Электромагнитные волны в волноводном тракте

Суть волнового процесса, исследование частотной характеристики кольцевых систем СВЧ-диапазона для бегущих и стоячих волн. Методы расчёта диэлектрических волноведущих систем. Закономерности формирования амплитудно-частотной характеристики резонаторов.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 13.01.2011
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С учетом Г находим окончательно Uмакс= 2Uпад.Аналогично можно показать, что Ймакс= = 2Йпад . Итак, при чисто реактивной нагрузке амплитуды в пучностях равны удвоенному значению амплитуды падающей волны. Физический смысл этого результата становится очевидным, если учесть, что образование стоячей волны является результатом интерференции падающей и отраженной волн.

Так как модуль коэффициента отражения при чисто реактивной нагрузке равен единице, то амплитуды отраженной и падающей волн одинаковы. При распространении вдоль линии во взаимно противоположных направлениях эти волны удваиваются по амплитуде в точках, где их фазы совпадают (пучности), и взаимно уничтожаются в точках, где сдвиг фазы равен 180° (узлы). Из предыдущего ясно, что режим чисто стоячей волны возможен лишь в линии без потерь.

Рассмотрим еще вопрос о распределении энергии электромагнитного поля вдоль линии со стоячей волной. Для этого выделим с помощью двух параллельных плоскостей, перпендикулярных к оси линии, пространство, связанное с элементом линии длиной Дx, и составим выражение для энергии магнитного и электрического поля в указанном пространстве. Если амплитуда тока в рассматриваемом элементе линии I(х),а напряжение U(x), то, очевидно, мгновенное значение энергии магнитного поля будет

(2.38)

а мгновенное значение энергии электрического поля

(2.39)

При составлении этих выражений учтено, что при стоячей волне напряжение и ток сдвинуты по фазе на 90°. Начальная фаза и может иметь произвольную величину и для рассматриваемого здесь вопроса значения не имеет.

Суммируя полученные энергии, находим

Таким образом, приходим к выводу, что при чисто стоячей волне средняя энергия электромагнитного поля (на единицу длины) не изменяется вдоль линии. Имеет место лишь перераспределение энергии между магнитным и электрическим полем. В пучностях напряжения вся энергия запасена в электрическом поле (магнитное поле отсутствует), а в пучностях тока -- в магнитном поле (электрическое поле отсутствует).

  • 2.7 Типы волноводных систем

Линии передачи миллиметрового (ММ) и субмиллиметрового (СБМ) волн являются и объектом и средством измерений. В первом случае необходимо знать электродинамические характеристики линий, передающих сигнал на ММ и СБМ волнах. Во втором случае линии передачи используются для измерения характеристик вносимых в них объектов (например, диэлектрических образцов).

В ММ и СБМ диапазонах волн применяются следующие типы волноводных систем: полые металлические волноводы; металлодиэлектрические волноводы; диэлектрические, в том числе диэлектрические полосковые волноводы; квазиоптические лучеводы; микрополосковые линии. Основным отличием полых металлических волноводов ММ и СБМ волн от волноводов, применяемых в СВЧ диапазоне, является то, что они, как правило, являются многомодовыми. Это обстоятельство значительно затрудняет как разработку и создание самих линий передач, так и измерение основных их характеристик. Такими характеристиками являются: постоянные распространения гj=вj-йбj (вj и бj -- фазовая постоянная и постоянная затухания волны j-го типа соответственно); относительный уровень мощности j-й волны; частотная и фазовая характеристики линии; Kст; предельная мощность и др.

Точность измерения этих характеристик определяется в первую очередь требованиями, предъявляемыми к конкретному тракту: в одном случае главным является обеспечение минимальных потерь, в других-- заданной структуры поля, максимума передаваемой мощности:, равномерности фазовой характеристики и т. д.

