Расчет электрической цепи
Расчет линейной электрической цепи при периодическом несинусоидальном напряжении, активной и полной мощности сети. Порядок определения параметров несимметричной трехфазной цепи. Вычисление основных переходных процессов в линейных электрических цепях.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 06.01.2011 |
Размер файла | 742,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Расчет линейной электрической цепи при периодическом несинусоидальном напряжении
Задание 6 |
Приложенное несинусоидальное напряжение описано выражением: |
||
Решение
Найти действующее напряжение .
;
;;
Приложенное несинусоидальное напряжение будет описано рядом:
Действующее напряжение .
Вычислить сопротивления цепи ,, и токи ,, на неразветвленном участке цепи от действия каждой гармоники приложенного напряжения.
Сопротивление цепи постоянному току ( = 0)
Постоянная составляющая тока на неразветвленном участке цепи
Сопротивление цепи на частоте (для первой гармоники)
Комплексная амплитуда тока первой гармоники на неразветвленном участке цепи
;
Ток первой гармоники на неразветвленном участке цепи
.
Сопротивление цепи на частоте 3 (для третьей гармоники)
Комплексная амплитуда тока третьей гармоники на неразветвленном участке цепи
; .
Ток третьей гармоники на неразветвленном участке цепи
.
Определить мгновенный ток на неразветвленном участке и действующий ток .
Ток на неразветвленном участке цепи
;
.
Действующее значение тока на неразветвленном участке цепи
;
.
Рассчитать активную и полную мощности цепи.
Активная мощность цепи
;
; ; ,
где 1, 3, 5 - начальные фазы гармоник напряжения;
1, 3, 5 - начальные фазы гармоник тока.
Полная мощность цепи
; .
Построить кривые , .
Периодическая несинусоидальная ЭДС и ее представление тремя гармониками.
2. Расчет не симметричной трехфазной цепи
Дана схема 8
Задание 6 |
||
Решение
Для симметричного источника, соединенного звездой, при ЭДС фазы А
ЭДС фаз В и С:;
.
Расчетная схема содержит два узла - и . Принимая потенциал узла , в соответствии с методом узловых потенциалов получим:
,
где ;
;
;
;
Так как: .
То с учетом приведенных обозначений потенциал в точке
.
Тогда смещение напряжения относительно нейтрали источника N
Линейные токи:
Составить баланс мощностей
Комплексная мощность источника
;
Активная мощность цепи равна суммарной мощности потерь в резисторах:
.
Реактивная мощность цепи
.
Видно, что баланс мощностей сошелся:
.
.
Напряжения на фазах нагрузки:
;
;
;
;
Токи:
Построить в масштабе векторную диаграмму токов и потенциальную топографическую диаграмму напряжений,
,.
,,,
,
,,
Все вектора строятся на комплексной координатной плоскости.
Можно сначала построить вектора напряжений в ветвях, а потом провести вектор из начала координат в точку, в которой сойдутся напряжения ветвей, этот вектор должен соответствовать вектору напряжения смещения нормали. Проводим вектор так, чтоб он заканчивался в конце вектора , проводим вектор так, чтоб он заканчивался в конце вектора . Проводим вектор так, чтоб он заканчивался в конце вектора . Проводим вектор так, чтоб он заканчивался в конце вектора .
Векторы ,,, начинаются из одной точки.
Проведем из этой точки вектор в начало координат и у нас получится вектор напряжение смещения нейтрали . Вектора токов строим из начала координат.
По диаграмме можно определить напряжение нейтрали:
или
3. Расчет переходных процессов в линейных электрических цепях с сосредоточенными параметрами, включенных на постоянное напряжение
Дана схема
Решение
1. Установившийся режим до коммутации. Имеет место установившийся режим постоянных токов
; ;
;
При t = 0-
, .
Дифференциальные уравнения описывают токи и напряжения с момента времени t = 0+.
Принужденные составляющие находятся для установившегося режима, наступающего после переходного процесса.
