Монтаж, наладка, эксплуатация и ремонт силового трансформатора

Эксплуатация, испытания, техническое обслуживание, ремонт и утилизация силового трансформатора. Расчёт кривой жизни электрооборудования и заземляющего устройства для защиты персонала. Организация строительных, электромонтажных и пуско-наладочных работ.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 10.04.2012
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Внутренний осмотр трансформатора производят в закрытом помещении, при этом масло сливают в сухой и чистый бак, выемную часть поднимают и устанавливают на настил из досок. Во время осмотра выемной части проверяют запрессовку обмоток; в имеющиеся между обмотками зазоры забивают дополнительные прокладки из сухого электрокартона; проверяют прочность болтовых креплений сердечника и остальных частей; ослабленные гайки и шпильки затягивают; особенно тщательно осматривают целость демпферов отводов у места их присоединения к выводам и целость изоляции в этом месте.

Мегомметром напряжением 1000 в проверяют сопротивление изоляции обмоток между собой и по отношению к сердечнику, изоляцию шпилек магнитопровода и наличие заземления сердечника. Выемную часть, бак и радиаторы промывают сухим трансформаторным маслом, после чего производят сборку трансформатора, уплотнение мест соединений и заливку масла. Результаты замеров и ревизии дают возможность судить о необходимости сушки трансформаторов.

Проверка герметичности трансформаторов

Проверку герметичности трансформатора следует производить перед началом монтажа трансформатора или перед доливкой масла.

До проверки герметичности запрещается подтягивание уплотняющих болтов.

Герметичность трансформаторов, транспортируемых с расширителем, определяется в пределах отметок маслоуказателя.

Проверку герметичности трансформаторов, транспортируемых с маслом и демонтированным расширителем, необходимо производить давлением, столба масла высотой 1,5 м от уровня крышки в течение 3 ч.

Трансформатор считается герметичным, если при проверке не обнаружена течь масла в местах, расположенных выше уровня масла, с которым прибыл трансформатор.

Допускается производить предварительную проверку герметичности трансформаторов созданием в баке избыточного давления 0,15 кгс/см2.

Трансформатор считается герметичным, если по истечении 3 ч давление понизится не более чем до 0,13 кгс/см2.

Окончательная проверка герметичности должна производиться после монтажа трансформатора.

Проверку герметичности трансформаторов, транспортируемых без масла, заполненными сухим воздухом или инертным газом (азотом), следует производить созданием в баке избыточного давления 0,25 кгс/см2.

Трансформатор считается герметичным, если давление понизится через 6 ч не более чем до 0,21 кгс/см2 при изменении температуры воздуха от 10 до 15 °С.

Создание избыточного давления в баке трансформатора 0,15 или 0,25 кгс/см2 следует производить одним из следующих способов: накачиванием от компрессора через силикагелевый воздухоосушитель сухого воздуха, подачей в бак сухого азота (ГОСТ 9293-59).

При заполнении бака трансформатора азотом должны быть приняты специальные меры предосторожности для исключения возможности подачи в трансформатор увлажненного газа. Необходимо:

а) установить заполненные азотом баллоны на специальных стендах вниз вентилями, через 6-8 ч, постепенно приоткрывая вентили, выпустить скопившуюся смесь газа с водой;

б) отобрать пробы азота из каждого баллона и направить в химическую лабораторию для проверки на наличие влаги, содержание которой должно быть менее 30 мг/м3;

в) после установки баллонов в нормальное положение присоединить их к воздухоосушителям, заполненным сухим силикагелем, и, плавно открыв запорные вентили, подать через редуктор азот в бак трансформатора при избыточном давлении 0,25-0,30 кгс/см2.

Проверка герметичности трансформаторов, транспортируемых без масла, с избыточным давлением сухого азота (сухого воздуха) производится манометром (поставляемым заводом-изготовителем) не позднее чем через 10 дней после прибытия на площадку (в дальнейшем - ежемесячно в течение срока хранения). Полученные данные сопоставляют с величиной избыточного давления внутри бака перед отправкой трансформатора с завода-изготовителя, которая указывается в технической документации.

При наличии признаков нарушения герметичности необходимо определить место нарушения уплотнений, восстановить герметичность и принять меры к ускорению монтажа трансформатора.

Выполнение проверки герметичности следует оформить протоколом, указав способ и результаты проверки.

Хранение узлов трансформаторов

Маслонаполненные малогабаритные вводы напряжением 110 кВ негерметичной конструкции после прибытия на место монтажа необходимо распаковать и установить вертикально на специальных стойках, обеспечив нормальную работу гидравлического затвора и дыхательного устройства.

Вводы напряжением 110 кВ герметичной конструкции следует хранить в упаковке в горизонтальном положении под навесом, при этом вентили должны быть открыты. Давление во вводе должно контролироваться по манометру; при необходимости следует отрегулировать давление до величины, указанной в разд. 5 настоящей Инструкции.

Радиаторы, прибывшие отдельно, следует хранить под навесом, на деревянных брусьях, с уплотнением обоих фланцев радиаторов заглушками на резиновых прокладках.

Оборудование для охладительного устройства (насосы, маслоохладительные колонки, адсорберы и т.п.) необходимо хранить в закрытом помещении. Тщательно уплотнить все отверстия узлов оборудования охладительного устройства, через которые может проникнуть влага.

Выхлопную трубу (прибывшую отдельно), каретки с катками и прочие узлы, транспортируемые без упаковки, следует хранить установленными на деревянных настилах на открытом воздухе под навесом, исключающим прямое попадание атмосферных осадков.

Реле газовое, реле уровня масла, реле RS-1000, термометры, термометрические сигнализаторы, воздухоосушители, комплектующую аппаратуру, крепеж, маслостойкую резину, вводы напряжением 3-35 кВ и прочие узлы необходимо хранить в заводской упаковке в закрытом сухом помещении.

ПОДГОТОВКА К МОНТАЖУ УЗЛОВ ТРАНСФОРМАТОРОВ

До начала монтажа необходимо:

а) изучить техническую документацию на трансформатор, присланную заводом-изготовителем;

б) подготовить помещение (монтажную площадку), оборудование, приспособления и инструменты, инвентарь и материалы;

в) подготовить узлы трансформатора.

Подготовка трансформаторного масла и специального оборудования возлагается на предприятие-заказчика.

Если необходимое количество масла и оборудование для его обработки и заливки отсутствуют, приступать к дегерметизации трансформатора запрещается.

