захватывать носители из зарядного пакета. Потери заряда or этого эффекта составляют (4-5)10-4.
Захват носителей в процессе передачи главным образом связан с тем, что в зазоре фонового заряда нет и поэтому ловушки не заполнены. Обусловленная этим неэффективность составляет (2--3) 10-4. Таким образом, введение фонового заряда не позволяет выполнить условие е2>0, но в несколько раз уменьшает потери передачи, обусловленные захватом носителей поверхностными ловушками.
В заключение рассмотрим фоточувствительность ПЗС. Одним из факторов, определяющих фоточувствительность, является коэффициент поглощения ?, который характеризует интенсивность поглощения фотонов (с образованием электронно-дырочных пар). Коэффициент поглощения ? резко уменьшается при увеличении длины волны падающего света. Поэтому область длин волн, в которой осуществляется эффективное преобразование светового потока в информационные заряды (называемая областью спектральной чувствительности) ограничена. Длинноволновая граница определяется шириной запрещенной зоны полупроводника и для кремния составляет 1,1 мкм. Коротковолновая граница составляет 0,4--0,5 мкм и обусловлена сильным поглощением коротковолновых квантов света в узком приповерхностном слое, в котором интенсивно происходит рекомбинация фотогенерируемых носителей.
Если считать, что все возбужденные носители собираются ПЗС, то зарядный пакет Qpn, накапливаемый за время генерации (интегрирования) ta под действием светового потока Нш, может быть рассчитан по следующему приближенному выражению:
QPП = qHизиtи?Aэ , (60)
где и -- квантовый выход; Аэ -- часть площади элемента, воспринимающая свет. Для ПЗС и=1, этому соответствует фоточувствительность порядка 500 мкА/лм. Пороговая чувствительность, при которой сигнал превышает шумы примерно в 2 раза, составляет для ПЗС около 10-4 лк·с. Фотоприемное устройство на ПЗС можно освещать со стороны затворов (электродов) или с обратном стоны[6].
Глава 6 Экспериментальная часть
6.1 Стоко-затворные характеристики полевого транзистора КП303Г и его температурная зависимость
В работе исследуется транзистор КП303 с каналом n-типа. На боковую поверхность канала нанесены слои полупроводника электронной электропроводности - затвор 2. Между затвором 3 и каналом образуется р-n-переход, обедненный слой которого сосредоточен главным образом в объеме канала, выполняемого из материала с низким содержанием примеси. От канала сделаны выводы 3 и 4 - сток и исток. Исток И обычно заземляют, а на сток С подают напряжение, при котором основные носители заряда устремляются к нему (рисунок 51).
В транзисторе с каналом n-типа на сток подается положительное напряжение, а на затвор - напряжение, при котором переход затвор-канал закрыт, и тока не проводит.
Выходной ток полевого транзистора - ток стока IС зависит от напряжения на стоке UСИ и с его ростом увеличивается. Кроме того, ток стока IС зависит от напряжения на затворе UЗ-И, которое управляет глубиной проникновения обедненного слоя 5 в объем канала, а, следовательно, его поперечным сечением.
При напряжении UСИ = 0 напряжение UЗИ вызывает уменьшение поперечного сечения канала (рис. 51 а) и увеличение его сопротивления. Появление напряжения UСИ изменяет конфигурацию обедненного слоя, причем сечение канала с приближением к стоку уменьшается, поскольку увеличивается разность потенциалов между затвором и каналом. При некотором напряжении UСИ, определенном для каждого значения напряжения UЗИ, обедненный слой смыкаются (точка А на рис.51 б) и наступает насыщение. Напряжение UСИ = UСИ нас. называют напряжением насыщения. При UЗИ=0 напряжение насыщения максимально.
Рисунок 51.
Рисунок 52.
Рисунок 53.
Увеличение напряжения UСИ приводит к смещению точки А в направлении истока (рис 52,в). Ток IC поддерживается за счет впрыскивания основных носителей канала в обедненную область точно так же, как в коллекторном переходе биполярного транзистора. При дальнейшем увеличении напряжения UCИ происходит пробой и выход транзистора из строя.
