Баттерворт фильтрі
Электронды фильтрлардын бір турі, фильтрынын амплитуда, сипаттамалары, баттервортын нормироган полиномалары. Максимальды біртегістік, фильтрдін жобалануы. Кауэр топологиясы пассивті элементтерді, Саллен-Кей топологиясы. Сызыкты фильтрлармен салыстыру.
Рубрика | Физика и энергетика |
Вид | анализ учебного пособия |
Язык | казахский |
Дата добавления | 05.10.2010 |
Размер файла | 236,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
12
Баттерворт Фильтры
Баттервомрт Фильтры - электронды фильтрларды? бір т?рі. Б?л топты? фильтрлары бас?алардан жобалау ?дісімен ерекшеленеді. Баттерворт Фильтры ?ткізу жола?ында оны? амплитуда-жиіліктік сипаттамасы барынша біртегіс болатындай етіп жобаланады. М?ндай фильтрлер ал?аш рет Стефан Баттерворт атты британды? инженерді? "Фильтрлейтін к?шейткіштер теориясы жайлы" (а?ылш. On the Theory of Filter Amplifiers), Wireless Engineer журналында 1930 жылы.
Баттерворт фильтрыны? амплитуда - жиіліктік сипаттамасы ?ткізу жола?ыны? жиілігінде барынша біртегіс ж?не басу (полоса подавления) жола?ында 0-ге дейін т?мендейді. Логарифмді АФЖС (АФЧХ) -да Баттерворт фильтрыны? жиіліктік отклигіні? (частотный отклик) басу жола?ында амплитуда минус шексіздікке дейін т?мендейді. Бірінші реттік фильтр кезінде АЖС - 6 децибел октава?а (-20 децибел декада?а) жылдамды?ымен ?шеді (негізінде бірінші реттік фильтрларды? барлы?ы типке байланыссыз идентипті ж?не де бірдей жиілікті отклик). Екінші реттік Баттерворт фильтры ?шін АЖС - 12 дБ октава?а ?шеді, ?шінші реттік фильтр ?шін - 18 дБ т. с. с. Баттерворт фильтрыны? АЖС-сы - жиілікті? монотонды кемитін функциясы. Баттерворт Фильтры-жо?ар?ы ретте (басу жола?ында сипаттаманы? одан да асатындарын есепке алма?анда) АЖС са?тайтын фильтрларды? жал?ыз т?рі, солай болып т?ра фльтрларды? к?птеген т?рлері (Бессель фильтрі, Чебышев фильтрі, Эллипстік фильтрі) ?р т?рлі ретті т?рлі АЖС болады.
Чебышев фильтріні? І ж?не ІІ типтерімен немесе эллипстік фильтрмен салыстыр?анда Баттерворт фильтріні? сипаттамасы оларпды?кінен де біртегіс т?суі бар ж?не сонды?тан оны? ?лкен реті болуы ?ажет(орындалуында ?те ?иын), оны? барлы?ы басу жола?ыны? жиіліктерінде ?ажетті сипаттамаларды ?амтамасыз ету ?шін. Біра? Баттерворт фильтріні? ?ткізу жола?ында аса т?зу сызы?ты фаза-жиіліктік сипаттамасы бар.
Сурет 1-Фильтрларды? сипаттамалары
Баттерворт фильтріні? 1-ден 5-ке дейінгі т?ме?гі жиіліктік реттер ?шін АЖС. Сипаттаманы? иілуі - 20n дБ/декада?а, м?нда n - фильтрді? реті.
Барлы? фильтрлер ?шін сия?ты оларды? АЖС ?арастыр?ан кезде т?менгі жиілікті фильтрларды пайдаланады, олардан оп-о?ай жо?ары жиілікті фильтрді алу?а болады, ал осындай фильтрлерді тізбектей жал?аса?,--жола?ты фильтр немесе режекторды фильтр.
- ші реттегі Баттерворт фильтріні? амплитуда-жиліктік сипаттамасы жіберуші функциядан алынуы м?скін (1):
(1)
м?нда
- фильтрді? реті
- ?зілісті? (срез) жиілігі (амплитудасы ?3dB болатын жиілік)
- т?ра?ты ??раушыны? к?шею коэффициенті (н?лдік жиіліктегі к?шею)
Шексіз ма?ыналары ?шін АЖС тікб?рышты функция болатынын, ж?не де ?зіліс жиілігінен кем жиіліктер к?шейту коэффициенті-мен ?тетінін, ал ?зіліс жиілігінен жо?ары жиіліктер толы?ыиен ?шеті бай?ау ?иын емес. Со??ы ма?ыналары ?шін сипаттаманы? ?шуі біртегіс болады.