Следует подготовить чистые металлические емкости, оборудованные масломерным устройством, пригодные для временного хранения масла, сливаемого из трансформатора, и проверенную систему заливки маслом, состоящую из предварительно очищенного, промытого и испытанного маслопровода с задвижками и кранами и маслонасоса производительностью 2-4 м3/ч для заливки и доливки масла.

Следует подготовить комплект приборов и оборудования, необходимый для испытания трансформатора и его узлов.

Перечень приборов и оборудования устанавливается в соответствии с объемом проверок и испытаний, предусмотренных настоящей инструкцией.

Приборы, применяемые при испытаниях, должны соответствовать действующим правилам Государственного комитета стандартов Совета Министров СССР.

Необходимо подготовить оборудование и средства, обеспечивающие соблюдение противопожарных требований при монтаже трансформаторов.

1.2.2 Документация электромонтажных работ

Для сдачи трансформатора в эксплуатацию необходимо оформить техническую документацию по монтажу. Техническая документация включает в себя акты об условиях хранения трансформатора, о проверке его герметичности, об оценке увлажнения изоляции трансформатора с заключением о допустимости его включения без сушки; акты о выполнении отдельных работ по установке комплектующих узлов трансформатора и сборке системы охлаждения; протоколы по проверке приборов и аппаратуры, по испытаниям трансформаторного масла; протоколы испытаний трансформатора, наладки и проверки защит; протоколы проверок и испытаний комплектующих узлов (вводов, насосов, трансформаторов тока и др.).

Акт подписывают представители участвовавших в монтаже монтажных, наладочных, эксплуатационных организаций, шефперсонал завода-изготовителя (если предусмотрен шефмонтаж). Акт утверждает руководитель эксплуатационной организации. К основному экземпляру акта (передаваемому впоследствии организации по эксплуатации) прилагают все протоколы, перечисленные в акте, и протоколы дополнительных испытаний и измерений.

Одновременно с оформлением сдаточной документации оформляют соответствующие графы формуляра трансформатора, имеющегося в сопроводительной технической документации завода-изготовителя на все трансформаторы мощностью свыше 90 MBА и напряжением 110--750 кВ.

Акт о приёмке в монтаж силового трансформатора приведён в приложении 6.

Документация для ввода в эксплуатацию трансформаторов мощностью 10000 кВА и более напряжением до 35 кВ включительно, а также трансформаторов напряжением 110 кВ без ревизии активной части, приведена в приложении 7.

1.3 Расчёт и построение кривой жизни электрооборудования

Важным методическим аспектом при исследовании свойства надёжности электрической сети является понятие «отказа». Под отказом понимается непредусмотренное прекращение или утрата объектом способности выполнять в необходимом объёме (размере) свои функции свыше допустимого времени.

Причинами отказов в электрической сети в большинстве случаев могут быть повреждения в оборудовании, аппаратуре и конструкциях электросетевых объектов или появление недопустимых режимных параметров в элементах сети, требующее принятия неотложных действий по их устранению.

Случаи повреждения элементов электрической сети, недопустимых отклонений параметров технического (технологического) состояния энергетических установок, а также полных или частичных незапланированных отключений энергоустановок (в т.ч. без повреждения оборудования) и энергоприёмников относятся к технологическим нарушениям, которые в зависимости от тяжести последствий подразделяются на аварии и инциденты. Все технологические нарушения подлежат расследованию и учёту, что позволяет сформировать базу данных по аварийности в электрических сетях за продолжительный срок эксплуатации.

Можно показать, что не все технологические нарушения приводят к случаю отказа. Так, например, при обрыве провода в одной цепи 2-х цепной ВЛ имеет место технологическое нарушение, при этом, если оставшаяся в работе другая цепь линии позволяет передавать необходимую мощность, то случай отказа линии отсутствует. Не будет отказа линии и при допустимом кратковременном отключении одноцепной ВЛ, если, например, она отключилась вследствие удара молнии в линию и успешно была включена действиями АПВ.

В теории надежности, как правило, предполагается внезапный отказ, который характеризуется скачкообразным изменением значений одного или нескольких параметров объекта.

На практике приходится анализировать и другие отказы, к примеру, ресурсный отказ, в результате которого объект приобретает предельное состояние, или эксплуатационный отказ, возникающий по причине нарушения установленных правил или условий эксплуатации. Т.о., отказы можно классифицировать по разным признакам:

1 Характер изменения выходного параметра объекта до момента возникновения отказа:

-- внезапные отказы;

-- постепенные (износные) отказы;

-- сложные отказы.

Внезапные отказы проявляются в результате резкого, скачкообразного изменения основных параметров системы, связанных с нарушением условий работы, ошибочными действиями персонала и т.д.

При постепенных отказах наблюдается плавное изменение параметров оборудования в результате старения, износа. Постепенные отказы часто проявляются в форме внезапных.

Отказ, который включает особенности двух предыдущих, называется сложным отказом.

2 Возможность последующего использования объекта после возникновения отказа:

-- полные отказы;

-- частичные отказы.

При полном отказе (полной утере работоспособности) оборудование или установку надо выводить из работы в ремонт. При частичном отказе оборудование или установка может какое-то ограниченное время выполнять часть заданных функций.

3 Связь между отказами объекта:

-- независимые отказы;

-- зависимые отказы.

Независимый отказ -- отказ, не обусловленный другими отказами или повреждениями объекта.

Зависимый отказ -- отказ, обусловленный другими отказами или повреждениями объекта.

4 Устойчивость состояния неработоспособности:

-- устойчивые отказы;

-- самоустраняющиеся отказы;

-- сбои;

-- перемежающиеся отказы.

Устойчивые отказы -- отказы, которые можно устранить только путем восстановления (ремонта). Отказы, устраняемые без операций восстановления путем регулирования или саморегулирования, относятся к самоустраняющимся.

Сбой -- самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.

Перемежающийся отказ -- многократно возникающий самоустраняющийся отказ одного и того же характера.

5 Наличие внешних проявлений отказа:

-- явные отказы;

-- скрытые отказы.

Явный отказ -- отказ, обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению.

Скрытый отказ -- отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики.

Большинство параметрических отказов относятся к категории скрытых.

6 Причина возникновения отказа:

-- конструктивные отказы;

-- производственные отказы;

-- эксплуатационные отказы;

-- деградационные отказы.

Конструктивный отказ -- отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования.

Производственный отказ -- отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии.

Эксплуатационный отказ -- отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации.

Деградационный отказ -- отказ, обусловленный естественным процессом старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления и эксплуатации.