Стоко-затворная характеристика полевого транзистора (рис.53 а), снимаемая при постоянном напряжении UСИ, позволяет определить напряжение отсечки UЗИ отс, при котором ток стока становится равным нулю, и начальный ток стока IС нач, протекающий через канал при UЗИ=0.
Таким образом, выходной ток полевых транзисторов в отличие от биполярных транзисторов определяется напряжением на затворе UЗИ, при этом ток затвора близок к нулю, поскольку это обратный ток p-n- перехода. Аналитически стоко-затворная характеристика выражается уравнением
IC=f(UЗИ) при UСИ=const. (61)
На рисунке (52 б) показано семейство стоковых характеристик полевого транзистора, представляющих собой ряд зависимостей тока стока IС от напряжения между стоком и истоком UСИ для ряда постоянных напряжений на затворе UЗИ:
IС=f(UСИ) при UЗИ = const. (62)
Основными параметрами полевого транзистора являются крутизна стоко-затворной характеристики S и активная выходная проводимость g22И.
Крутизна S показывает, на сколько миллиампер изменится ток стока IС при изменении напряжения на затворе UЗИ а 1В и постоянном напряжении между стоком и истоком UСИ, т.е.
S = ДIC/ДUЗИ при UСИ= const (63)
Этим параметром определяются усилительные свойства прибора. Обычно крутизну измеряют или рассчитывают для режима, соответствующего линейному участку стоко-затворной характеристики. Для этого строят треугольник АВС (рис 52 а), по которому находят приращение тока ДIC и напряжения ДUЗИ, и по формуле (63) рассчитывают крутизну S.
При изучении температурной зависимости основных параметров полевого транзистора часть установки, показанную на рисунке 53, а именно полевой транзистор КП303Г, помещали в муфельную печь. Затем, меняя температуру в печи, проводили измерения статических характеристик полевого транзистора.
Оборудование:
транзистор КП303Г
прибор комбированный цифровой Щ 4300
блоки питания БСП-Б
амперметр АВО-5М1.
муфельная печь
соединительные провода.
Таблица.1. Некоторые табличные данные для полевого транзистора КП 303Г.
Ток стока при Ucи=10В, Uзи=0В |
3 Ї 12 мА |
|
Напряжение отсечки при Ucи=10В, I=10мкА |
8 В |
|
Крутизна характеристики при Ucи=10В, Uзи=0В, f=50ч1500Гц |
3 Ї 7 мА/В |
|
Ток затвора при Ucи=10В, Uзи=0В |
не более 0,1 мА |
|
Коэффициент шума при Ucи=10В, Uзи=0В, f=108 Гц |
не более 4 дБ |
|
ЭДС при Ucи=10В, Uзи=0В, f=103Гц |
не более |
|
Входная ёмкость |
не более 6 Пф |
|
Проходящая ёмкость |
не более 2 Пф |
|
Нестабильность крутизны |
не более 40% |
|
Среднеквадратичный заряд при Ucи=10В, Uзи=0В, С=10 Пф |
не более 0,6·107 |
Таблица 2. Стоко-затворные характеристики полевого транзистора КП303Г при t=20єС.
Напряжение затвор-исток UЗИ, В. |
0 |
0,20 |
0,40 |
0,60 |
0,80 |
1,00 |
1,50 |
||
Ток стока IС, мА,принапряжении затвор - истокUСИ, В |
51012 |
5,505,705,85 |
4,614,814,95 |
4,004,074,16 |
3,503,903,95 |
2,702,752,90 |
1,151,181,21 |
0,020,070,09 |
Таблица 3. Стоко-затворные характеристики полевого транзистора КП303Г при t=25С.