формальды ауыстыр?ыш к?мегімен ?рнегін (2) мына т?рде :
(2)
Жіберетін функцияны? полюстері радиусы болатын д??гелекте бірі-бірінен бірдей алысты?та сол жа? жартылайжазы?ты?та орналас?ан. Я?ни, Баттерворт фильтріні? жіберуші функциясын оны? сол жа? жартылайжазы?ты?ты? s-жазы?ты?ын аны?тай отырып аны?тау?а болады (3), (4) ?рнектер. -шы полюс келесі ?рнектен шы?ады:
(3)
М?нда?ы
(4)
Жіберуші функцияны келесі (5) ?рнек т?рінде жазу?а болады:
(5)
Аналогты т?сіндірмелер Баттервортты? санды? фильтрлеріне ?олданылады, м?нда?ы тек айырмашылы?ы ?рнектер s-жазы?ты? ?шін емес z-жазы?ты? ?шін жазылады.
Б?л жіберуші функцияны? б?лімі Баттервортты? полиномы деп аталады.
Баттервортты? нормирон?ан полиномалары
Баттервортты? полиномалары комплексті т?рде жазыла алады, жо?арыда айтыл?андай, біра? олар негізінен ?атынас т?рде затты (вещественный) коэффициенттермен (комплексті-байланыс?ан ж?птар к?бейту ар?ылы біріктіріледі). Полиномалар ?зіліс жилігімен нормиронады. Баттервортты? нормирон?ан полиномалары, осындай жолмен (6) ж?не (7) ?рнектер, канонды? форма?а ие болады.:
, - ж?п (6)
, (7)
- та?
Максимальды біртегістік
ж?не ?абылдап, жиілік бойынша амплитудты сипаттаманы? тундысы (8) ?рнек т?рінде:
(8)
Ол барлы? ?шін монотонды кемиді, ?йткені к?шею коэффициенті ?р?ашан ?ана?аттанарлы? (положителен). Демек, Баттерворт фильтріні? АЖС-да пульсация болмайды. Амплитудты сипаттаманы ?атар?а жаз?анда (9) ?рнекті алатынымыз:
(9)
Бас?аша айт?анда, амплитудты-жиіліктік сипаттаманы? барлы? туындылары жиілігі 2n-шіге дейін нольге те? болатынды?ы нан "максималды біртегістік" шы?ады.
Сипаттаманы? жо?ары жиіліктерде т?суі
?абылдап, АЖС-ны? жо?ары жиіліктегі логарифмні? иілуін табамыз:
(10)
Децибелл т?рінде жо?арыжиілікті саимптотаны? иілуі ?20n дБ/декада?а.
Фильтрді? жобалануы
Топологиялы? фильтрларды? т?рлі ?атарлары бар, оларды? к?мегімен сызы?ты аналогты фильтрлер орындалады. Б?л схемалар элементтерді? ма?ынасымен ?ана ерекшеленеді, ал оларды? ??рылымы ?згеріссіз ?алады.
Кауэрді? топологиясы
Кауэр топологиясы пассивті элементтерді (сыйымдылы? ж?не индуктивтілік) ?олданады Баттеворт фильтрі берілген жіберуші функциямен Кауэра 1 тип формасында ??рылуы м?мкін, фильтрді? k-ы элементі ?рнекпен беріледі:
; k ж?п (11)
; k та? (12)
Саллен-Кей топологиясы
Саллен-Кей топологиясын пассивті элементтерден бас?а активті элементтер (операциялы? к?шейткіштер ж?не сыйымдыылы?) де пайдаланады. Саллен-Кей схемасыны? ?рбір каскады математикалы? сипатталатын комплексті-байланыс?ан полюстерді? ж?бымен сипатталатын фильтр болып табылады. Б?кіл фильтр барлы? каскадтарды? тізбектей жал?ануынан ??ралады. Егер жарайтын (действительный) полюс т?ссе, ол жеке орындалуы тиіс, ?детте RC-сымы т?рінде ж?не орта? схема?а ?осыл?ан.
