Схема и основные характеристики технологической установки

Составление функциональной схемы автоматизации технологической установки. Кривая разгона объекта по каналу регулирования, выбор типа регулятора. Определение пригодности регулятора и параметров его настроек и устойчивости системы по критерию Гурвица.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 10.05.2009
Размер файла 175,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Федеральное агентство по образованию Российской Федерации

Орловский государственный технический университет

Кафедра "Электрооборудование и энергосбережение "

Пояснительная записка

к курсовой работе по дисциплине АСУТП

Работу выполнил

студент группы 41-ТК: Чернышова В.А.

Шифр 030917

Руководитель работы:

Комаристый А.С.

Курсовая работа защищена

с оценкой _____________

2007 г.

Содержание

  • Введение 3
    • 1. Схема и основные характеристики технологической установки 5
    • 2. Составление функциональной схемы автоматизации технологической установки 6
    • 3. Построение кривой разгона объекта по каналу регулирования, выбор типа регулятора 8
    • 4. Определение пригодности регулятора и параметров его настроек 11
    • 5. Анализ АСР на устойчивость по критериям устойчивости Гурвица и Михайлова 14
    • 5. Анализ АСР на устойчивость по критериям устойчивости Гурвица и Михайлова 14
    • 5.1 Определение устойчивости системы по критерию Гурвица 15
    • 5.2 Проверка устойчивости САУ по критерию Михайлова 16
    • 6. Определение запаса устойчивости АСР по фазе 19
    • Заключение 23
    • Литература 25

Введение

Автоматика - отрасль науки и техники, охватывающая теорию и принципы построения средств и систем управления производственным процессом. Автоматика является основой автоматизации.

Автоматизация - этап развития машинного производства, который характеризуется освобождением человека от непосредственного выполнения функций управления производственными процессами и передачей этих функций техническим устройствам.

Управление производственным процессом - это такое воздействие на него, которое обеспечивает оптимальный или заданный режим работы. Объект управления - управляемый производственный процесс. Совокупность технических средств, используемых для управления, и производственного персонала, который принимает в нем непосредственного участие, образует совместно с объектом систему управления.

Процесс управления складывается из следующих основных функций, которые выполняются системой управления:

получение измерительной информации о состоянии производственного процесса как объекта управления;

переработка полученной информации и принятии решения о необходимом воздействии на объект для достижения целей управления;

реализация принятого решения, т.е. непосредственное воздействие на производственный процесс.

Средство измерений - это средство, предназначенное для получения информации о состоянии объекта управления.

Среди автоматических систем наиболее распространены автоматические системы регулирования (АСР). АСР предназначены для поддержания заданных значений технологических параметров, которые характеризуют состояние производственного процесса как объекта регулирования. С появлением новых технических средств, в практику автоматизации вошел новый тип систем управления - автоматизированные системы управления технологическими процессами.

Широкое внедрение автоматизации пищевых производств позволяет повысить эффективность технологических процессов и обеспечить полную сохранность натуральных свойств исходного сырья, которое поступает на переработку.

1. Схема и основные характеристики технологической установки

Рисунок 1.1 - Схема хлебопекарной печи

Регулируемые параметры: температура дымовых газов, подаваемых в центральную зону пекарной камеры.

Контролируемые параметры температура, давление газа.

Сушка (высушивание) материалов состоит в удалении влаги из влажных материалов путем ее диффузии из твердого материала и испарения.

Необходимость удаления влаги из материала может быть обусловлена разными причинами, например:

Влажный продукт может портиться при хранении, так как влага вредно воздействует на товарные свойства некоторых материалов: слеживание, смерзание в зимнее время, образование плесени.

2. Составление функциональной схемы автоматизации технологической установки

Функциональная схема автоматизации (ФСА) дает представление о функционально - блочной структуре системы автоматического управления - регулирования, сигнализации, защиты технологического процесса или установки и определяет объем оснащения установки (объекта) аппаратурной автоматики. На ФСА изображены: технологическое оборудование, коммуникации, органы управления и средства автоматизации (датчики, регулирующие и контролирующие приборы, элементы управления, вычислительные устройства и пр.).

В зоне щитов и пультов условно изображают установленные средства автоматизации. От них линии связи идут к элементам схемы установки. Приборы и средства, установленные вне щитов, - местные приборы.