Напряжение затвор-исток UЗИ, В. |
0 |
0,20 |
0,40 |
0,60 |
0,80 |
1,00 |
1,50 |
||
Ток стока IС, мА,принапряжениизатвор - истокUСИ, В. |
51012 |
5,305455,50 |
4,554,704,75 |
3,603,853,90 |
3,553,703,80 |
2,502,152,25 |
1,101,191,23 |
0,010,060,04 |
Таблица 4. Стоко-затворные характеристики полевого транзистора КП303Г при t=27С.
Напряжение затвор-исток UЗИ, В. |
0 |
0,20 |
0,40 |
0,60 |
0,80 |
1,00 |
1,50 |
||
Ток стока IС, мА,принапряжениизатвор - истокUСИ, В. |
51012 |
5,105,505,56 |
4,504,704,85 |
3,853,904,00 |
3,703,603,30 |
2,301,502,50 |
1,091,201,26 |
0,010,050,08 |
Таблица 5. Стоко-затворные характеристики полевого транзистора КП303Гпри t=33єС.
Напряжение затвор-исток UЗИ, В. |
0 |
0,20 |
0,40 |
0,60 |
0,80 |
1,20 |
1,75 |
||
Ток стока IС, мА, при напряжении затвор - исток UСИ, В. |
51012 |
4,805,005,25 |
4,004,154,30 |
3,203,453,70 |
3,003,153,50 |
2,302,502,60 |
0,571,151,40 |
0,020,080,18 |
Таблица 6. Стоко-затворные характеристики полевого транзистора КП303Г при t=40єС.
Напряжение затвор-исток UЗИ, В. |
0 |
0,20 |
0,40 |
0,60 |
0,80 |
1,00 |
1,50 |
||
Ток стока IС, мА,принапряжениизатвор - истокUСИ, В. |
51012 |
4,154,604,71 |
3,703,904,25 |
2,903,153,30 |
2,502,302,25 |
1,851,902,30 |
1,101,351,55 |
0,100,150,25 |
Таблица 7.Стоко-затворные характеристики полевого транзистора КП303Г при t=59єС.
Напряжение затвор-исток UЗИ, В. |
0 |
0,20 |
0,40 |
0,60 |
0,80 |
1,00 |
1,50 |
||
Ток стока IС, мА,принапряжениизатвор - истокUСИ, В. |
51012 |
4,004,254,45 |
3,154,004,30 |
2,753,003,15 |
2,102,502,80 |
1,902,152,40 |
0,801,001,25 |
00,050,150,35 |
Рисунок 54. График зависимости тока стока IC от напряжения затвор-исток UЗИ при постоянном напряжении сток -исток UСИ=5В.
Рисунок 55. График зависимости тока стока IC от напряжения затвор-исток UЗИ при постоянном напряжении сток -исток UСИ=10В.
Рисунок 56. График зависимости тока стока IC от напряжения затвор-исток UЗИ при постоянном напряжении сток -исток UСИ=12В.
Усилительные свойства прибора рассчитаем по формуле (63)
1.при t=20єС а) при UСИ=5В.
еS, еS=
(еS,
б) при UСИ=10В.
в) при UСИ=12В.
2. при t=59єС.
а) при UСИ=5В.
б) при UСИ=10В.
в) при UСИ=12В
3. при t=40єС.
а) при UСИ=5В.
б) при UСИ=10В
в) при UСИ=12В.
4. при t=33єС.
а) при UСИ=5В.
б) при UСИ=10В
в) при UСИ=12В.
5. при t=27єС.
а) при UСИ=5В.
б) при UСИ=10В.
в) при UСИ=12В.
6.при t=25єС.
а) при UСИ=5В.
б) при UСИ=10В.
в) при UСИ=12В.
Таблица 8.Усилительные свойства транзистора КП303Г.
