Исследование и расчет характеристик двухполюсников и четырехполюсников
Расчет входных сопротивлений четырехполюсника в режимах холостого хода и короткого замыкания при прямом и обратном включении. Нахождение основной матрицы и системной функции. Расчет характеристических, повторных и рабочих параметров четырехполюсника.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.02.2013 |
Размер файла | 737,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Расчетно-пояснительная записка
к курсовому проекту
По дисциплине “Теория линейных электрических цепей”
«Исследование и расчёт характеристик двухполюсников и четырёхполюсников»
УДК 621.372
Р Е Ф Е Р А Т
Курсовой проект содержит 49 страниц, 10 графиков, 8 таблиц, использовано 6 источников.
ДВУХПОЛЮСНИК
ЧЕТЫРЁХПОЛЮСНИК
ХОЛОСТОЙ ХОД
КОРОТКОЕ ЗАМЫКАНИЕ
ОБРАТНЫЙ ХОЛОСТОЙ ХОД
ОБРАТНОЕ КОРОТКОЕ ЗАМЫКАНИЕ
ВХОДНОЕ СОПРОТИВЛЕНИЕ
ПРИВЕДЁННОЕ СОПРОТИВЛЕНИЕ
СИСТЕМНАЯ ФУНКЦИЯ
АКТИВНЫЙ ЧЕТЫРЁХПОЛЮСНИК
Курсовая работа содержит расчет и исследование характеристик пассивных двухполюсников и четырехполюсников, математические выражения и расчет для собственных, повторных и рабочих параметров схем, расчет параметров активного четырехполюсника.
СОДЕРЖАНИЕ
Введение
1. Синтез схем реактивных двухполюсников
1.1 Выявление необходимых и достаточных условий для физической реализации схемы
2. Расчёт входных сопротивлений четырёхполюсника в режимах холостого хода и короткого замыкания
2.1 Режим холостого хода при прямом включении
2.2 Режим короткого замыкания при прямом включении
2.3 Режим холостого хода при обратном включении
2.4 Режим короткого замыкания при обратном включении
3. Нахождение основной матрицы A и системной функции исследуемого четырёхполюсника
3.1 Нахождение основной матрицы типа A исследуемого четырёхполюсника
3.2 Системная функция исследуемого четырёхполюсника
4. Расчёт характеристических, повторных и рабочих параметров четырёхполюсника
4.1 Расчёт характеристических параметров четырёхполюсника
4.2 Расчет повторных параметров четырёхполюсника
4.3 Расчёт рабочих параметров четырёхполюсника
5. Экспериментальная проверка результатов теоретических расчётов
6. Расчёт элементов эквивалентного активного четырёхполюсника
6.1 Расчёт эквивалентного четырёхполюсника
6.2 Расчет элементов эквивалентного активного четырёхполюсника
Заключение
Библиографический список
ВВЕДЕНИЕ
В современной технике решается широкий круг задач, связанных с использованием электрических явлений для передачи и обработки информации. В общем случае электрическая цепь состоит из источников электрической энергии, приемников и промежуточных звеньев, связывающих источники с приемниками. При выполнении курсового проекта необходимо провести анализ и синтез этих основных промежуточных элементов: двухполюсников (ДП) и четырехполюсников (ЧП), а также выполняется расчет входных сопротивлений ЧП в режимах холостого хода (ХХ) и короткого замыкания (КЗ), нахождение основной матрицы типа А и системной функции исследуемого ЧП, расчет характеристических, повторных и рабочих параметров ЧП, экспериментальная проверка зависимости ZC1 = f(?) методом ХХ и КЗ, расчет элементов эквивалентного активного и пассивного ЧП.
Анализ и синтез электрических цепей взаимосвязаны. Методы синтеза базируются на использовании общих свойств характеристик различных классов цепей, которые изучаются в процессе анализа. В заданном курсовом проекте указана схема синтезируемого ЧП, составными элементами которого являются ДП с известной частотной зависимостью сопротивления в символической и операторной форме.
Примечание: все формулы разделов 1 5 взяты из №1 библиографического списка, а формулы раздела 6 взяты из №5 библиографического списка.
1.СИНТЕЗ СХЕМ РЕАКТИВНЫХ ДВУХПОЛЮСНИКОВ, ВХОДЯЩИХ В СОСТАВ ИССЛЕДУЕМОГО ЧЕТЫРЁХПОЛЮСНИКА
1.1 Выявление необходимых и достаточных условий для физической реализации схемы
четырехполюсник короткий замыкание сопротивление
Если по операторной функции Z(p) - зависимости входного сопротивления двухполюсника от параметра p (или от частоты) можно построить соответствующую электрическую цепь, то такую функцию называют физически реализуемой.
Для реактивного двухполюсника функция Z(p) физически реализуема, если:
1) она положительна и действительна, все коэффициенты при операторе p - только вещественные и положительные числа;
2) высшая степень оператора p равна числу элементов в схеме;
3) высшие и низшие степени многочленов числителя и знаменателя функции Z(p) могут отличаться не более чем на единицу;
4) её нули и полюсы расположены на мнимой оси, при этом они являются комплексно-сопряженными, нули и полюсы чередуются, кратных (одинаковых) корней не бывает;
5) в числителе (знаменателе) функции стоят только нечётные степени, а в знаменателе (числителе) стоят только четные степени оператора p.
Для реактивных ДП комплексное число p может быть представлено в виде j (p=j), и операторные характеристики совпадают с частотными.
Схема замещения исследуемого ЧП приведена на рис. 1.1
Схема замещения исследуемого ЧП
Рис. 1.1
Согласно заданию операторное сопротивление двухполюсника Z1 определяется по формуле
(1.1)
(1.2)
Из (1.1) и (1.2) видно, что сопротивления по форме одинаковы, следовательно, можно записать, что:
Подставляя в последнее выражение L1 = 0.02, получим:
Операторное сопротивление Z1(p) соответствует схеме, приведенной на рис. 1.2.
Элементная схема операторного сопротивления Z1(p)
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Рис. 1.2
Это двухполюсник класса “0 0”.?
с1. (1.3)
Частота резонанса токов ? = 22360,67978 рад/с.
Полюсно-нулевое изображение Z1(p) показано на рис.1.3.
Полюсно-нулевое изображение Z1
Рис. 1.3
Произведём расчёт Z1() на контрольной частоте = 15000 рад/с.
Ом.
Значения сопротивлений двухполюсника Z1() на различных частотах приведены в табл. 1.1.
Согласно заданию операторное сопротивление двухполюсника Z2 определяется по формуле:
(1.4)
. (1.5)
Из (1.4) и (1.5) видно, что сопротивления по форме одинаковы, следовательно, можно записать, что:
.
Операторное сопротивление Z2(p) соответствует схеме, приведенной на рис. 1.4
Элементная схема операторного сопротивления Z2(p)
Рис. 1.4
Это двухполюсник класса “0 ? ?”