7 Природа происхождения отказа:

-- естественные отказы;

-- искусственные отказы.

Отказы, происходящие без преднамеренной организации их наступления в результате направленных действий человека (или автоматических устройств), относят к категории естественных отказов.

Искусственные отказы вызываются преднамеренно, например, с исследовательскими целями, с целью необходимости прекращения функционирования и т.п.

8 Время возникновения отказа:

-- отказы при испытаниях;

-- приработочные отказы;

-- отказы периода нормальной эксплуатации;

-- отказы последнего периода эксплуатации.

9 Возможность устранения отказа:

-- устранимые отказы;

-- неустранимые отказы.

10 Критичность отказа (уровень прямых и косвенных потерь, трудоемкость восстановления):

-- критические отказы;

-- некритические отказы (существенные и несущественные).

Отказом в работе называют отказ, выявившийся в момент выполнения заданной функции, а дефектом -- отказ, обнаруженный при наладке, профилактическом осмотре или плановом ремонте.

Элементы ЭСН относятся к восстанавливаемым при отказах. Надежность системы или элемента обеспечивается такими свойствами надежности, как например свойствами безотказности, долговечности, ремонтопригодности, сохраняемости, управляемости, устойчивоспособности, живучести и безопасности.

Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

Долговечность - свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Ремонтопригодность - свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонта.

Сохраняемость - свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.

А при анализе надежности объекта как системы используются следующие свойства характеризующие надежность.

Устойчивоспособность - свойство системы непрерывно сохранять устойчивость в течение некоторого интервала времени.

Устойчивость - способность системы переходить от одного устойчивого режима к другому при различных возмущениях.

Режимная управляемость - это свойство системы обеспечивать включение, отключение и изменение режима работы элементов по заданному алгоритму.

Живучесть - свойство системы противостоять крупным возмущениям режима, не допуская их цепочечного развития и массового отключения потребителей, не предусмотренного алгоритмом работы противоаварийной автоматики.

Безопасность определяется, как свойство объекта не создавать опасности для людей и окружающей среды во всех возможных режимах работы и аварийных ситуациях.

В процессе эксплуатации элементов системы ЭСН в материалах, из которых они изготовлены, вследствие термических и механических воздействий, а также воздействий электромагнитных полей, агрессивной среды, снижения показателей качества электроэнергии накапливаются необратимые изменения, снижающие прочность, нарушающие координацию и взаимодействие частей. Эти изменения в случайные моменты времени могут приводить к отказу элемента.

Особое значение имеют производственные факторы. Влияние этих факторов учитывают отдельно, потому что, во-первых, они не могут быть конкретно учтены при проектировании, и, во-вторых, после отработки конструкции и внедрения ее в производство уровень надежности оборудования полностью определяется стабильностью производства. Кроме того, одно и то же оборудование, изготовленное на разных предприятиях, нередко очень резко отличается друг от друга по качеству.

К конструктивным факторам относят прежде всего:

-- скорость замыкания и размыкания контактов;

-- раствор, провал и нажатие контактов;

-- вибрацию контактов при включении;

-- трение в элементах подвижных частей;

-- особенности привода;

-- особенности дугогасящего устройства и др.

Факторы, определяемые свойствами применяемых материалов -- это, в основном, особенности контактных и изоляционных материалов, а также материалов для пружин, термобиметаллических элементов и т.п.

При эксплуатации электрооборудование подвергается разнообразным воздействиям, зависящим от нагрузки, режима и условий работы. По влиянию на характеристики работоспособности оборудования эксплуатационные факторы делят на две группы:

1. ток и напряжение, род тока, характер нагрузки, частота срабатывания, продолжительность включения и др.;

2. окружающая температура, влажность воздуха, давление и запыленность воздуха, агрессивные газы, особенности монтажа, внешние вибрации, действия обслуживающего персонала и др.

Возникновению отказов способствуют также следующие часто встречающиеся недостатки при эксплуатации оборудования:

-- пренебрежение указаниями заводских инструкций по монтажу, регулировке и обслуживанию;

-- недопустимые замены материалов изношенными.

При рассмотрении показателей надежности любого элемента различают три периода его эксплуатации: I -- период приработки; II -- период нормальной эксплуатации; III -- период интенсивного износа и старения. Эти периоды наглядно нанесены на кривую интенсивности отказов, иногда ее называют кривой жизни технического изделия (см. рисунок 1).

Рисунок 1 - Кривая интенсивности отказов

На кривой интенсивности отказов показаны значения средней долговечности изделия T1 и средней наработки до первого отказа Tср> T1. Средняя наработка до первого отказа Tср обычно значительная и характеризует запас надежности устройства в период нормальной эксплуатации. Обычно T1 ненамного превышает время t2,т. е. соответствует начальному участку периода старения и износа.

Период приработки (0 < t < t1) начинается с выхода нового изделия из цехов завода (t = 0) ихарактеризуется высокой интенсивностью отказов, которая постепенно падает. Эти отказы обусловлены технологическими, производственными или конструкционными недостатками, присущими как самому изделию, так и производству (включая также производство материалов, их хранение и транспортировку).

Отказы, возникающие в период приработки, стремятся исключить путем выявления скрытых дефектов монтажа и изготовления, отбраковкой элементов. Отказы в период приработки подчиняются закону Вейбулла.

Период нормальной эксплуатации ( t1 < t < t2) характеризуется минимальной интенсивностью отказов. В период нормальной эксплуатации происходят внезапные отказы, которые имеют случайный характер (механические повреждения, повреждения вследствие неблагоприятных внешних условий и т.д.). Природа таких отказов обусловлена неожиданной концентрацией нагрузок внутри изделия (или извне).

Подразделение отказов на внезапные и постепенные условно и служит для удобства анализа и количественной оценки протекающих явлений. Основной причиной внезапных отказов является превышение механической прочности элемента.

Регулярность событий в период нормальной эксплуатации не наблюдается. Закон распределения отказов в этот период экспоненциальный.

Период старения и износа (t > t2)характеризуется резким увеличением интенсивности отказов и связан с интенсивным износом и старением, необратимыми физико-химическими процессами в материалах, из которых изготовлены элементы и их части (постепенные отказы).

Закон распределения отказов -- либо нормальный, либо логарифмически-нормальный (могут быть и другие случаи).

Т.о., отказ оборудования может произойти в любом из рассматриваемых периодов работы и зависит это от суммарного воздействия той или иной комбинации факторов, основными из которых являются следующие.