№,t,С. |
Напряжение затвор-исток UЗИ, В |
S,мА/В. |
S±?S, мА/В. |
|
1.При t=20єС |
5 |
5,7 |
5,6±1,1 |
|
10 |
6,5 |
6,5±1,3 |
||
12 |
6,4 |
6,4±1,3 |
||
2.При t=65єС. |
5 |
2,8 |
2,8±0,6 |
|
10 |
3,0 |
3,0±0,6 |
||
12 |
2,7 |
2,7±0,5 |
||
3.t=41єС. |
5 |
2,9 |
2,9±0,6 |
|
10 |
3,2 |
3,2±0,6 |
||
12 |
3,3 |
3,3±0,7 |
||
4.t=35єС |
5 |
3,0 |
3,0±0,7 |
|
10 |
3,5 |
3,5±0,7 |
||
12 |
3,7 |
3,7±0,7 |
||
5.t=27єС |
5 |
3,3 |
3,3±0,7 |
|
10 |
3,2 |
3,2±0,6 |
||
12 |
3,8 |
3,8±0,8 |
||
6.t=22єС |
5 |
5,5 |
5,5±1,1 |
|
10 |
4,7 |
4,7±0,9 |
||
12 |
5,4 |
5,4±1,1 |
Вывод: Были определены усилительные свойства транзистора КП303Г (таблица 7). Усилительные свойства транзистора КП303Г при t=20єС следующие:
, при еS=20% при UСИ=5В.
, при еS=20% при UСИ=10В.
, при еS=20% при UСИ=12В.
Полученные значения крутизны соответствуют теоретически ожидаемому.По теории при напряжении на сток-истоке равном 10В и частоте 50-1500Гц s=3-7мA\В.
Была изучена температурная зависимость полевого транзистора КП303г.Мною было замечено изменение статических характеристик передачи: с увеличением температуры наблюдается уменьшение тока стока и увеличение порогового напряжения UЗИПОР и уменьшение усилительных свойств прибора. Эти изменения вызваны в основном двумя физическими процессами:
1) С увеличением температуры в рабочем диапазоне температур уменьшается подвижность носителей заряда, что приводит к уменьшению тока стока;
2) Происходит перераспределение носителей по энергиям и смещение уровня Ферми к середине запрещенной зоны.
Всвязи с таким смещением уровня Ферми инверсионный слой образуется у поверхности полупроводника при меньших напряженностях электрического поля.
6.2 Статические характеристики полевого транзистора КП303Г и его температурная зависимость
Активная выходная проводимость g22И определяется наклоном стоковой характеристики в области насыщения (рис.52 б). Этот параметр находят построением треугольника АВС, по которому определяют приращения тока ДIС и напряжения ДUСИ. Тогда активная выходная проводимость
g22И = ДIС/ ДUСИ при UЗИ = const. (64)
Таблица 9. Стоковые характеристики полевого транзистора КП303Г при t=20єC.
Напряжение сток-исток UСИ, В |
1 |
4 |
7 |
8 |
9 |
10 |
||
Ток стока IС, мА, при напряжении затвор-истокUЗИ, В. |
00,30,60,91,21,51,8 |
2,652,251,701,220,650,230,05 |
5,024,002,751,800,980,380,03 |
5,604,303,012,081,110,550,06 |
5,614,303,002,081,150,580,06 |
5,644,323,202,151,300,600,08 |
5,654,303,152,201,300,550,10 |
Рисунок 57. График зависимости тока стока IС от напряжения сток-истокUСИ при постоянном напряжении затвор-исток UЗИ при t=20єC.
Таблица 10. Стоковые характеристики полевого транзистора КП303Г при t=25єС.
Напряжение сток-исток UСИ, В |
1 |
4 |
7 |
8 |
9 |
10 |
||
Ток стока IС, мА, при напряжении затвор-истокUЗИ, В. |
00,30,60,91,21,51,8 |
2,642,101,601,100,550,200,05 |
4,373,652,551,750,970,400,05 |
4,784,203,002,001,130,420,06 |
5,104,223,022,001,150,420,06 |
5,104,233,052,011,150,430,05 |
5,104,2243,042,051,140,420,05 |
Рисунок 58. График зависимости тока стока IС от напряжения сток-истокUСИ при постоянном напряжении затвор-исток UЗИ при t=65єC.