Так как это одноэлементный двухполюсник, то, следовательно, резонансов здесь нет.
Полюсно-нулевое изображение Z2(p) показано на рис.1.5.
Полюсно-нулевое изображение Z2
Рис. 1.5
Произведём расчёт Z2() на контрольной частоте = 15000 рад/с.
Ом.
Значения сопротивлений двухполюсника Z2() на различных частотах приведены в табл. 1.1.
Согласно заданию операторное сопротивление двухполюсника Z3 определяется по формуле:
(1.6)
. (1.7)
Из (1.6) и (1.7) видно, что сопротивления по форме одинаковы, следовательно, можно записать, что:
Подставляя в последнее выражение L3 = 0.012, получим:
Операторное сопротивление Z3(p) соответствует схеме, приведенной на рис. 1.6.
Элементная схема операторного сопротивления Z3(p)
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Рис. 1.6
Это двухполюсник класса “0 0”.
с-1. (1.8)
Частота резонанса токов ? = 20412,41452 рад/с.
Полюсно-нулевое изображение Z3(p) показано на рис.1.7.
Полюсно-нулевое изображение Z3
Рис. 1.7
Произведём расчёт Z3() на контрольной частоте = 15000 рад/с.
Ом.
Значения сопротивлений двухполюсника Z3() на различных частотах приведены в табл. 1.1.
Таблица 1.1
Зависимости сопротивлений Z1, Z2 и Z3 от частоты
Угловая частота , рад/с |
Частота f, Гц |
Сопротивление Z1(), Ом |
Сопротивление Z2(), Ом |
Сопротивление Z3(), Ом |
|
0 |
0 |
0 |
0 |
0 |
|
1500 |
238,732 |
30,136ej90 |
45ej90 |
18,098ej90 |
|
3000 |
477,465 |
61,1ej90 |
90ej90 |
36,795ej90 |
|
4500 |
716,197 |
93,799ej90 |
135ej90 |
56,758ej90 |
|
6000 |
954,93 |
129,31ej90 |
180ej90 |
78,809ej90 |
|
7500 |
1193,662 |
169,014ej90 |
225ej90 |
104,046ej90 |
|
9000 |
1432,394 |
214,797ej90 |
270ej90 |
134,062ej90 |
|
10500 |
1671,127 |
269,403ej90 |
315ej90 |
171,335ej90 |
|
12000 |
1909,859 |
337,079ej90 |
360ej90 |
220,049ej90 |
|
13500 |
2148,592 |
424,862ej90 |
405ej90 |
287,949ej90 |
|
15000 |
2387,324 |
545,455ej90 |
450ej90 |
391,304ej90 |
|
16500 |
2626,057 |
724,479ej90 |
495ej90 |
571,264ej90 |
|
18000 |
2864,789 |
1022,727ej90 |
540ej90 |
971,223ej90 |
|
19500 |
3101,521 |
1628,392ej90 |
585ej90 |
2677,346ej90 |
|
20412,41452 |
3248,737 |
2449,49ej90 |
612,372ej90 |
? |
|
21000 |
3342,254 |
3559,322ej90 |
630ej90 |
4315,068ej90 |
|
22360,67978 |
3558,813 |
? |
670,82ej90 |
1341,641ej90 |
|
22500 |
3580,986 |
36000ej90 |
675ej90 |
1255,814ej90 |
|
24000 |
3819,719 |
3157,895ej90 |
720ej90 |
753,138ej90 |
|
25500 |
4058,451 |
1697,171ej90 |
765ej90 |
545,844ej90 |
Графики зависимости Z1(j?), Z2(j?), Z3(j?) приведены на рис. 1.8, рис. 1.9, рис.1.10 соответственно.
График зависимости Z1(j)
Рис. 1.8
График зависимости Z2(j)
Рис. 1.9
График зависимости Z3(j)
Рис. 1.10
2. РАСЧЕТ ВХОДНЫХ СОПРОТИВЛЕНИЙ ЧП В РЕЖИМАХ ХОЛОСТОГО ХОДА И КОРОТКОГО ЗАМЫКАНИЯ
Входным сопротивлением четырёхполюсника называется то полное сопротивление четырёхполюсника переменному току, которое может быть измерено со стороны его входных зажимов при условии замыкания его входных зажимов на заранее заданное сопротивление.
При прямом направлении передачи
. (2.1)
При обратном направлении передачи
. (2.2)
Входное сопротивление четырёхполюсника относится к числу его внешних (рабочих) параметров, зависит от направления передачи, нагрузки и собственных параметров.
На практике часто применяются значения ZВХ при холостом ходе и коротком замыкании на выходе четырёхполюсника.
Элементная схема T-образного четырёхполюсника
Рис. 2.1
2.1 Режим холостого хода при прямом включении
Схема исследуемого четырёхполюсника в режиме холостого хода при прямом направлении передачи приведена на рис. 2.2.
Схема включения ЧП в режиме холостого хода при прямом направлении передачи
Рис. 2.2
(2.3)
Подставляя в (2.3) сопротивления двухполюсников (1.1) и (1.4), получим:
(2.4)
Приравнивая поочерёдно числитель и знаменатель выражения (2.4) к нулю находим корни, которые являются нулями и полюсами операторного сопротивления Z(p).
Нули: = 28867,51346 рад/с.
Полюсы:= 22360,67978 рад/с.
Тогда выражение (2.4) можно записать в виде:
(2.5)
Полюсно-нулевое изображение ZХХ
Рис. 2.3
Из полюсно-нулевого изображения (рис. 2.3) видно, что этот двухполюсник в режиме холостого хода при прямом включении имеет класс “0 ”, один резонанс токов на частоте рт = 22360,67978 рад/с и один резонанс напряжений на частоте рн=28867,51346 рад/с.
Проведём контрольный расчет ZХХ на частоте = 15000 рад/с.
Остальные значения сопротивлений ZХХ на других частотах приведены в табл. 2.1.
2.2 Режим короткого замыкания при прямом включении
Схема включения четырёхполюсника для нахождения ZВХ в режиме короткого замыкания при прямом включении показана на рис. 2.4.
Схема включения ЧП в режиме короткого замыкания при прямом направлении передачи
Рис. 2.4
(2.6)
Подставляя в выражение (2.4) сопротивления двухполюсников (1.1), (1.4) и (1.6), получим:
(2.7)
Приравнивая поочерёдно числитель и знаменатель выражения (2.7) к нулю, находим корни, которые являются нулями и полюсами операторного сопротивления Z(p).
Нули: 1 = 0, = 23570,22604 рад/с.
Тогда выражение (2.7) можно записать в виде
(2.8)
Полюсно-нулевое изображение ZКЗ
Рис. 2.5
Из полюсно-нулевого изображения (рис. 2.5) видно, что этот двухполюсник в режиме короткого замыкания при прямом включении имеет класс “0 0”, два резонанса токов на частотах рт1 = 22360,67978 рад/с и рт2 = 54152,29458 рад/с, а также один резонанс напряжений на частоте рн = 23570,22604 рад/с.