Расчёт кривой интенсивности отказов выполнен в Mathcad 14.

2. Пуско-наладочные работы

2.1 Наладка и испытания

Программа и методы испытаний силовых трансформаторов и их наиболее важных узлов указываются и нормируются в следующих стандартах: ГОСТ 11677-75, ГОСТ 17500-72, ГОСТ 3484-77, ГОСТ 1516.1-76, ГОСТ 1516.2-76, ГОСТ 8008-75. Правила приемки электротехнических изделий, в том числе и трансформаторов, регламентируются отраслевым стандартом, согласно которому для проверки соответствия трансформаторов требованиям соответствующих стандартов устанавливаются следующие категории испытаний: квалификационные -- для изделий, осваиваемых в производстве, приемо-сдаточные, периодические и типовые -- для изделий установившегося производства. Кроме этих испытаний в процессе производства трансформаторов производят операционные испытания. Операционным испытаниям подвергают: обмотку, магнитопровод (остов), трансформатор после первой и второй сборок.

Сигнальные контакты газовых реле при первом включении

Принимаем интенсивность отказов базового элемента

трансформатора следует пересоединить «на отключение» (обычно они работают «на сигнал»).

Определим tп из уравнения

Снижение интенсивности отказов

Пробное включение трансформатора на рабочее напряжение допускается не ранее чем через 12 ч после последней доливки его маслом и продолжается не менее 30 мин. Наблюдают за состоянием трансформатора, затем его отключают, после чего включают три-четыре раза подряд для отстройки защит от бросков намагничивающего тока. Трансформаторы с дутьевой циркуляционной системой охлаждения (типа Д, ДЦ, Ц) можно включать с отключенной системой охлаждения. При этом контролируют температуру масла в верхних слоях, которая не должна превышать 75єС.

После опробования трансформатора на холостом ходу проводится его фазировка, которая заключается в проверке чередования фаз трансформатора и их соответствия фазам питающей сети. При удовлетворительных результатах пробного включения трансформатор может быть включен под нагрузку и сдан в эксплуатацию.

2.2 Объем приемо-сдаточных испытаний

В соответствии с требованиями ПУЭ объем приемо-сдаточных испытаний трансформаторов включает следующие работы

1. Определение условий включения трансформаторов.

2. Измерение характеристик изоляции.

3. Испытание повышенным напряжением промышленной частоты:

а) изоляции обмоток вместе с вводами;

б) изоляции доступных стяжных шпилек, прессующих колец и ярмовых балок (производят в случае осмотра активной части).

4. Измерение сопротивления обмоток постоянному току.

5. Проверка коэффициента трансформации.

6. Проверка группы соединения трехфазных трансформаторов и полярности выводов однофазных трансформаторов.

7. Измерение тока и потерь холостого хода:

а) при номинальном напряжении;

б) при малом напряжении.

8. Проверка работы переключающего устройства и снятие круговой диаграммы. 9. Испытание бака с радиаторами гидравлическим давлением.

10. Проверка системы охлаждения.

11. Проверка состояния силикагеля.

12. Газировка трансформаторов.

13. Испытание трансформаторного масла.

14. Испытание включением толчком на номинальное напряжение.

15. Испытание вводов.

16. Испытание встроенных трансформаторов тока.

Общие технические требования к трансформаторам и автотрансформаторам определены ГОСТ 11677-75, в котором предусмотрены также программы приемо-сдаточных, типовых и периодических испытаний, проводимых на заводе-изготовителе. Методика испытаний регламентируется ГОСТ 3484-77, ГОСТ 22756-77, ГОСТ 8008-75. При вводе в эксплуатацию маслонаполненные трансформаторы мощностью до 1,6 МВ*А испытываются по п.п. 1, 2, 4, 8, 9, 11-14. Маслонаполненные трансформаторы мощностью более 1,6 МВ*А, а также ответственные трансформаторы собственных нужд электростанций независимо от мощности, испытываются в полном объеме, предусмотренном настоящим параграфом. Сухие и заполненные совтолом трансформаторы всех мощностей испытываются по п.п. 1-8, 12, 14. Перед началом испытаний необходимо провести внешний осмотр трансформаторов, в процессе которого проверить исправность бака и радиаторов, состояние изоляторов, уровень масла, положение радиаторных кранов и крана на маслопроводе к расширителю, целость маслоуказательного стекла, заземление трансформатора.

2.3 Определение условий включения трансформаторов

Вопрос о допустимости включения трансформатора без сушки должен решаться по результатам испытаний с учетом условий, в которых находился трансформатор до и во время монтажа. При определении условий включения трансформатора следует руководствоваться инструкцией "Трансформаторы силовые. Транспортировка, разгрузка, хранение, монтаж и ввод в эксплуатацию" (РТМ 16.800.723-80). Объем проверки состояния изоляции и условия включения без сушки зависит от мощности, напряжения и условий транспортировки трансформаторов.

1-я группа. В нее входят трансформаторы мощностью до 1000 кВ*А напряжением до 35 кВ включительно, транспортируемые с маслом и расширителем.

Условия включения без сушки трансформаторов этой группы:

а) уровень масла - в пределах отметок маслоуказателя;

б) значение R60 /R15 не ниже 1.3 при температуре при 10-30 С;

в) характеристика масла должны соответствовать п.п. 1 - 6 табл. 2;

г) если условие "а)" не соблюдено, но обмотки трансформатора и переключателей покрыты маслом, или если не выполнены условия "б)" или "в)", но в масле нет следов воды и пробивное напряжение масла ниже, чем требуемое, но не более чем на 5 кВ, дополнительно определяется отношение С2 / C50 или tgд обмоток в масле, которые должны удовлетворять нормам, приведенным в табл. 3.

Достаточным для включения без сушки является соблюдение одной из следующих комбинаций:

для трансформаторов мощностью до 100 кВ*А

1) "а", "б";

2) "б", "г";

3) "а", "г";

для остальных трансформаторов 1-й группы

1) "а", "б", "в";

2) "б", "в", "г";

3) "а" "в" "г";

4) "а", "б", "г".

Для трансформаторов мощностью до 100 кВ*А включительно достаточно провести испытание масла только на пробивное напряжение. Кроме того, в масле не должно быть следов воды.

2-я группа. В нее входят трансформаторы мощностью от 1600 кВ*А до 6300 кВ*А включительно на напряжение до 35 кВ включительно, транспортируемые с маслом и расширителем. Условия включения без сушки трансформаторов этой группы те же, что и для трансформаторов 1-й группы. Кроме того, при испытании по п. б) значение R60 должно соответствовать табл. 4.