Саллен - Кей схемасында ?р каскадты? жіберуші функциясыны? т?рі келесі:
(13)
Б?лімі Баттервортты? полиномасыны? к?бейткіштеріні? болуы керек. ?абылдап, алатынымыз:
(14)
ж?не
(15)
Со??ы ?атынас к?лдене? та?далуы м?мкін екі белгісізді береді.
сызы?ты фильтрлармен салыстыру
Т?мендегі сурет Баттерворт фильтріні? АЖС-н бас?а белгілі бірдей (бесінші) реттегі фильтрларын салытыра отырып к?рсетеді:
Сурет 2-Фильтрларды? амплитуда - жиіліктік сипаттамасы
Суреттен к?рініп т?р?андай, Баттерворт фильтріні? т?суі т?ртеуінен ?ара?анда е? жайы, біра? оны? АЖС-сы ?ткізу жола?ыны? жиілігінде е? біртегіс.
Мысал
Баттервортты? т?менгі жиіліктегі (Кауэр топологиясы) аналогты фильтры ?зіліс жиілігімен келесі элементтерді? номиналдарымен: фарад, ом, и генри.
Комплексті аргумент жазы?ты?ында H (s) жіберуші функцияны? ты?ызды?ыны? логарифмді графигі 3-ретті Баттерворт фильтріні? ?зіліс жиілігімен. ?ш полюс бірлік радиусты? д??гелегіні? сол жа? жартылайжазы?ты?ында жатады.
Баттервортты? аналогты т?мен жиілікті 3 - фильтрін ?арастырайы? мыналармен ?оса фарад, ом, ж?не генри. C сыйымдылы?тарды? толы? кедергісін 1/Cs т?рінде ж?не L индуктивтіліктерді? толы? кедергісін Ls т?рінде, м?нда - комплексті айнымалы, ж?не элетр схемаларын есептейтін те?деулерді ?одана отырып, мынадай фильтр ?шін келесі жіберуші функцияны аламыз:
АЖС те?деумен беріледі:
Ал ФЖС келесі те?деумен:
Топты? ауыт?у (задержка) д??гелектік жиіліктегі фазаны? туындысыны? минусы ретінде ж?не де фаза бойынша т?рлі жиіліктегі сигналды? ауыт?уыны? ?лшемі болып табылады. Осындай фильтрді? логарифмдік АЖС-ында пульсация не ?ткізу жола?ында, не басу жола?ында болмайды.
Комплексті жазы?ты?та?ы жіберуші функция модуліні? графигі сол жа?та?ы ?ш полюсті к?рсетеді. Жіберуші функция толы?ымен осы полюстарды? бірлік д??гелекте орналасуымен д?л оське ?атысы симметриялы аны?талады. ?рбір индуктивтілікті сыйымдылы?пен, ал сыйымдылы?ты-индуктивтіліктермен ауыстыра отырып Баттервортты? жо?арыжиілікті фильтрін аламыз.
ж?не 3-ретті Баттерворт фильтріні? топты? ауыт?уы ?зіліс жиілігімен.
?дебиет
1. В.А. Лукас Теория автоматического управления. - M.: Недра, 1990.
2. Б.Х. Кривицкий Справочник по теоретическим основам радиоэлектроники. - М.: Энергия, 1977.