Проведём контрольный расчет ZКЗ на частоте = 15000 рад/с.
Остальные значения сопротивлений ZКЗ на других частотах приведены в табл. 2.1.
Таблица 2.1
Зависимости сопротивлений ZХХ и ZКЗ при прямой передаче от частоты
Угловая частота рад/с |
f, Гц |
СопротивлениеZХХ, Ом |
СопротивлениеZКЗ, Ом |
|
0 |
0 |
0 |
0 |
|
1500 |
238,732 |
75,136ej90 |
43,043ej90 |
|
3000 |
477,465 |
151,1ej90 |
87,217ej90 |
|
4500 |
716,197 |
228,799ej90 |
133,757ej90 |
|
6000 |
954,93 |
309,31ej90 |
184,122ej90 |
|
7500 |
1193,662 |
394,014ej90 |
240,16ej90 |
|
9000 |
1432,394 |
484,797ej90 |
304,379ej90 |
|
10500 |
1671,127 |
584,403ej90 |
380,378ej90 |
|
12000 |
1909,859 |
697,079ej90 |
473,649ej90 |
|
13500 |
2148,592 |
829,862ej90 |
593,157ej90 |
|
15000 |
2387,324 |
995,455ej90 |
754,757ej90 |
|
16500 |
2626,057 |
1219,479ej90 |
989,981ej90 |
|
18000 |
2864,789 |
1562,727ej90 |
1369,771ej90 |
|
19500 |
3101,521 |
2213,392ej90 |
2108,491ej90 |
|
21000 |
3342,254 |
4189,322ej90 |
4297,027ej90 |
|
22360,67978 |
3558,813 |
|||
22500 |
3580,986 |
35325ej90 |
34540,541ej90 |
|
23570,22604 |
3751,317 |
3535,553ej90 |
0 |
|
24000 |
3819,719 |
2437,895ej90 |
13205,731ej90 |
|
24152,29458 |
3843,957 |
2173,707ej90 |
||
25500 |
4058,451 |
932,171ej90 |
3602,526ej90 |
|
27000 |
4297,183 |
369,039ej90 |
2105,813ej90 |
|
28500 |
4535,916 |
57,73ej90 |
1535,227ej90 |
|
28867,51346 |
4594,407 |
0 |
1443,376ej90 |
|
30000 |
4774,648 |
150ej90 |
1223,684ej90 |
Графики частотной зависимости входных сопротивлений исследуемого четырёхполюсника в режимах холостого хода и короткого замыкания при прямом направлении передачи сигнала приведены на рис. 2.6.
Частотная зависимость входных сопротивлений исследуемого четырёхполюсника в режимах холостого хода и короткого замыкания при прямом направлении передачи сигнала
Рис. 2.6
2.3 Режим холостого хода при обратном включении
Схема включения четырёхполюсника для нахождения ZВХ в режиме холостого хода при обратном включении показана на рис. 2.7.
Схема включения ЧП в режиме холостого хода при обратном направлении передачи
Рис. 2.7
(2.9)
Подставляя в выражение (2.9) сопротивления двухполюсников (1.4), (1.6), получим:
. (2.10)
Приравнивая поочерёдно числитель и знаменатель выражения (2.10) к нулю, находим корни, которые являются нулями и полюсами операторного сопротивления Z/хх(p).
Нули: 3 = 24152,29458 рад/с.
Полюсы: = 20412,41452 рад/с.
Тогда выражение (2.8) можно переписать в виде:
(2.11)
Полюсно-нулевое изображение Z'хх
Рис. 2.8
Из полюсно-нулевого изображения (рис. 2.8) видно, что этот двухполюсник в режиме холостого хода при обратном включении имеет класс “0 ”, один резонанс токов на частоте рт = 20412,41452 рад/с и один резонанс напряжений на частоте рн=24152,29458 рад/с.
Проведём контрольный расчет ZХХ на частоте = 15000 рад/с.
Ом.
Остальные значения сопротивлений ZХХ на других частотах приведены в табл. 2.2.
2.4 Режим короткого замыкания при обратном включении
Схема включения четырёхполюсника для нахождения ZВХ в режиме короткого замыкания при обратном включении приведена на рис. 2.9.
Схема включения ЧП для нахождения ZВХ в режиме холостого хода при обратном включении
Рис. 2.9
(2.12)
Подставляя в выражение (2.10) сопротивления двухполюсников (1.1), (1.4) и (1.6) получим:
(2.13)
Приравнивая поочерёдно числитель и знаменатель выражения (2.13) к нулю находим корни, которые являются нулями и полюсами операторного сопротивления Z/КЗ(p).
Тогда выражение (2.13) можно записать в виде
(2.14)
Полюсно-нулевое изображение Z/КЗ
Рис. 2.10
Из полюсно-нулевого изображения (рис. 2.10) видно, что этот двухполюсник в режиме короткого замыкания при обратном включении имеет класс “0 0”, два резонанса токов на частотах рт1 = 20412,41452 рад/с и рт2 = 28867,51342 рад/с, а также один резонанс напряжений на частоте рн = 23570,22604 рад/с.
Проведём контрольный расчет ZКЗ на частоте = 15000 рад/с.
Ом.
Остальные значения сопротивлений Z/КЗ на других частотах приведены в табл. 2.2.
Таблица 2.2
Зависимости Z'ХХ и Z'КЗ от частоты
Угловая частота рад/с |
f, Гц |
Сопротивление Z/ХХ, Ом |
Сопротивление Z/КЗ, Ом |
|
0 |
0 |
0 |
0 |
|
1500 |
238,732 |
63,098ej90 |
36,146ej90 |
|
3000 |
477,465 |
126,795ej90 |
73,188ej90 |
|
4500 |
716,197 |
191,758ej90 |
112,103ej90 |
|
6000 |
954,93 |
258,809ej90 |
154,06ej90 |
|
7500 |
1193,662 |
329,046ej90 |
200,561ej90 |
|
9000 |
1432,394 |
404,062ej90 |
253,689ej90 |
|
10500 |
1671,127 |
486,335ej90 |
316,547ej90 |
|
12000 |
1909,859 |
580,049ej90 |
394,13ej90 |
|
13500 |
2148,592 |
692,949ej90 |
495,296ej90 |
|
15000 |
2387,324 |
841,304ej90 |
637,88ej90 |
|
16500 |
2626,057 |
1066,264ej90 |
865,338ej90 |
|
18000 |
2864,789 |
1511,223ej90 |
1324,626ej90 |
|
19500 |
3101,521 |
3262,346ej90 |
3107,73ej90 |
|
20412,41452 |
3248,737 |
|||
21000 |
3342,254 |
3685,068ej90 |
3779,809ej90 |
|
22500 |
3580,986 |
580,814ej90 |
567,916ej90 |
|
23570,22604 |
3751,317 |
141,423ej90 |
0 |
|
24000 |
3819,719 |
33,138ej90 |
179,504ej90 |
|
24152,29458 |
3843,957 |
0 |
241,523ej90 |
|
25500 |
4058,451 |
219,156ej90 |
846,965ej90 |
|
27000 |
4297,183 |
377,769ej90 |
2155,629ej90 |
|
28500 |
4535,916 |
494,772ej90 |
13157,559ej90 |
|
28867,51346 |
4594,407 |
519,615ej90 |
||
30000 |
4774,648 |
589,655ej90 |
4840,345ej90 |
|
31500 |
5013,381 |
671,365ej90 |
2255,806ej90 |
|
33000 |
5252,113 |
744,586ej90 |
1536,157ej90 |
Графики частотной зависимости входных сопротивлений исследуемого четырёхполюсника в режимах холостого хода и короткого замыкания при обратном направлении передачи сигнала приведены на рис. 2.11.