3-я группа. В эту группу входят трансформаторы мощностью 10000 кВ*А и более, транспортируемые с маслом без расширителя. Условия включения трансформаторов этой группы без сушки:

а) трансформатор должен быть герметичным;

б) характеристики масла должны соответствовать п.п. 1 - 6 табл. 3;

в) значения R60, С2 /С50 или tgд, измеренные после заливки маслом, должны удовлетворять нормам табл. 1 или значения R60 и tgд, приведенные к температуре изоляции при измерении этих характеристик на заводе, не должны отличаться более чем на 30% в сторону ухудшения от значений, указанных в заводском протоколе.

Таблица 1.

Характеристика изоляции

Мощность трансформатора, кВА

Температура обмотки, °С

10

20

30

40

50

60

70

Наименьшее допустимое сопротивление изоляцииR60, Ом

? 6300

450

300

200

130

90

60

40

? 10000

900

600

400

260

180

120

80

Наибольшее допустимое значение tgд

? 6300

1,2

1,5

2,0

2,5

3,4

4,5

6,0

? 10000

0,8

1,0

1,3

1,7

2,3

3,0

4,0

Наибольшее допустимое значение отношенияС2 /C50

? 6300

1,1

1,2

1,3

-

-

-

-

? 10000

1,05

1,15

1,25

4-я - 6-я группы. В эти группы входят трансформаторы на напряжение 110 кВ и выше всех мощностей, транспортируемые полностью залитыми маслом (4-я группа), без масла (с автоматической подпиткой азотом, 5-я группа) и частично залитыми маслом (без расширителя, 6-я группа). Для трансформаторов 4 - 6 групп производятся следующие измерения характеристик изоляции:

1. Отбор пробы масла из трансформатора, испытания его в объеме сокращенного анализа, измерение tgд масла. У трансформаторов 5-й группы производится также отбор пробы остатков масла со дна бака и проверка его пробивного напряжения.

2. Определение отношения ДС/С в начале и конце работ, при которых активная часть соприкасается с воздухом.

3. Измерение сопротивления изоляции R60 и tgд изоляции и определение отношения R60/ R15. При решении вопроса о допустимости включения трансформаторов 4-й - 6-й групп без сушки необходимо руководствоваться "Инструкцией по транспортировке, выгрузке, хранению, монтажу и введению в эксплуатацию силовых трансформаторов общего назначения на напряжение 110 - 500 кВ" (РТМ 16.687.000-73) и заводскими инструкциями.

Для трансформаторов всех групп до и во время монтажа производится внешний осмотр и проверка наличия пломб на кранах и у пробки для отбора пробы масла, проверка уровня масла в трансформаторе. В соответствии с инструкциями "Транспортирование, хранение, монтаж и ввод в эксплуатацию силовых трансформаторов на напряжение до 35 кВ включительно без ревизии их активных частей" (ОАХ 458.003-70) и "Инструкцией по транспортировке, выгрузке, хранению, монтажу и введению в эксплуатацию силовых трансформаторов общего назначения на напряжение 110 - 500 кВ" (РТМ 16.687.000-73) трансформаторы в зависимости от группы, к которой они относятся, и от характера отклонений от инструкций должны быть подвергнуты контрольному прогреву, контрольной подсушке или сушке в одном из следующих случаев:

а) при признаках увлажнения масла, с которым прибыл трансформатор, или нарушении герметичности;

б) если продолжительность хранения на монтаже без масла или без доливки масла превышает время, указанное в инструкциях;

в) если время пребывания активной части трансформатора на воздухе превышает время, указанное в инструкции;

г) если на активной части или в баке трансформатора обнаружены следы воды или значительное увлажнение изоляции;

д) если индикаторный силикагеля потерял голубой цвет;

е) если измеренные характеристики изоляции не соответствуют нормам табл. 4.

Условия включения сухих трансформаторов определяются в соответствии с указаниями завода-изготовителя.

2.4 Измерение характеристик изоляции трансформаторов

Для оценки состояния изоляции трансформатора в процессе монтажа перед пуском, после ремонта и в процессе эксплуатации проводятся следующие испытания:

· измерение сопротивления изоляции обмоток через 60 с после приложения постоянного напряжения (R60'');

· определение отношения значений сопротивлений изоляции, измеренных через 60 и 15с после приложения к ним постоянного напряжения (определение коэффициента абсорции Kабс=R60''/R15'');

· измерение угла диэлектрических потерь tgд изоляции обмоток при приложении к ним переменного напряжения;

· измерение изоляционных характеристик масла: пробивного напряжения, угла

· диэлектрических потерь и влагосодержания масла;

· определение влагосодержания установленных внутри бака трансформатора образцов твердой изоляции;

· определение отношения емкостей изоляции обмоток, измеренных при приложении напряжений частоты 2 и 50 Гц (С250);

· измерение прироста абсорбционной емкости (ДС/С).

Оценка состояния изоляции производится на основании комплекса испытаний. Значения сопротивления изоляции R60'' и отношения R60''/R15'' позволяют выявить грубые дефекты в изоляции перед включением трансформатора под напряжение, возникшие, например, в результате местных загрязнений, увлажнения или повреждения изоляции. В сочетании с другими показателями эти характеристики позволяют оценить степень увлажнения изоляции.

Рисунок 2

Измерение сопротивления изоляции обмоток производится при температуре не ниже +10єС мегаомметром класса 1000 В в трансформаторах класса напряжения до 35 кВ и мощностью до 16 МВ·А, и класса 2500 В с пределами измерения 0...10 000 МОм -- во всех остальных. При этом за температуру изоляции в масляных трансформаторах принимают температуру масла в верхних слоях, в сухих -- температуру окружающего воздуха.

Измерения сопротивления изоляции для двухобмоточного трансформатора проводятся по следующей схеме: первое измерение между обмоткой ВН и баком при заземленной обмотке НН (сокращенная запись схемы измерения ВН-бак, НН); второе: НН-бак, ВН; третье -- ВН + НН-бак (рис. 11, где 1 -- мегаомметр; 2 -- вводы ВН; 3 -- вводы НН; 4 -- бак трансформатора).