Рисунок 2 - Функциональная схема автоматизации регулирования и контроля температуры и давления газа

В соответствие с заданием для регулирования и контроля температуры и давления газа в технологической установке на выходе из топки установлен измеритель температуры (поз.4-1), имеющий сдвоенный чувствительный элемент (сдвоенная термопара), один из которых подключен ко вторичному прибору, установленному на щите (поз.4-2), осуществляющий показание и запись температуры, а другой - к электрическому регулятору (поз.4-3), имеющему датчик (поз.4-4), не встроенный в регулятор. Исполнительным механизмом (поз.4-5) можно управлять вручную с помощью кнопок управления (поз.4-5) можно управлять вручную с помощью кнопок управления (поз.3-1) через переключатель режима работы - ручное - автоматическое (поз.3-2). Исполнительный механизм изменяет подачу газа в топку. Для контроля давления на выходе в топку установлен датчик давления (поз.2-1), который подключен ко вторичному прибору на щите (поз.2-2), осуществляющему показание давление газа и имеющему задатчик (поз.2-3) и сигнализацию (поз.2-4) для обеспечения техники безопасности. Измеритель температуры подаваемого газа (поз.1-1) подключен к прибору, установленному на щите (поз.1-2), осуществляющему показания и запись температуры.

3. Построение кривой разгона объекта по каналу регулирования, выбор типа регулятора

Исходные данные для построения кривой разгона объекта по каналу регулирования сведены в таблицу 1.

Таблица 1

№ п/п

Возмущение Y%

Р.О.

Относительное время кривой разгона tотн

Показатели качества процесса регулирования

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

данные эксперимента - отклонение параметра Xэ(t)

X1%

Xост

Xр. отн.

1

10

0

0,25

1

2,3

3,3

4,1

4,5

4,8

5,0

5,1

5,1

40

10

1,5

Абсолютное значение времени определяется по формуле:

,

где tпер. - время переходного процесса, указанное для технологической установки.

Кривую разгона объекта строим в единицах регулируемой величины по формуле:

(t)

где - отклонение по кривой разгона,

- отклонение параметра по таблице 1.

Результаты пересчета t и X сводим в таблицу 2.

Таблица 2

Параметр

Значение

tотн

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

X э (t)

0

0,25

1

2,3

3,3

4,1

4,5

4,8

5,0

5,1

5,1

t(М)

0

2

4

6

8

10

12

14

16

18

20

X(t)

0

0,59

2,35

5,2

7,77

9,65

10,6

11,3

11,77

12

12

По данным таблицы строим кривую разгона объекта (рисунок 3).

Рисунок 3 - Кривая разгона

На кривой разгона объекта проводим касательную к точке перегиба и определяем графически динамические и установившиеся параметры объекта:

=2,5 мин,

Т=10,5 мин,

X = 12.

Затем рассчитываем вспомогательные параметры:

;

По номограмме выбираем закон регулирования.

Рисунок 4 - Номограмма

Согласно координаты точки (Rg, /Т) и ближайшей к ней кривой - это П - регулятор.

4. Определение пригодности регулятора и параметров его настроек

После того, как мы выбрали закон регулирования определяем время регулирования tр и остаточное отклонение.

Время регулирования tр определяем по номограмме tр/=f(/Т) (рисунок 5).

Рисунок 5 - Номограмма tр/=f(/Т)

К оси абсцисс в точке с соответствующим значением /Т восстанавливаем перпендикуляр до пересечения с графиком П - регулятора. По оси ординат определяем величину "С" отношения tр/, тогда время регулирования tр определяем по формуле:

;

Затем проверяем неравенство:

;

Так как. , следовательно, регулятор выбран верно.

По графику

(рисунок 6) определяем графически остаточное отклонение.

Рисунок 6 - Номограмма

X'ост=С'X? C'=0,25;

X'ост< Xост 3<10;

Закон регулирования П - регулятора имеет вид:

Определяем параметры настроек регулирования по формуле:

;

5. Анализ АСР на устойчивость по критериям устойчивости Гурвица и Михайлова

Анализируемая АСР задана исходной структурной схемой, рисунок 7.

2

Рисунок 7 - Структурная схема

Структурную схему преобразовываем к одноконтурному виду, заменяя внутренние контуры одним звеном пользуясь правилами коммутации. Передаточные функции структурной схемы записываем в общем виде.

W(P) = W5(P) =W3(P) W4(P) W2(P) W1(P)

Заменяем параметры передаточных функций их числовыми значениями из таблицы 3.

Таблица 3

Параметры звена

k1

T1

1

k01

k2

T2

2

k02

k3

3

k4

T4

4

8

1

1,2

0

0,4

0

0

1

0,9

0

0,5

0,7

0,5

Формулы передаточных функций имеют вид:

;

;

Записываем передаточную функцию замкнутой АСР по управлению и возмущению Фf(P):

5.1 Определение устойчивости системы по критерию Гурвица

Для определения устойчивости системы по Гурвицу приравниваем к 0 знаменатель передаточной функции замкнутой по управнению системы, т.е. получаем характеристическое уравнение замкнутой по управлению системы:

В общем виде:

При положительных коэффициентах критерий Гурвица сводится к проверке неравенства:

САУ по критерию Гурвица устойчива, так как определитель и диагональный минор величины положительные.