Частотная зависимость входных сопротивлений исследуемого четырёхполюсника в режимах холостого хода и короткого замыкания при обратном направлении передачи сигнала
Рис. 2.11
3. НАХОЖДЕНИЕ ОСНОВНОЙ МАТРИЦЫ ТИПА A И СИСТЕМНОЙ ФУНКЦИИ ИССЛЕДУЕМОГО ЧЕТЫРЁХПОЛЮСНИКА
3.1 Нахождение основной матрицы типа A исследуемого четырёхполюсника
В данной курсовой работе рассматривается четырёхполюсник, собранный из оптимально выбранных двухполюсников в соответствии со схемой замещения, указанной в задании.
Теория четырёхполюсников позволяет, применяя некоторые обобщённые параметры, связать между собой напряжения и токи на входе и выходе, не производя расчётов этих величин в схеме самого четырёхполюсника.
К таким обобщённым параметрам относятся собственные параметры четырёхполюсников, которые определяются без учета влияний внешних подключений (генератора и нагрузки). Параметры-коэффициенты A (а также B, Z, Y, H, G) относятся к собственным параметрам.
Четырёхполюсную цепь (рис.3.1), имеющую вход и выход, следует характеризовать связями между двумя напряжениями U1 и U2 и двумя токами I1 и I2.
Рис. 3.1
Если за функции принять U1 и I1, а за аргументы U2 и I2, то получим основную систему уравнений четырёхполюсника в виде:
(3.1)
Такую систему уравнений для любых заданных условий включения четырёхполюсника можно дополнить ещё двумя уравнениями: уравнением генератора
(3.2)
и уравнением приёмника
.(3.3)
Матрица А имеет вид:
(3.4)
Для пассивных четырёхполюсников определитель, составленный из коэффициентов A, равен единице.
(3.5)
Коэффициенты A для заданной T-образной схемы имеют следующий вид:
(3.6)
(3.7)
(3.8)
(3.9)
Чтобы убедиться в правильности выбора коэффициентов A-матрицы, подставим выражения (3.6), (3.7), (3.8) и (3.9) в выражение (3.5).
Следовательно, выражения (3.6), (3.7), (3.8) и (3.9) верны.
Подставляя в выражения (3.6), (3.7), (3.8) и (3.9) сопротивления двухполюсников (1.2), (1.5) и (1.7) в виде Z = (j) и произведя различные математические преобразования, получим:
(3.10)
(3.11)
(3.12)
(3.13)
Проведём контрольный расчет A-параметров на частоте = 15000 рад/с.
, Ом,
См,
Остальные значения A-параметров на различных частотах приведены в табл. 3.1.
Таблица. 3.1
Зависимость A-параметров от частоты
Угловая частотарад/с |
Частота f, Гц |
А11 |
А12 , Ом |
А21 , См |
А22 |
|
0 |
0 |
1 |
0 |
1 |
||
1500 |
238,732 |
1,67 |
60,353ej90 |
0,022e-j90 |
1,402 |
|
4500 |
716,197 |
1,695 |
189,933ej90 |
0,007e-j90 |
1,42 |
|
6000 |
954,93 |
1,718 |
264,735ej90 |
0,006e-j90 |
1,438 |
|
7500 |
1193,662 |
1,751 |
351,217ej90 |
0,004e-j90 |
1,462 |
|
9000 |
1432,394 |
1,796 |
455,511ej90 |
0,004e-j90 |
1,497 |
|
10500 |
1671,127 |
1,855 |
587,273ej90 |
0,003e-j90 |
1,544 |
|
12000 |
1909,859 |
1,936 |
763,166ej90 |
0,003e-j90 |
1,611 |
|
13500 |
2148,592 |
2,049 |
1014,882ej90 |
0,002e-j90 |
1,711 |
|
15000 |
2387,324 |
2,212 |
1411,067ej90 |
0,002e-j90 |
1,87 |
|
16500 |
2626,057 |
2,464 |
2131,84ej90 |
0,002e-j90 |
2,154 |
|
18000 |
2864,789 |
2,894 |
3833,388ej90 |
0,002e-j90 |
2,799 |
|
19500 |
3101,521 |
3,784 |
11758,34ej90 |
0,002e-j90 |
5,577 |
|
20412.41452 |
3248,737 |
5 |
0,002e-j90 |
|||
21000 |
3342,254 |
6,65 |
25134,66ej90 |
0,002e-j90 |
-5,849 |
|
22360,67978 |
3558,813 |
0,001e-j90 |
-1 |
|||
22500 |
3580,986 |
-52,333 |
29720,93ej90 |
0,001e-j90 |
-0,86 |
|
24000 |
3819,719 |
-3,386 |
607,796ej90 |
0,001e-j90 |
-0,046 |
|
25500 |
4058,451 |
-1,219 |
1032,047ej90 |
0,001e-j90 |
0,286 |
|
27000 |
4297,183 |
-0,456 |
982,113ej90 |
0,001e-j90 |
0,466 |
|
28500 |
4535,916 |
-0,068 |
888,407ej90 |
0,001e-j90 |
0,579 |
|
30000 |
4774,648 |
0,167 |
801,724ej90 |
0,001e-j90 |
0,655 |
3.2 Системная функция исследуемого четырёхполюсника
Запишем системную функцию H(S) через A-параметры.
(3.14)
Подставив в выражение (3.14) полученные ранее выражения (3.10), (3.11), (3.12) и (3.13) и проведя некоторые математические преобразования, получим:
(3.15)
Проведём контрольный расчет системной функции H(S) на частоте = 15000 рад/с.
.
4. РАСЧЕТ ХАРАКТЕРИСТИЧЕСКИХ, ПОВТОРНЫХ И РАБОЧИХ ПАРАМЕТРОВ ЧЕТЫРЁХПОЛЮСНИКА
4.1 Расчёт характеристических параметров четырёхполюсника
При исследовании работы четырёхполюсника в качестве различных устройств автоматики, телемеханик и связи удобно пользоваться характеристическими параметрами ZC1, ZC2 и gC. Они зависят только от схемы замещения, то есть являются собственными параметрами.