Допустимые значения сопротивления изоляции R60 коэффициент абсорбции R60 /R15 тангенс угла диэлектрических потерь tgд и отношения С2 /C50 и ДС/С регламентируется указанной инструкцией "Трансформаторы силовые. Транспортировка, разгрузка, хранение, монтаж и ввод в эксплуатацию" (РТМ 1б.800.723-80). Температурный режим при проведении измерений. Характеристики изоляции допускается измерять не ранее, чем через 12 часов после окончания заливки трансформатора маслом. Характеристики изоляции измеряются при температуре изоляции не ниже 10°С у трансформаторов на напряжение до 150 кВ мощностью до 80 МВ*А и при температуре не менее нижнего значения, указанного в паспорте, у трансформаторов на напряжение выше 150 кВ или мощностью более 80 МВ*А. Для обеспечения указанной температуры трансформатор подвергается нагреву до температуры, превышающей требуемую на 10°С. Характеристики изоляции измеряются на спаде температуры при отклонении ее от требуемого значения не более, чем на 5°С. Температура изоляции определяется до измерения характеристик изоляции. В качестве температуры изоляции трансформатора, не подвергавшегося нагреву, принимается температура верхних слоев масла.

Для трансформаторов на напряжение выше 35 кВ, залитых маслом, в качестве температуры изоляции следует принимать температуру фазы "В" обмотки "ВН", определяемую по ее сопротивлению постоянному току. При нагреве трансформатора указанное сопротивление измеряется не ранее чем через 60 мин. после отключения нагрева обмотки током или через 30 мин после отключения внешнего нагрева. При определении температуры обмотки по сопротивлению постоянному току рекомендуется температуру обмотки вычислять по формуле

где Rх измеренное сопротивление обмотки при температуре tх;

R0 - сопротивление обмотки, измеренное на заводе при температуре t0 (паспортные данные трансформатора).

При определении соотношения ДС /С трансформаторов на напряжение 110 кВ и выше в качестве температуры изоляции принимается среднесуточная температура, измеренная термометром (или термопарой) на верхнем ярме магнитопровода непосредственно после измерения ДС и С.

Перед измерением характеристик изоляции необходимо протереть поверхность вводов трансформаторов. При измерениях во влажную погоду рекомендуется применять экраны. Перед измерением характеристик изоляции измеряют значения Rиз, ДС и С проводов, соединяющих приборы с трансформатором. Длина проводов должна быть как можно меньше, поэтому приборы нужно располагать по возможности ближе к трансформатору. Характеристики изоляции измеряют по схемам и в последовательности, указанной в табл. 1.

При измерении характеристик обмоток трансформатора R60 tgд и масла tgд следует учитывать поправочные коэффициенты табл. 3. При измерении все выводы обмотки одного напряжения соединяются вместе, остальные обмотки и бак трансформатора должны быть заземлены. Измерение сопротивлений R60 и R15. Измерение сопротивлений R60 и R15 проводят перед измерением остальных характеристик трансформатора. Сопротивление изоляции измеряют по схемам табл. 3 мегаомметром на 2500 В с верхним пределом измерения не ниже 10000 МОм. Измеренное значение R проводов должно быть не меньше верхнего предела измерения мегаомметра. Перед началом измерения все обмотки должны быть заземлены не менее чем на 5 мин., а между отдельными измерениями - не менее, чем на 2 мин. Значения R60 изоляции, измеренные при монтаже (при заводской температуре или приведенные к этой температуре) для трансформаторов на напряжение до 35 кВ включительно, залитых маслом, должны быть не менее значений; для трансформаторов на напряжение 110 кВ и выше - не менее 70% значения, указанного в паспорте трансформатора. Значения R60, измеренные при температуре t1, на монтаже, приводят к температуре измерения t2 на заводе с помощью коэффициента К2, значения которого приведены в табл. 2

где R60 - измеренное значение R601 приведенное к температуре заводских измерений.

Значения коэффициентов для пересчета характеристик обмоток и масла. Таблица 5.

Разность температур t2-t1, °С

Значения

Разность температур

Значения

К1

К2

К3

К1

К2

К3

1

1,03

1,04

1,04

20

1,75

2,25

2,25

2

1,06

1,08

1,08

25

2,0

2,75

2,75

3

1,09

1,13

1,13

30

2,3

3,4

3,4

4

1,12

1,17

1,17

35

-

-

4,15

5

1,15

1,22

1,22

40

-

-

5,1

10

1,31

1,5

1,5

45

-

-

6,2

15

1,51

1,84

1,84

50

-

-

7,5

Данные измерений R60 допускается пересчитывать по температуре для трансформаторов мощностью до 80 МВ А и на напряжение до 150 кВ при разности температур не более +10°С, а для трансформаторов большей мощности и на напряжение выше 150 кВ - при разности температур не более +5°С.

Для сухих трансформаторов R60 при температуре 20-30°С должно быть не ниже: при номинальном напряжении трансформатора до 1 кВ - 100 МОм; 6 кВ - 300 МОм; 10 кВ -- 500 МОм. Коэффициент абсорбции R60/R15 обмоток для трансформаторов мощностью менее 10000 кВ*А, напряжением до 35 кВ включительно при температуре 10-30°С должен быть не ниже 1,3. Для остальных трансформаторов - соответствовать заводским данным.

Значение коэффициента для разности температур не указанной в таблице определяется умножением коэффициентов, сумма разности температур которых равна рассматриваемой разности (например: коэффициент, соответствующий разнице температур 8°С определяется умножением коэффициентов соответственно для разностей температур 3°С и 5°С.

Измерение тангенса угла диэлектрических потерь tgд. Тангенс угла диэлектрических потерь tgд обмоток измеряют мостом переменного тока P5026 по перевернутой схеме (см. рис. 12, где Тр - испытательный трансформатор; СN - образцовый конденсатор; Сх - испытываемый объект; G - гальванометр; R3- переменный резистор; R4 - постоянный резистор; С4 - магазин емкостей.) в последовательности согласно табл. 2. Перевернутая (обратная) схема применяется для измерения диэлектрических потерь объектов, имеющих один заземленный электрод. Измерение tgд на трансформаторах, залитых маслом, можно проводить при напряжении, не превышающем 2/3 заводского испытательного напряжения испытываемой обмотки.

Измерение tgд при сушке трансформатора без масла допускается производить при напряжении не выше 220 В. Измерения при монтаже значения tgд изоляции обмоток при температуре заводских испытаний или приведенное к этой температуре, если температура при измерении отличается от заводской, должно быть для трансформаторов на напряжение до 35 кВ включительно залитых маслом, не выше значений, для трансформаторов на напряжение 110 кВ и выше - не более 130% паспортного значения.

Рисунок 3. Перевернутая (обратная) схема включения моста переменного тока.