Определяем критический коэффициент усиления замкнутой по управлению системы по формуле:

;

5.2 Проверка устойчивости САУ по критерию Михайлова

Для проверки САУ по критерию Михайлова в характеристическом уравнении для замкнутой по управлению системы заменяем оператор дифференцирования Р на комплексную переменную jw, полученное комплексное число представляем в алгебраической форме записи:

Изменяя значение w от 0 до определяем значение функции и строим график на комплексной плоскости. На первоначальном этапе определяем точки пересечения годографа Михайлова с действительной и мнимой осями.

1) ;

;

.

2) ;

; или

или

Изменяя значение w определяем U(w) и V(w), полученные данные сводим в таблицу 4.

Таблица 4.

w

0,0

0,4

0,8

1,2

1,3

1,6

2,0

2,4

U(w)

1,440

1,168

0,352

-1,008

-1,433

-2,912

-5,36

-8,352

V(w)

0,000

0,765

1,299

2,410

1,292

0,755

-0,784

-3,475

w

2,8

3,2

3,6

3,9

4,0

4,4

4,8

5,2

5,6

U(w)

-11,888

-15,968

-20,592

-24,417

-25,76

-31,472

-37,728

-44,528

-51,872

V(w)

-7,549

-13,235

-20,765

-27,76

-30,368

-42,275

-56,717

-73,923

-94,125

По данным таблицы строим годограф, рисунок 8.

Рисунок 8 - Годограф Михайлова

Анализируя годограф Михайлова делаем следующие выводы:

САУ по критерию Михайлова устойчива, так как при показателе степени характеристического уравнения n=3, кривая (годограф), начинаясь на действительной положительной полуоси, огибает начало координат против часовой стрелки, проходя последовательно 3 квадранта.

Определенный по графику коэффициент максимального усиления kmax

kд + kз

kд - коэффициент усиления, = 1,44

kз - коэффициент запаса, = 4,24

Сравнения его со значением, определенным по критерию Гурвица, мы видим, что они равны:

6. Определение запаса устойчивости АСР по фазе

Для определения запаса устойчивости по фазе воспользуемся критерием Михайлова - Найквиста. Для этого исследуем разомкнутую по управлению систему:

Выпишем отдельно числитель и разделим его на вещественную и мнимую составляющие, заменив P на jw:

Амплитудно-частотную характеристику численно найдем по формуле:

Фазово-частотную характеристику численно найдем по формуле:

Выпишем знаменатель и так же разделим его на вещественную и мнимую части:

Амплитудно-частотную характеристику определим по формуле:

Для удобства строим АЧХ и ФЧХ в логарифмических координатах.

Чтобы система была устойчива, необходимо, чтобы логарифмические частотные характеристики разомкнутой системы удовлетворяли следующему требованию: необходимо и достаточно, чтобы при всех частотах, при которых ЛАЧХ положительна, значения фазы не превышали "-р". Иначе говоря, система устойчива, если ЛАЧХ пересечет ось lg(w) раньше, чем ЛФЧХ достигнет значения "-р".

Фазово-частотную характеристику определим по формуле:

;

Изменяя значение w от 0 до рассчитываем значение действительной и мнимой составляющих. Затем производим операцию логарифмирования, и результаты вычислений сводим в таблицу 5.

Таблица 5

w

1

1,25

1,5

1,75

2

2,25

2,5

lgw

0

0,09691

0,176091

0,243038

0,30103

0,352183

0,39794

20lgA(w)

11,56588868

9,357563

7,573092

6,07112

4,770441

3,620912

2,58966

ц(w)

0

-0,32548

-0,58501

-0,79662

-0,97266

-1,12171

-1,24986

По данным таблицы строим годограф, рисунок 9.

Рисунок 9 - Запас устойчивости по фазе

По графику определяем запас устойчивости по фазе

Дц = 1,93 рад = 110,5°, следовательно, система имеет высокий запас устойчивости.

Заключение

В пищевой промышленности чаще всего необходимо измерять, контролировать и регулировать следующие технологические параметры: температуру, давление (разряжение), влажность, уровни рабочих сред в аппаратах и машинах, показатели качества и состава сырья, полуфабрикатов и готового продукта.

При внедрении автоматизации технологического процесса обеспечивается рост производства, повышение качества продукции и производительности труда.