Характеристическое сопротивление - это такое входное сопротивление четырёхполюсника, в котором в качестве нагрузки используется другое характеристическое сопротивление. Характеристическое сопротивление - это среднее геометрическое входных сопротивлений холостого хода и короткого замыкания.
При прямом направлении передачи энергии
(4.1)
и при обратном направлении передачи энергии
. (4.2)
Подставим выражения (3.10), (3.11), (3.12) и (3.13) в выражение (4.1) и проведем некоторые математические преобразования. В итоге получим, что:
. (4.3)
Перезапишем выражение (4.3) в виде:
. (4.4)
Проведём контрольный расчет характеристического сопротивления ZC1 на частоте = 15000 рад/с.
Ом.
Остальные значения характеристического сопротивления на различных частотах приведены в табл. 4.1.
Подставим выражения (3.10), (3.11), (3.12) и (3.13) в выражение (4.2) и проведем некоторые математические преобразования. В итоге получим, что:
. (4.5)
Перезапишем выражение (4.5) в виде:
. (4.6)
Проведём контрольный расчет характеристического сопротивления ZC2 на частоте = 15000 рад/с.
Ом.
Остальные значения характеристического сопротивления на различных частотах приведены в табл. 4.1.
Таблица 4.1
Зависимость характеристических сопротивлений от частоты
Угловая частотарад/с. |
f, Гц |
Характеристическое сопротивлениеZC1, Ом |
Характеристическое сопротивлениеZC2, Ом |
|
0 |
0 |
0 |
0 |
|
1500 |
238,732 |
56,869ej90 |
47,757ej90 |
|
3000 |
477,465 |
114,798ej90 |
96,332ej90 |
|
4500 |
716,197 |
174,939ej90 |
146,618ej90 |
|
6000 |
954,93 |
238,643ej90 |
199,68ej90 |
|
7500 |
1193,662 |
307,614ej90 |
256,893ej90 |
|
9000 |
1432,394 |
384,138ej90 |
320,166ej90 |
|
10500 |
1671,127 |
471,481ej90 |
392,362ej90 |
|
12000 |
1909,859 |
574,605ej90 |
478,137ej90 |
|
13500 |
2148,592 |
701,597ej90 |
585,845ej90 |
|
15000 |
2387,324 |
866,791ej90 |
732,565ej90 |
|
16500 |
2626,057 |
1098,588ej90 |
960,561ej90 |
|
18000 |
2864,789 |
1463,072ej90 |
1414,852ej90 |
|
19500 |
3101,521 |
2160,305ej90 |
3184,099ej90 |
|
20412,41452 |
3248,737 |
3061,862ej90 |
||
21000 |
3342,254 |
4242,833ej90 |
3732,138ej90 |
|
22360,67978 |
3558,813 |
670,82ej90 |
||
22500 |
3580,986 |
34930,568ej90 |
574,329ej90 |
|
23570,22604 |
3751,317 |
0 |
0 |
|
24000 |
3819,719 |
5763,994 |
77,126 |
|
24152,29458 |
3843,957 |
0 |
||
25500 |
4058,451 |
1832,532ej90 |
430,834ej90 |
|
27000 |
4297,183 |
881,548ej90 |
902,403ej90 |
|
28500 |
4535,916 |
297,706ej90 |
2551,47ej90 |
|
28867,51346 |
4594,407 |
0 |
||
30000 |
4774,648 |
428,43 |
1684,175 |
|
31500 |
5013,381 |
559,226 |
1230,637 |
|
33000 |
5252,113 |
617,24 |
1069,486 |
Графики частотной зависимости характеристических сопротивлений ZC1 и ZC2 исследуемого четырёхполюсника приведены на рис. 4.1 и рис.4.2 соответственно.
Частотная зависимость характеристического сопротивления ZC1
Рис. 4.1
Частотная зависимость характеристического сопротивления ZC2
Рис. 4.2
Характеристическая постоянная передачи gC оценивает потери мощности в четырёхполюснике, не зависит от направления передачи энергии через четырёхполюсник.
Характеристическая постоянная передачи через A-параметры записывается в виде:
(4.7)
Подставим в выражение (4.7) полученные ранее выражения для A-параметров ((3.10), (3.11), (3.12) и (3.13)).
Характеристическая постоянная также записывается в виде:
, (4.8)
где
(4.9)
и
(4.10)
aс это постоянная затухания, которая показывает степень потери мощности в четырёхполюснике или степень уменьшения амплитуды тока (напряжения) на выходе четырёхполюсника по сравнению с этими величинами на входе.
bc это фазовая постоянная, которая показывает смещение по фазе между токами и напряжениями на входе и выходе четырёхполюсника.
Проведём контрольный расчёт gC, aC и bC по (4.7), (4.9) и (4.10), соответственно, на частоте = 15000 рад/с.
Аналогичный результат даёт расчёт ac и bc через входные сопротивления холостого хода и короткого замыкания.
Обозначив:
,(4.11)
Получим
(4.12)
И
(4.13)
Где
.(4.14)
Подставив выражения (2.5) и (2.8) в (4.11) и проведя некоторые математические преобразования, получим:
.(4.15)
Подставляя выражение (4.15) в (4.14), получим:
.(4.16)
Беря из выражения (4.16) N и подставляя его в выражение (4.12) можем определить постоянную затухания aС.
Беря аналогичным образом из выражения (4.16) и подставляя его в выражение (4.12) можем определить фазовую постоянную bС.
Проведём контрольный расчёт gC, aC и bC по (4.12) (4.16) на частоте = 15000 рад/с.
,
то есть, получаем, что N = 14,474 и = 0.
,
.
Остальные значения характеристической постоянной передачи gC, постоянной затухания aC и фазовой постоянной bC на различных частотах приведены в табл. 4.2.