Значения tgд, приведенные к заводской температуре, не превышающие 1%, следует считать удовлетворительными без сравнения с паспортными значениями. Значения tgд1, измеренного при температуре t, на монтаже, приводят к температуре измерения tz на заводе с помощью коэффициента К1, значения которого приведены в табл. 2

где tgд - измеренное значение tgд1, приведенное к температуре заводских измерений.

Данные измерений tgд допускается пересчитывать по температуре для трансформаторов мощностью до 80 МВ*А и на напряжение до 150 кВ при разности температур не более +10°С, а для трансформаторов большей мощности и на напряжение выше 150 кВ - при разности температур не более ±5°С. При измерении характеристик изоляции необходимо учитывать влияние tgд масла, заливаемого в трансформатор. Если tgд масла, залитого при монтаже в трансформатор (tgдм2) находится в допустимых ГОСТом пределах, но отличается от заводского значения, фактические значения tgдф и R60 изоляции с учетом влияния tgд масла определяются по формулам

где tgдиз и R60из - измеренные значения tgд и R60 изоляции;

К - коэффициент приведения, имеющий приближенное значение 0,45;

tgдм2 - значение tgд масла, залитого при монтаже, приведенное к температуре измерения характеристик изоляции на монтаже с помощью коэффициента Кз;

tgдм1- значение tgд масла, залитого на заводе, приведенное к температуре измерения характеристик изоляции на заводе о помощью коэффициента Кз (табл. 2)

если температура при измерении tgд масла ниже температуры при измерении характеристик изоляции; tgдм1' и tgдм2' - измеренные значения tgд масла, залитого соответственно на заводе и при монтаже. Измерение емкости. Значения С2/С50, измеренные на монтаже для трансформаторов на напряжение до 35 кВ включительно, залитых маслом, не должны превышать значений, указанных в табл. 4. Для трансформаторов на напряжение 110 кВ и выше, транспортируемых без масла, значения ДС/С, измеренные по прибытии трансформаторов на место монтажа, не нормируются, но должны использоваться в качестве исходных данных в эксплуатации. При измерении ДС и С изоляции трансформаторов на напряжение 110 кВ и выше в конце монтажа до заливки маслом необходимо учитывать ЬС и С маслонаполненных вводов трансформаторов введением поправок (вычитанием значения, измеренного на не установленном вводе, из значения измеренного на трансформаторе с установленными вводами). Отношение С2/С50 и ДС/С измеряются приборами ЕВ-3 или ПКВ-8 по схемам табл. 4. Перед измерением все обмотки должны быть заземлены не менее чем на 5 мин. Измерение емкости трансформаторов производится главным образом для определения влажности обмоток. Оно основано на том, что емкость неувлажненной изоляции при изменении частоты изменяется меньше (или совсем не изменяется), чем емкость увлажненной изоляции. Емкость изоляции принято измерять при двух частотах: 2 и 50 Гц (ДС и С). При измерении емкости изоляции на частоте 50 Гц успевает проявиться только геометрическая емкость, одинаковая у сухой и у влажной изоляции. При измерении емкости изоляции на частоте 2 Гц успевает проявиться абсорбционная емкость влажной изоляции, в то время как у сухой изоляции она меньше и заряжается медленно. Температура при измерениях должна быть не ниже +10°С. Отношение С2/С50 для увлажненной изоляции составляет около 2, а для неувлажненной - около 1.

Определение влажности изоляции силовых трансформаторов осуществляется также по приросту емкости за 1 с. При этом методе производится заряд емкости изоляции, а затем разряды: быстрый (закорачиванием сразу после окончания заряда) и медленный (закорачиванием через 1 с после окончания заряда). В первом случае определяется емкость С, во втором случае - прирост емкости за счет абсорбционной емкости, которая успевает проявиться за 1 с у влажного трансформатора, но не успевает проявиться у сухого. У сухого трансформатора ДС незначительна: и составляет (0,02-:0,08)*С при температуре +10°С, у влажного ДС>>0,1°С. Обычно эти измерения производят в начале ревизии трансформатора, после подъема выемкой части и в конце ревизии, до погружения керна трансформатора в масло, а также в процессе сушки.

Отношение ДС/С измеряют для каждой обмотки при соединении с заземленным корпусом свободных обмоток. Перед измерением испытуемую обмотку заземляют на 2-3 мин. Провода, соединяющие прибор с испытуемой обмоткой, должны быть возможно короче. Если значения ДС и С проводов можно измерить по прибору, вносится поправка вычитанием ДС и С проводов из результатов измерения полностью собранной схемы с испытываемым трансформатором. Величина отношения ДС/С, измеренная в конце ревизии, и разность в % между величиной ДС/С в конце и начале ревизии должны быть в пределах величины приведенных в табл. 6.

Величина ДС/С увеличивается с повышением температуры. Поэтому, если за время ревизии трансформатора изменилась температура выемкой части и измерение ДС/С в конце и начале ревизии производились при различных температурах, их необходимо перед сопоставлением привести к одной температуре путем умножения на коэффициент температурного пересчета К, значения которого представлены в табл. 3.

Определение влажности по коэффициенту абсорбции. Коэффициент абсорбции (R60 /R15) для неувлажненной обмотки при температуре 10 - 30 °С лежит в пределах 1,3 - 2,0; для увлажненной - близок к единице. Это различие объясняется разной длительностью заряда абсорбционной емкости у сухой и влажной изоляции.

Значения ДС / С, % при различных температурах. Таблица 3.

Мощность и напряжение обмотки ВН

Измерения

Температура, °С

10

20

30

40

50

До 35 кВ включительно

В конце ревизии

13

20

30

45

75

Мощностью менее 10 МВ·А

В конце и начале ревизии

4

6

9

13,5

22

2.5 Испытание повышенным напряжением промышленной частоты

Испытание внутренней изоляции трансформатора должно производиться, как правило, на собранных трансформаторах (установлены постоянные вводы, залито масло, крышки трансформатора закрыты на болты).

Перед испытанием производится проверка сопротивления изоляции мегаомметром. Трансформаторное масло для вновь вводимых трансформаторов должно соответствовать нормам. Испытанию повышенным напряжением промышленной частоты подвергается изоляция обмоток трансформатора вместе с вводами. Испытательные напряжения приведены в табл. 4. Продолжительность приложения нормативного испытательного напряжения 1 мин. Испытание повышенным напряжением изоляции обмоток маслонаполненных трансформаторов не обязательно. Испытание сухих трансформаторов обязательно и производится по нормам табл. 8 для аппаратов с облегченной изоляцией.