В процессе выполнения курсового проекта мы ознакомились с устройством и основными характеристиками хлебопекарной печи. Составили функциональную схему автоматизации, построили кривую разгона по каналу регулирования, выбрали тип регулятора - П - регулятор, определили пригодность регулятора и записали закон регулирования:

.

Проанализировали автоматизированную систему регулирования по критериям Гурвица и Михайлова и сделали вывод:

По критерию Михайлова система устойчива, так как при показателе степени характеристического уравнения n=3, кривая, начинаясь на положительной действительной полуоси, огибает начало координат против часовой стрелки и проходит последовательно 3 квадрата;

Коэффициенты усиления k max определенный по графику и найденный по критерию Гурвица равны

При использовании критерия Михайлова - Найквиста рассчитали запас устойчивости по фазе. Дц = 1,93 рад = 110,5°.

Литература

1. Иващенко Н.Н. Автоматическое регулирование. Теория и элементы систем: Учебник для ВУЗов. М.: Машиностроение. - 1978 - 736 с.

Симонов В.П. Задания и методические указания на курсовую работу по УТС. Орел: ОрелГТУ, 1999 - 22 с.

3. Качанов А.Н. Математические основы проектирования и наладки систем автоматического управления техническими объектами и процессами. Орел: ОрелГТУ, 2001 - 143 с.

4. Автоматика и автоматизация пищевых продуктов: Учебник для ВУЗов. М.: "ВО Агропромиздат", 1991 - 239 с.

5. Малахов Н.Н. Процессы и аппараты пищевых производств. Орел: ОрелГТУ, 2001 - 686 с.


Подобные документы

  • Технологическая характеристика объекта автоматизации – тельфера. Составление функциональной и технологической схемы системы автоматического управления. Разработка принципиальной электрической схемы. Расчёт и выбор технических средств автоматизации.

    курсовая работа [248,1 K], добавлен 13.05.2012

  • Рассмотрение технологической схемы теплоутилизационной установки. Расчет печи перегрева водяного пара и котла-утилизатора. Составление теплового баланса воздухоподогревателя, определение коэффициента полезного действия и эксергетическая оценка установки.

    курсовая работа [1,0 M], добавлен 03.10.2014

  • Описание принципа действия силовой схемы и схемы управления компрессорной установки. Расчет основных параметров электродвигателя, питающего кабеля. Формирование графиков, составление технологической карты электромонтажные работы компрессорной установки.

    отчет по практике [377,0 K], добавлен 26.06.2014

  • Особенности при формировании функциональной схемы холодильной установки. Расчёт теплообменного оборудования. Выбор конденсатора. Кожухотрубные испарители. Расчёт толщины изоляции. Выбор градирни и насоса. Выбор оптимальных параметров режима работы.

    курсовая работа [893,1 K], добавлен 14.01.2013

  • Определение контролируемых и управляемых параметров. Описание режимов функционирования водогрейного котла. Блок-схема алгоритма его работы. Модель регулирования положения аэрошибера рекуператора. Расчет оптимальных настроек автоматического регулятора.

    курсовая работа [420,4 K], добавлен 31.01.2015

  • Описание технологической схемы. Расчет выпарной установки: поверхности теплопередачи, определение толщины тепловой изоляции, вычисление параметров барометрического конденсатора. Расчет производительности вакуум-насоса данной исследуемой установки.

    курсовая работа [194,3 K], добавлен 13.09.2011

  • Анализ систем автоматизации. Разработка информационно-управляющей системы котлотурбинного цеха котельной. Параметрический синтез системы автоматического регулирования. Расчет затрат на внедрение оборудования. Выбор настроек для регулятора питания.

    дипломная работа [2,0 M], добавлен 03.12.2012

  • Проектирование гидротурбины, разработка эскиза турбинной установки: выбор типа, определение основных параметров. Расчет и построение эксплуатационной характеристики. Гидромеханический расчет спиральной камеры; размеры и конфигурация отсасывающей трубы.

    курсовая работа [128,4 K], добавлен 04.03.2012

  • Проектирование контактной газотурбинной установки. Схема, цикл, и конструкция КГТУ. Расчёт проточной части турбины. Выбор основных параметров установки, распределение теплоперепадов по ступеням. Определение размеров диффузора, потерь энергии и КПД.

    курсовая работа [2,0 M], добавлен 02.08.2015

  • Характеристика системы регулирования. Построение границы заданного запаса устойчивости автоматизированной системы расчетов. Определение оптимальных параметров настройки ПИ-регулятора. Вычисление переходных процессов по каналам регулирующего воздействия.

    курсовая работа [207,2 K], добавлен 14.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.