Таблица 4.2
Значения характеристической постоянной передачи
Угловая частота , рад/с |
f, Гц |
Характеристическая постоянная gC |
Постоянная затуханияaC, дБ |
Фазовая постояннаяbC, град |
|
0 |
0 |
0 |
0 |
0 |
|
1500 |
238,732 |
0,989 |
8,589 |
0 |
|
3000 |
477,465 |
0,996 |
8,648 |
0 |
|
4500 |
716,197 |
1,007 |
8,748 |
0 |
|
6000 |
954,93 |
1,024 |
8,895 |
0 |
|
7500 |
1193,662 |
1,047 |
9,096 |
0 |
|
9000 |
1432,394 |
1,078 |
9,361 |
0 |
|
10500 |
1671,127 |
1,118 |
9,708 |
0 |
|
12000 |
1909,859 |
1,17 |
10,163 |
0 |
|
13500 |
2148,592 |
1,24 |
10,77 |
0 |
|
15000 |
2387,324 |
1,336 |
11,606 |
0 |
|
16500 |
2626,057 |
1,477 |
12,827 |
0 |
|
18000 |
2864,789 |
1,707 |
14,823 |
0 |
|
19500 |
3101,521 |
2,206 |
19,159 |
0 |
|
21000 |
3342,254 |
2,978ej31,84 |
21,975 |
180 |
|
22500 |
3580,986 |
2,591 |
22,507 |
0 |
|
23570,22604 |
3751,317 |
0 |
0,004 |
0 |
|
24000 |
3819,719 |
1,165ej90 |
0 |
133,497 |
|
24152,29458 |
3843,957 |
1,571ej90 |
0 |
179,967 |
|
25500 |
4058,451 |
1,668ej70,35 |
4,872 |
180 |
|
27000 |
4297,183 |
1,633ej74,15 |
3,874 |
180 |
|
28500 |
4535,916 |
1,583ej82,89 |
1,706 |
180 |
|
28867,51346 |
4594,407 |
1,571ej90 |
0 |
179,999 |
|
30000 |
4774,648 |
1,234ej90 |
0 |
180 |
|
31500 |
5013,381 |
1,071ej90 |
0 |
180 |
|
33000 |
5252,113 |
0,963ej90 |
0 |
180 |
Графики частотной зависимости постоянной затухания и фазовой постоянной показаны на рис 4.1 и рис 4.2 соответственно.
График частотной зависимости постоянной затухания
Рис 4.3
График зависимости фазовой постоянной
Рис. 4.4
4.2 Расчет повторных параметров четырёхполюсника
При включении несимметричных четырёхполюсников, особенно для коррекции амплитудных искажения, бывает выгодно пользоваться повторными параметрами Zп1, Zп2, gп. Повторным сопротивлением называется такое, при подключении которого в качестве нагрузки входное сопротивление становится равным нагрузочному.
Для прямого направления передачи
(4.17)
и для обратного
.(4.18)
Повторная постоянная передачи характеризует соотношения между входными и выходными токами, напряжениями и мощностями в режиме, при котором четырёхполюсник нагружен на соответствующее выбранному направлению передачи повторное сопротивление.
.(4.19)
Проведём расчет выражений (4.17), (4.18) и (4.19) на частоте = 15000 рад/с, используя рассчитанные ранее A-параметры.
Таким образом видно, что значение очень близко к значению .
4.3 Расчёт рабочих параметров четырёхполюсника
Входным сопротивлением четырёхполюсника называется то полное сопротивление четырёхполюсника переменному току, которое может быть измерено со стороны его входных зажимов при условии замыкания его выходных зажимов на заранее заданное сопротивление.
При прямом направлении передачи:
. (4.20)
При обратном направлении передачи:
. (4.21)
Проведём расчет выражений (4.20) и (4.21) на частоте = 15000 рад/с, используя рассчитанные ранее A-параметры и ZН = 600 Ом.
Ом,
Ом.
Сопротивление передачи - это отношение входного напряжения к выходному току.
При прямом направлении передачи:
,(4.22)
и при обратном направлении передачи:
.(4.23)
В ряде случаев при определении условий передачи энергии от входа к выходу четырёхполюсника требуется учитывать ZГ. Тогда используют приведённое сопротивление четырёхполюсника - отношение ЭДС генератора к току в нагрузке.
, Ом,(4.24)
где
коэффициент несогласованности нагрузки с характеристическим сопротивлением четырёхполюсника ZC2 (на выходе);
коэффициент несогласованности внутреннего сопротивления генератора с характеристическим сопротивлением четырёхполюсника ZC1 (на входе).
При обратном направлении передачи энергии через четырёхполюсник:
, Ом,(4.25)
где
и коэффициенты несогласованности на выходе и входе четырёхполюсника соответственно.
Проведём расчет выражений (4.24) и (4.25) на частоте = 15000 рад/с, используя рассчитанные ранее характеристические сопротивления.
Для характеристики условий передачи мощности сигнала через четырёхполюсник используют логарифмическую меру рабочего коэффициента передачи по мощности четырёхполюсника рабочую постоянную передачи.
,(4.26)
где gC собственная постоянная передачи по мощности.
Проведём расчет выражения (4.26) на частоте = 15000 рад/с, используя рассчитанные ранее характеристические сопротивления.
Отсюда видно, что значение очень схоже с.
Практическое применение имеет рабочее затухание - вещественная часть gР.
.(4.27)
При этом в выражении величину gC надо подставлять в неперах.
Рабочее затухание оценивает существующие условия передачи энергии по сравнению с оптимальными условиями выделения максимальной мощности на нагрузке.
Рабочее затухание принято в качестве эксплуатационного измерителя.
Проведём расчет выражения (4.27) на частоте = 15000 рад/с, используя рассчитанные ранее характеристические сопротивления.
Вносимая постоянная передачи gВН отличается от gР на величину, учитывающую разницу между ZН и ZГ, то есть величину несогласованности генератора с нагрузкой.
.(4.28)
Проведём расчет выражения (4.28) на частоте = 15000 рад/сек, используя рассчитанную ранее рабочую постоянную передачи.
5. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА РЕЗУЛЬТАТОВ ТЕОРЕТИЧЕСКИХ РАСЧЁТОВ
В задании на курсовой проект предлагается экспериментально в лаборатории ТЛЭЦ проверить зависимость ZC1 от частоты методом холостого хода и короткого замыкания.
Схема измерений
Рис. 5.1
Для выполнения поставленной задачи проанализируем выражения для сопротивлений холостого хода (2.1), короткого замыкания (2.3) и выделяем ряд частот (по три частоты в каждом диапазоне между резонансными частотами) для проведения измерений сопротивлений холостого хода и короткого замыкания с помощью моста переменного тока (МПТ). При измерении необходимо уравновешивать МПТ с помощью подбора эквивалентного резистора магазином сопротивлений и эквивалентного конденсатора на магазине ёмкостей. Результаты экспериментальных исследований приведены в табл. 5.1.
Таблица 5.1
Опытные данные
f, Гц |
ZХХ |
ZКЗ |
|||||
Характер |
RЭ, Ом |
CЭ, мкФ |
Характер |
RЭ, Ом |
СЭ, мкФ |
||
1000 |
Индуктивный |
10000 |
0,217 |
Индуктивный |
10000 |
0,217 |
|
2000 |
10000 |
0,292 |
10000 |
0,292 |
|||
3000 |
10000 |
0,991 |
10000 |
0,69 |
|||
3600 |
Ёмкостный |
1 |
0,00239 |
Ёмкостный |
1 |
0,023 |
|
3700 |
1 |
0,0085 |
1 |
0,075 |
|||
3800 |
1 |
0,0156 |
Индуктивный |
10000 |
2,34 |
||
3900 |
1 |
0,0239 |
Ёмкостный |
1 |
0,0167 |
||
4000 |
1 |
0,0344 |
1 |
0,0208 |
|||
4200 |
1 |
0,0686 |
1 |
0,0283 |
|||
4600 |
Индуктивный |
65000 |
0,0018 |
1 |
0,04 |
||
4700 |
Индуктивный |
3105 |
0,0312 |
Ёмкостный |
1 |
0,0427 |
|
4800 |
2,6105 |
0,0558 |
1 |
0,045 |
Для расчёта экспериментальных значений Zхх и Zкз воспользуемся выражениями (5.1) при ёмкостном характере сопротивления и (5.2) при индуктивном.