3. Miroslav D. Lutovac Filter Design for Signal Processing using MATLAB© and Mathematica©. - New Jersey, USA.: Prentice Hall, 2001. - ISBN 0-201-36130-2
4. Richard W. Daniels Approximation Methods for Electronic Filter Design. - New York: McGraw-Hill, 1974. - ISBN 0-07-015308-6
5. Steven W. Smith The Scientist and Engineer's Guide to Digital Signal Processing. - Second Edition. - San-Diego: California Technical Publishing, 1999. - ISBN 0-9660176-4-1
6. Britton C. Rorabaugh Approximation Methods for Electronic Filter Design. - New York: McGraw-Hill, 1999. - ISBN 0-07-054004-7
7. B. Widrow, S.D. Stearns Adaptive Signal Processing. - Paramus, NJ: Prentice-Hall, 1985. - ISBN 0-13-004029-0
8. S. Haykin Adaptive Filter Theory. - 4rd Edition. - Paramus, NJ: Prentice-Hall, 2001. - ISBN 0-13-090126-1
9. Michael L. Honig, David G. Messerschmitt Adaptive Filters - Structures, Algorithms, and Applications. - Hingham, MA: Kluwer Academic Publishers, 1984. - ISBN 0-89838-163-0
10. J.D. Markel, A.H. Gray, Jr. Linear Prediction of Speech. - New York: Springer-Verlag, 1982. - ISBN 0-387-07563-1
11. L.R. Rabiner, R.W. Schafer Digital Processing of Speech Signals. - Paramus, NJ: Prentice-Hall, 1978. - ISBN 0-13-213603-1
12. Richard J. Higgins Digital Signal Processing in VLSI. - Paramus, NJ: Prentice-Hall, 1990. - ISBN 0-13-212887-X
13. A.V. Oppenheim, R.W. Schafer Digital Signal Processing. - Paramus, NJ: Prentice-Hall, 1975. - ISBN 0-13-214635-5
14. L.R. Rabiner, B. Gold Theory and Application of Digital Signal Processing. - Paramus, NJ: Prentice-Hall, 1986. - ISBN 0-13-914101-4
15. John G. Proakis, Dimitris G. Manolakis Introduction to Digital Signal Processing. - Paramus, NJ: Prentice-Hall, 1988. - ISBN 0-02-396815-X
Подобные документы
Определение веса, интенсивности распределенной нагрузки. Линия действия силы и характеризующие ее параметры. Понятие сходящихся сил, главного вектора их системы. Сумма проекций сил на ось. Законы термодинамики. Гармонические колебания, их амплитуда.
тест [904,2 K], добавлен 29.07.2009Амплитуда и частота затухающих колебаний. Логарифмический декремент затухания. Скорость убывания энергии со временем. Амплитуда и частота затухающих колебаний. Логарифмический декремент затухания. Энергия затухающих колебаний и пружинный маятник.
презентация [587,6 K], добавлен 21.03.2014Классификация колебаний по физической природе и по характеру взаимодействия с окружающей средой. Амплитуда, период, частота, смещение и фаза колебаний. Открытие Фурье в 1822 году природы гармонических колебаний, происходящих по закону синуса и косинуса.
презентация [491,0 K], добавлен 28.07.2015Основной закон динамики вращательного движения. Дифракция, суть принципа Гюйгенса-Френеля. Принцип действия лазера. Основные характеристики колебательного процесса: амплитуда, частота, период, фаза, начальная фаза. Характеристика электрического поля.
контрольная работа [264,5 K], добавлен 26.10.2010Волновой процесс звукового поля в газах и жидкостях. Амплитуда акустического давления, волновые уравнения гидродинамики. Закон сохранения массы вещества, колебательная скорость и звуковое давление. Сдвиг фаз между акустическим давлением и колебанием.
контрольная работа [271,9 K], добавлен 26.09.2011Порядок вычисления тангенциального ускорения точки по заданным данным. Нахождение положения точки и ее координат. Расчет отношения времени скатывания заданных тел. Расчет коэффициента сопротивления плоскости шару. Амплитуда и начальная фаза колебаний.
контрольная работа [396,3 K], добавлен 07.02.2012Способы представления гармонических колебаний. Сложение взаимно перпендикулярных колебаний. Аналитический, графический и геометрический способы представления гармонических колебаний. Амплитуда результирующего колебания. Понятие некогерентных колебаний.
презентация [4,1 M], добавлен 14.03.2016Расчет фильтра (Баттерворта), построение его амплитудно-частотной характеристики. Характер фильтра по полосе пропускания. Граничные частоты полосы пропускания и полосы задерживания. Максимально допустимое ослабление. Значения нагрузочных сопротивлений.
курсовая работа [1,4 M], добавлен 06.08.2013Определение значения тока, протекающего по цепи, состоящей из последовательно соединённых ёмкостей, индуктивности и активного сопротивления. Амплитуда напряжения на конденсаторе и катушке индуктивности при резонансе. Активное сопротивление дросселя.
реферат [137,4 K], добавлен 20.03.2016Преимущества и недостатки ИК-спектроскопии и флуоресценции при анализе биологических объектов. Изучение зависимости отклика водных растворов ДНК на действие электромагнитного поля с различными заданными параметрами облучения (частота, амплитуда).
дипломная работа [2,6 M], добавлен 03.11.2015