Таблица 11. Стоковые характеристики полевого транзистора КП303Г при t=33є С.
Напряжение сток-исток UСИ, В |
1 |
4 |
7 |
8 |
9 |
10 |
||
Ток стока IС, мА, принапряжении затвор-исток UЗИ, В. |
00,30,60,91,21,51,8 |
3,202,402,301,200,850,150,05 |
4,803,552,751,601,150,250,10 |
4,873,752,851,901,170,450,15 |
4,903,902,951,901,200,520,20 |
4,913,902,961,911,210,530,22 |
4,913,902,951,901,200,520,21 |
Рисунок 59. График зависимости тока стока IС от напряжения сток-истокUСИ при постоянном напряжении затвор-исток UЗИ при t=41єC.
Таблица 12. Стоковые характеристики полевого транзистора КП303Г при t=40С.
Напряжение сток-исток UСИ, В |
1 |
4 |
7 |
8 |
9 |
10 |
|
Ток стока IС, мА, при напряжении затвор-исток UЗИ, В |
00,30,60,91,21,51,8 |
3,702,101,171,200,850,35 |
Подобные документы
Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.
научная работа [254,2 K], добавлен 20.04.2010Объяснение эффекта Холла с помощью электронной теории. Эффект Холла в ферромагнетиках и полупроводниках. Датчик ЭДС Холла. Угол Холла. Постоянная Холла. Измерение эффекта Холла. Эффект Холла при примесной и собственной проводимости.
курсовая работа [404,9 K], добавлен 06.02.2007Поверхностный эффект, ослабевания электромагнитных волн по мере их проникновения вглубь проводящей среды. Причины скин-эффекта. Комплексное сопротивление на единицу длины проводника. Борьба с эффектом. Применение катушки Тесла для обогрева трубопроводов.
реферат [477,4 K], добавлен 25.12.2012Принцип работы полевого транзистора. Стоковые характеристики транзистора. Причина насыщения в стоковой характеристике полевого транзистора. Устройство полевого транзистора с управляющим p-n-переходом. Инверсия типа проводимости.
лабораторная работа [37,8 K], добавлен 20.03.2007Научная деятельность Йоханнеса Штарка. Эффект, названный именем ученного, - расщепление спектральных линий испускания при воздействии сильного электрического поля на источник излучения. Его техническая реализация, обоснование и количественный анализ.
курсовая работа [662,7 K], добавлен 16.09.2011Геометрия эксперимента по наблюдению эффекта Холла. Идеальный датчик Холла, свойства и технология изготовления. Внутренняя схема линейного датчика Холла и график его характеристики преобразования. Конструкции датчиков тока. Расходомер, принцип действия.
курсовая работа [998,0 K], добавлен 18.05.2012Сущность внутреннего фотоэффекта. Фотопроводимость при наличии поверхностной рекомбинации и диффузии носителей заряда. Эффект Дембера. Измерение фотоэлектромагнитного эффекта. Особенности p-n переходов в полупроводниках, барьер Шоттки для электронов.
курсовая работа [788,8 K], добавлен 27.11.2013Понятие кристаллической (пространственной) решетки. Кристаллическая структура эффекта. Области применения промышленных пьезопленок. Обратный пьезоэлектрический эффект. Использование пьезоэлектрических кристаллов для получения электрической энергии.
курсовая работа [833,1 K], добавлен 14.04.2014Сущность механизма электропроводности. Волновая функция электрона в кристалле. Квазиимпульс и эффективная масса носителей заряда. Статистика электронов и дырок в полупроводнике. Структуры металл-диэлектрик-полупроводник. Энергонезависимые элементы памяти.
курсовая работа [697,7 K], добавлен 14.02.2016Двойное лучепреломление под влиянием внешних воздействий: механических деформациях тел, электрического поля (эффект Керра), магнитного поля (явление Коттон-Мутона). Явление вращения плоскости поляризации в теории Френеля, сущность эффекта Фарадея.
реферат [39,9 K], добавлен 17.04.2013