, (5.1)
. (5.2)
Проведём контрольный расчёт любого из сопротивлений, например ZXX на частоте f = 2000 Гц. На этой частоте ZXX имеет индуктивный характер, поэтому воспользуемся выражением (5.1).
Остальные результаты расчётов сопротивлений ZXX и ZКЗ на других частотах заносим в табл. 5.2.
Проведём контрольный расчёт ZC1 по выражению (4.1) на частоте f = 2000 Гц.
Остальные результаты расчётов сопротивления ZС1 на других частотах заносим в табл. 5.2.
Таблица 5.2
Экспериментальные значения Zхх ,Zкз ,ZC1
, рад/сек |
f, Гц |
ZххЭ, Ом |
ZкзЭ, Ом |
ZС1Э, Ом |
|
6283,2 |
1000 |
136,35ej88 |
136,43ej90 |
136,4ej89 |
|
12566,4 |
2000 |
366,94ej89 |
367,32ej89 |
366,8ej89 |
|
18840 |
3000 |
1867,04ej88 |
1302,49ej89 |
1559,1ej89 |
|
22619,5 |
3600 |
18803,42ej90 |
19482ej89 |
19112,9ej89 |
|
23247,8 |
3700 |
5052,88ej89 |
5750,3ej90 |
5389,7ej90 |
|
23876,1 |
3800 |
2684,8ej90 |
17,9ej88 |
219,2ej1 |
|
24504,4 |
3900 |
1704,74ej89 |
2439,85ej88 |
2039,08ej88 |
|
25132,7 |
4000 |
1156,65ej90 |
1912,92ej88 |
1486,7ej89 |
|
26389,4 |
4200 |
552,24ej88 |
1343,9ej90 |
861ej90 |
|
28902,7 |
4600 |
5,12ej88 |
861ej89 |
66,4ej1 |
|
29531 |
4700 |
92,38ej88 |
793,04ej90 |
271,39ej1 |
|
30159,3 |
4800 |
168,34ej89 |
736,83ej90 |
352,18ej1 |
Экспериментальный график характеристического сопротивления ZC1Э показан на рис. 5.2.
Экспериментальный график зависимости характеристического сопротивления ZC1Э от частоты
Рис. 5.2
6. РАСЧЕТ ЭЛЕМЕНТОВ ЭКВИВАЛЕНТНОГО АКТИВНОГО И ПАССИВНОГО ЧЕТЫРЁХПОЛЮСНИКА
6.1 Расчёт эквивалентного четырёхполюсника
Согласно заданию нам дан эквивалентный четырёхполюсник (рис. 6.1), у которого необходимо определить элементы сопротивлений Z1, Z2, Z3 и Z4 и их значения.
Рис. 6.1
Для определения Z/1, Z/2, Z/3 и Z/4 воспользуемся A-параметрами исследуемого четырёхполюсника ((3.6) (3.9)) и эквивалентного четырёхполюсников ((6.1) - (6.4)), а также выражением (6.5).
(6.1)
Ом, (6.2)
См, (6.3)
. (6.4)
, (6.5)
где i и j - это индексы A-параметров.
Уже из выражений A-параметров, записанных для мостового четырёхполюсника, видно, что не имеет смысла проводить определение и расчёт элементов для эквивалентного четырёхполюсника, указанного в задании, поскольку (судя по выражениям (6.1) (6.4)) он будет иметь большее количество элементов, чем исследуемый.
6.2 Расчет элементов эквивалентного активного четырёхполюсника
Существует несколько путей построения активного четырёхполюсника:
1) замена ёмкостей на частотно-зависимые отрицательные сопротивления;
2) замена индуктивностей на гираторы (их входное сопротивление обратно сопротивлению нагрузки);
3) каскадное соединение простых четырёхполюсников.
Построим эквивалентный активный четырёхполюсник из каскадного соединения более простых. Для этого воспользуемся системной функцией H(S) (3.15) и рассмотрим её как передаточную функцию H(p).
(6.6)
Найдём корни знаменателя выражения (6.6) и записываем передаточную функцию H(p) в виде:
(6.7)
Или
(6.8)
Первый сомножитель:
.
Нормируем H1(p) на коэффициент , в результате получим
,
где а = 1,02 и b = 0,601.
Это заграждающий фильтр.
Принципиальная схема такого фильтра показана на рис. 6.2.
Заграждающий фильтр
Рис. 6.2
Расчёт заграждающего фильтра проводится по следующей последовательности:
1) выбираем С1 = , (6.9)
2) установить С3 = С4 = ,(6.10)
3) вычислить = ,(6.11)
4) установить R3 = и R1 = R2 = 2R3,(6.12)
5) выбрать , (ёмкость С2 может быть равна нулю),(6.13)
6) вычислить ,(6.14)
7) вычислить ,(6.15)
8) определить .(6.16)
Придерживаясь вышеприведённой последовательности, проведём расчёт элементов первого каскада.
1. Выберем С1 = 2 Ф.
2. Тогда С3 = С4 = .
3. Вычислим = .
4. Тогда R3 = Ом и R1 = R2 = 20,4951 = 0,99 Ом.
5. . Значит выбираем С2 = 0,1 Ф.
6. Вычислим Ом.
7. Вычислим .
8. Определим .
Таким образом, имеем следующие величины:
С1 = 2 Ф, С2 = 0,1 Ф, С3 = 1 Ф, R1 = R2 = 0,99 Ом, R3 = 0,4951 Ом, R4 = 11,222 Ом.
Денормируем ёмкости по частоте на коэффициент , в результате чего получим, что:
С1 = 90,35 мкФ, С2 = 4,52 мкФ, С3 = 45,2 мкФ.
Денормируем теперь все элементы на коэффициент 10000, в результате чего получим, что:
С1 = 9,035 нФ, С2 = 0,452 нФ, С3 = 4,52 нФ, R1 = R2 = 9,9 кОм, R3 = 4,951 кОм, R4=112,22 кОм.
Для реализации коэффициента k = 1,831 воспользуемся схемой неинтвертирующего усилителя, для чего рассчитаем R5 и R6 по (6.17).
(6.17)
где - делитель напряжения на выходе операционного усилителя.
Выберем R6 = 10 кОм, тогда R5 = 8,31 кОм.
Схема первого каскада
Рис. 6.3
Второй сомножитель:
Нормируем H1(p) на коэффициент , в результате получим
,
где а = 0,772 и b = 0.
Это заграждающий фильтр.
Принципиальная схема такого фильтра показана на рис. 6.2.
Придерживаясь вышеприведённой последовательности выражений (6.9) (6.16), проведём расчёт элементов второго каскада.