Определение корней характеристического уравнения. Входное комплексное сопротивление переменному току схемы для послекоммутационного состояния.
Заменяя далее j на р и приравнивая полученный результат к нулю, получаем
Характеристическое уравнение имеет корни:
,
Следовательно, имеет место апериодический переходный режим.
Определение постоянных. В результате расчета получены следующие выражения для неизвестных:
На этом этапе система диф. уравнений записывается для момента времени t = 0+ и после подстановки параметров с учетом равенств
получаем:
Решение системы дает:
, ,,
Для нахождения и продифференцируем первое и третье уравнения системы, запишем их при t = 0+ и подставим известные величины:
Затем выражения для тока в индуктивности и напряжения на емкости и их производные записываются для момента времени t = 0+:
После подстановки получим:
Решение систем:
,
,
Получим:
Для построения графиков возьмем шаг: .
Изобразим график функции напряжения на конденсаторе:
Из системы диф. уравнений:
Изобразим график функции первого тока:
Из системы диф. уравнений:
- первое уравнение.
Изобразим график функции третьего тока:
Нанесем все токи на одну координатную плоскость:
,
,
Подобные документы
Расчет линейной электрической цепи при несинусоидальном входном напряжении. Действующее значение напряжения. Сопротивление цепи постоянному току. Активная мощность цепи. Расчет симметричной трехфазной электрической цепи. Ток в нейтральном проводе.
контрольная работа [1016,8 K], добавлен 12.10.2013Исследование линейной электрической цепи: расчет источника гармонических колебаний и четырехполюсника при синусоидальном воздействии; определение параметров резонансных режимов в цепи; значения напряжений и токов при несинусоидальном воздействии.
курсовая работа [2,7 M], добавлен 30.08.2012Характеристика методов анализа нестационарных режимов работы цепи. Особенности изучения переходных процессов в линейных электрических цепях. Расчет переходных процессов, закона изменения напряжения с применением классического и операторного метода.
контрольная работа [538,0 K], добавлен 07.08.2013Расчёт переходных процессов в электрической цепи по заданным схемам: для определения начальных условий; определения характеристического сопротивления; нахождения принужденной составляющей; и временным диаграммам токов и напряжений в электрической цепи.
курсовая работа [324,9 K], добавлен 24.01.2011Расчет трехфазной цепи с несимметричной нагрузкой (звезда). Определение активной, реактивной и полной мощности, потребляемой цепью. Расчет тягового усилия электромагнита. Магнитные цепи с постоянными магнитодвижущими силами. Алгоритм расчета цепи.
презентация [1,6 M], добавлен 25.07.2013Расчет источника гармонических колебаний. Определение резонансных режимов электрической цепи. Расчет переходных процессов классическим методом. Определение установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии.
курсовая работа [1,8 M], добавлен 18.11.2012Расчет линейной электрической цепи постоянного тока. Определение токов во всех ветвях методом контурных токов и узловых напряжений. Электрические цепи однофазного тока, определение показаний ваттметров. Расчет параметров трехфазной электрической цепи.
курсовая работа [653,3 K], добавлен 02.10.2012Расчет линейной электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, узловых. Расчет баланса мощностей цепи. Определение параметров однофазной линейной электрической цепи переменного тока и их значений.
курсовая работа [148,1 K], добавлен 27.03.2016Описание схемы и определение эквивалентного сопротивления электрической цепи. Расчет линейной цепи постоянного тока, составление баланса напряжений. Техническая характеристика соединений фаз "треугольником" и "звездой" в трехфазной электрической цепи.
контрольная работа [1,7 M], добавлен 27.06.2013Переходные процессы в цепях первого и второго порядков. Расчет электрической цепи, состоящей из катушки индуктивности, емкости, сопротивлений, источника ЭДС. Способы нахождения токов и напряжений. Реакции в цепи на произвольное импульсное воздействие.
курсовая работа [1,0 M], добавлен 08.01.2016