Импортные трансформаторы разрешается испытывать напряжением, указанным в табл. 4 лишь в тех случаях, если они не превышают напряжения, которым данный трансформатор был испытан на заводе. Изоляция импортных трансформаторов, которую поставщик испытал напряжением ниже указанного в ГОСТ-18472-82, испытывается напряжением, значение которого устанавливается в каждом случае особо.

Испытательное напряжение заземляющих реакторов на напряжение 35 кВ аналогичны трансформаторам соответствующего класса. Изоляция линейного вывода обмоток трансформаторов напряжением 110 кВ и выше, имеющих неполную изоляцию нейтрали (испытательное напряжение 85 и 100 кВ) испытывается только индуктированием, а изоляция нейтрали - приложенным напряжением;

Испытанию повышенным напряжением промышленной частоты подвергается также изоляция доступных стяжных шпилек, прессующих колец и ярмовых балок. Испытания следует производить в случае осмотра активной части. Испытательное напряжение 1 - 2 кВ. Продолжительность испытания 1 мин. Испытанию подвергается изоляция каждой из обмоток. Все остальные выводы других обмоток, включая выводы расщепленных ветвей обмоток, заземляют вместе с баком трансформатора. Подлежат заземлению и зажимы измерительных обмоток встроенных трансформаторов тока, выводы измерительных обкладок вводов (при наличии их на силовом трансформаторе). Схема испытания представлена на рис.13. Для защиты испытываемой обмотки от случайного чрезмерного повышения напряжения параллельно к ней присоединяется шаровой разрядник с пробивным напряжением, равным 115-120% требуемого испытательного напряжения. Последовательно с разрядником включается токоограничивающее сопротивление, служащее для защиты шаров от оплавления при пробое воздушного промежутка между ними. При производстве испытаний трансформаторов температура изоляции обмоток не должна быть выше 40 С. Контроль величины испытательного напряжения должен производиться на стороне высшего напряжения испытательного трансформатора с помощью электростатического киловольтметра, например типа С-96, С-196. Исключение могут составлять силовые трансформаторы небольшой мощности с номинальным напряжением до 10 кВ включительно. Для них допускается испытательное напряжение измерять вольтметром, включая его на стороне НН испытательного трансформатора. Класс точности низковольтного вольтметра должен быть 0,5. Подъем напряжения при производстве испытаний допускается производить сразу до 50% испытательного, а затем плавно до полного значения со скоростью порядка 1 - 1,5% испытательного напряжения в 1 с. После выдержки в течение требуемого времени (1 мин.) напряжение плавно снижается в течение времени порядка 5 с до значения 25% или менее испытательного, после чего цепь размыкается. Внутренняя изоляция масляного трансформатора считается выдержавшей испытание на электрическую прочность, если при испытании не наблюдалось пробоя или частичных нарушений изоляции, которые определяются по звуку разрядов в баке, выделению газа и дыма и по показаниям приборов (амперметра, вольтметра).

Рисунок 4. Схема испытания главной изоляции повышенным напряжением

Испытательное напряжение промышленной частоты внутренней изоляции силовых трансформаторов и реакторов с нормальной изоляцией и трансформаторов с облегченной изоляцией (сухих и маслонаполненных).

Таблица 4.

Класс напряжения обмотки, кВ

Испытательное напряжение по отношению к корпусу и другим обмоткам, кВ, для изоляции

нормальной


Подобные документы

  • Расчет нагрузок и выбор силового трансформатора. Эксплуатация и ремонт электрооборудования. Электроэрозионная установка, защита электрооборудования от коррозий. Расчет токов короткого замыкания. Монтаж заземляющих шин внутреннего заземляющего контура.

    дипломная работа [974,8 K], добавлен 04.06.2013

  • Техническая характеристика трансформаторов, их виды, назначение и применение. Изучение устройства силового масляного трансформатора мощностью 1000 кВА напряжением 35 кВ. Организация и технология ремонта данного оборудования, перечень возможных неполадок.

    курсовая работа [130,4 K], добавлен 06.08.2013

  • Назначение силового трансформатора. Ремонт переключателя трансформаторного переключателя системы управления. Модернизация и методы испытаний силовых трансформаторов. Расчет электроснабжения ремонтного цеха. Требования безопасности в аварийных ситуациях.

    курсовая работа [871,2 K], добавлен 05.10.2014

  • Основные типы, устройство и сроки проверки электроизмерительных приборов, средств индивидуальной защиты, противопожарных средств, находящихся в цехе. Технические данные трансформатора. Перечень и объем основных работ по монтажу-демонтажу оборудования.

    отчет по практике [588,3 K], добавлен 19.05.2013

  • Строительство и монтаж трансформаторных подстанций, испытание трансформаторов. Организация труда и механизация электромонтажных работ. Эксплуатация и наладка электрооборудования. Профилактические испытания изоляции, параметры надежности работы приборов.

    курсовая работа [1,8 M], добавлен 13.04.2014

  • Понятие силового трансформатора как одного из важнейших элементов современной электрической сети. Характеристика и назначение силового двухобмоточного трансформатора типа ТМ, особенности главной изоляции. Определение напряжения короткого замыкания.

    курсовая работа [1,3 M], добавлен 14.07.2012

  • Технические характеристики электрооборудования объекта проектирования (заземляющее устройство подстанции). Выбор, обоснование, разработка и расчет планировочного решения системы заземляющего устройства, его ремонт, наладка, монтаж и обслуживание.

    дипломная работа [3,1 M], добавлен 09.07.2015

  • Нормирование освещенности и выбор источников света, расчет мощности необходимых осветительных установок. Определение параметров силового трансформатора. Мероприятия по организации электромонтажных работ, составление сметы и определение их стоимости.

    курсовая работа [167,6 K], добавлен 31.12.2012

  • Масляные трансформаторы, их устройство и назначение. Установка, ремонт и замена масляных трансформаторов. Правила по электрической безопасности при эксплуатации трансформаторов. Эксплуатация масляных трансформаторов на примере трансформатора ТМ-630.

    курсовая работа [718,0 K], добавлен 28.05.2014

  • Назначение, виды и монтаж устройств защитного заземления. Ремонт обмоток электрических машин, бандажирование и балансировка роторов и якорей. Сборка и испытание электрических машин. Методы оценки увлажненности и сушки изоляции обмоток трансформатора.

    контрольная работа [623,8 K], добавлен 17.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.