1. Выберем С1 = 2 Ф.
2. Тогда С3 = С4 = .
3. Вычислим = .
4. Тогда R3 = Ом и R1 = R2 = 20,569 = 1,138 Ом.
5. . Значит выбираем С2 = 0 Ф.
6. Вычислим Ом.
7. Вычислим .
8. Определим .
Таким образом, имеем следующие величины:
С1 = 2 Ф, С2 = 0 Ф, С3 = 1 Ф, R1 = R2 = 1,138 Ом, R3 = 0,569 Ом, R4 = 7,71 Ом.
Денормируем ёмкости по частоте на коэффициент , в результате чего получим, что:
С1 = 86,07 мкФ, С2 = 0 мкФ, С3 = 43,03 мкФ.
Денормируем теперь все элементы на коэффициент 10000, в результате чего получим, что:
С1 = 8,607 нФ, С2 = 0 нФ, С3 = 4,3 нФ, R1 = R2 = 11,38 кОм, R3 = 5,69 кОм, R4=77,1кОм.
Для реализации коэффициента k = 2,148 воспользуемся схемой неинтвертирующего усилителя, для чего рассчитаем R5 и R6 по (6.17)
Выберем R6 = 10 кОм, тогда R5 = 11,48 кОм.
Схема второго каскада
Рис. 6.4
Третий сомножитель:
Это RC цепь, принципиальная схема которой показана на рис 6.5.
Элементная схема RC цепи
Рис. 6.5
Такая цепь рассчитывается следующим образом.
Записываем A-параметры (6.18) для схемы (рис. рис. 6.5).
,(6.18)
где , а .
Затем запишем системную функцию для четырёхполюсника (рис.6.5), используя выражение (3.14) и A-параметры. Проведя некоторые математические преобразования, получаем
.
Видно, что системная функция, записанная в данном выражении, по виду похожа на H3(p). Тогда можно записать систему с двумя уравнениями с двумя неизвестными.
Решая вышеуказанную систему, получаем значение элементов:
R = 112,58 Ом и С = 43,538 нФ.
Элементная схема третьего каскада
Рис. 6.5
Эквивалентный активный четырёхполюсник получается после каскадного соединения рассмотренных выше RC цепи и схем операционных усилителей. Он приведён на рис. 6.6.
ЗАКЛЮЧЕНИЕ
В ходе проведённой курсовой работы были получены характеристики и параметры двухполюсников и четырёхполюсника, приведены математические выражения для расчёта их параметров, построены графические зависимости сопротивлений двухполюсников и четырёхполюсника а также характеристическое ослабление и фазовая постоянная для четырёхполюсника.
В работе произведён расчёт элементов активного эквивалентного четырёхполюсника на операционных усилителях.
Выполнение настоящей курсовой работы способствовало закреплению теоретических знаний по разделам курса теории линейных электрических цепей ”Двухполюсники” и “Четырёхполюсники” и появлению практических навыков, необходимых при эксплуатации, проектировании, разработке и усовершенствовании устройств железнодорожной автоматики, телемеханики и связи.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Карпова Л. А., Полунин В. Т. и др. «Исследование и расчет характеристик двухполюсников и четырехполюсников» /Омский ин-т инж. ж.-д. трансп.-- Омск, 1991. -- 41 с.
2. Шебес. М.Р. «Задачник по теории линейных электрических цепей: Учебное пособие для электротехнических, радиотехнических специальностей вузов.»- М.: Высшая школа, 1990.-544 с.
3. Лосев А.К. «Теория линейных электрических цепей: Учебник для вузов.» -- М.: Высшая школа, 1987.-512 с.
4. Лэм Г. «Аналоговые и цифровые фильтры. Расчет и реализация.» М: Мир, 1982.-592 с.
5. Стандарт предприятия. Курсовой и дипломный проекты. Требования к оформлению. СТП ОмИИТ-15-94.-- Омск: ОмИИТ, 1990.
Размещено на Allbest.ru
Подобные документы
Синтез реактивных двухполюсников; анализ схемы пассивного фильтра и расчет эквивалентных активного ARC и пассивного Т-образного фильтра. Рассмотрение теоретической зависимости входного сопротивления четырехполюсника в режиме холостого хода от частоты.
курсовая работа [686,6 K], добавлен 28.01.2013Основные уравнения четырехполюсника. Определение коэффициентов четырехполюсника. Расчет задач для отдельных электрических схем. Различные формы записи уравнений четырехполюсников, их формы и соединение. Применение четырехполюсников в электротехнике.
курсовая работа [341,6 K], добавлен 28.10.2014Расчет комплексного коэффициента передачи по напряжению для четырехполюсника, Определение его переходной характеристики классическим и операторным методом. Вычисление характеристических сопротивлений четырехполюсника, а также его постоянной передачи.
курсовая работа [456,0 K], добавлен 26.11.2014Расчет параметров четырехполюсника, усилителя и каскадного соединения. Схема пассивного четырехполюсника. Входное сопротивление усилителя, нагруженного на резистор. Расчет комплексной частотной характеристики по напряжению пассивного четырехполюсника.
контрольная работа [658,4 K], добавлен 13.06.2012- Измерение электрических величин при исследовании однофазного двухобмоточного силового трансформатора
Исследование трансформатора методом холостого хода и короткого замыкания. Расчет тока холостого хода в процентах от номинального первичного, коэффициента мощности в режиме холостого хода. Порядок построения характеристики холостого хода трансформатора.
лабораторная работа [19,0 K], добавлен 12.01.2010 Расчет схемы и частотных характеристик пассивного четырехполюсника, активного четырехполюсника и их каскадного соединения. Нули и полюса пассивного четырехполюсника. Амплитудно-частотные и фазо-частотные характеристики пассивного четырехполюсника.
курсовая работа [511,6 K], добавлен 14.01.2017Расчет трехфазного короткого замыкания, параметров и преобразования схемы замещения. Определение долевого участия источников в суммарном начальном токе короткого замыкания и расчет взаимных сопротивлений. Составление схемы нулевой последовательности.
курсовая работа [1,2 M], добавлен 31.03.2015Описания цепей, имеющих два входных и два выходных зажима. Определение внутренней структуры четырехполюсника, параметров его элементов. Особенности активных и пассивных четырехполюсников. Расчет комплекса входного сопротивления, коэффициента затухания.
презентация [199,7 K], добавлен 28.10.2013Определение основных электрических величин. Расчет размеров трансформатора и его обмоток. Определение параметров короткого замыкания. Окончательный расчет магнитной системы и параметров холостого хода. Тепловой расчет и расчет системы охлаждения.
курсовая работа [1,2 M], добавлен 21.06.2011Расчет основных размеров и массы трансформатора. Определение испытательных напряжений обмоток и параметров холостого хода. Выбор марки, толщины листов стали и типа изоляции пластин, индукции в магнитной системе. Расчет параметров короткого замыкания.
курсовая работа [812,3 K], добавлен 20.03.2015