Рассмотрим основные свойства многомодовых волноводов. Распределение электрического и магнитного полей волны в любом поперечном сечении волновода при z = const неизменно, а происходит лишь изменение амплитуды и фазы волны по закону Ej(x,y,z)=AjEj(x,y)e-jz, где Aj- амплитуда волны j-го типа. Расчет значения бj практически всегда приводит к несоответствию с измеряемой величиной затухания [17]. Поэтому даже в регулярном волноводе ММ и СБМ диапазона практически всегда необходимы измерения потерь бj, а иногда величин вj, Ej или Нj. [17]

Реальные тракты всегда имеют ряд специально вводимых или случайных нерегулярностей. Первые связаны с использованием измерительных элементов, таких как аттенюаторы, фазовращатели, модуляторы, переходы с одного сечения волновода на другое, делители мощности, детекторные секции и т. д.

Случайные нерегулярности возникают из-за неидеальности геометрии волноводов, а также их соединения и крепления. Следует отметить, что с укорочением длины волны случайные нерегулярности вносят все больший вклад как в значение вносимых потерь, так и в эффективность преобразования основной моды в высшие [17].

Известно [18], что в одномодовом волноводе любые нерегулярности вызывают только отражение рабочей волны. В многомодовом волноводе любая нерегулярность вызывает также искажение амплитудного распределения поля волны [19, 20], что обусловлено преобразованием основной моды в высшие моды.

Преобразование мод имеет важную особенность -- преимущественное возбуждение на нерегулярностях мод того же направления распространения, что и возбуждающая мода [отношение амплитуд прямой и обратной мод индекса i равно (вj+вi)/(вj-вi)]. Кроме того, наибольшие амплитуды имеют моды с близкими к рабочей моде фазовыми постоянными. В случае распределенных нерегулярностей наиболее эффективное возбуждение моды индекса i имеет место, когда Сji пропорционально cos вjiz, т. е. когда нерегулярности имеют косинусоидальную зависимость от z с периодом, равным длине волны биений (лij=2р/вji) между j-й и i-й модами [21].

В ММ диапазоне волн широкое распространение получили одномодовые и многомодовые (прямоугольные и круглые) волноводы, а в СБМ диапазоне -- только многомодовые волноводы.

Прямоугольные волноводы. Для одномодового режима работы необходимо выполнение условий: 2a>л0>a, 2b<л0 (а и b -- размеры широкой и узкой стенок волновода). Для основной волны H10 фазовая постоянная в10 и постоянная затухания б10 определяются выражениями:

в10=[k20-(р/a)2]1/2 (2.40)

б10=(рcе0/л0у)1/2*[(1+2(b/a)(л0/2a)2)/(b[1-(л0/2a)2]1/2)]

где к0 = 2р/л0; с -- скорость света в вакууме; у -- проводимость, См/м; е0= 8,86- 10-12 Ф/м -- диэлектрическая проницаемость вакуума.

В одномодовых волноводах обычно а = 2b. При этом условии и при у=5,4* 107 См/м (медь) по указанной формуле можно определить потери на проводимость в стенках волновода.

Измеренные значения потерь обычно в 1,5--2 раза превышают расчетные, причем с укорочением длины волны наблюдается все большее несоответствие расчетных и измеренных потерь [21]. Этот факт обусловлен шероховатостью стенок волновода и наличием на них пленки окислов.

С укорочением длины волны резко возрастают и требования к допускам на размеры волноводов и точности их стыковки. Коэффициенты отражения от различных дефектов, возникающих при стыковке волноводов, могут быть оценены по приближенным формулам, приведенным в [18]. Так, при допусках на размеры а и b, равных д, коэффициент отражения от стыка двух волноводов при a=2b, |Г|?=4д/a.

При смещении волноводов в контактной поверхности стыка на ?а или ?b

|Г|?a?0,9?a/a, |Г|?b?0,3?b/b

Коэффициент отражения на изломе оси на угол и в стыке |Г|и = 3*10-3и.

Многомодовые волноводы. В многомодовом режиме потери при работе на волне Н10 малы. При условии а>>л0, b>> л0 и b<<2а3/ л02 из (67) следует, что б~1/b. Это означает, что наименьшие потери можно получить в многомодовом волноводе, у которого размер b>а, когда вектор напряженности электрического поля распространяющейся волны перпендикулярен стенке с размером а. Однако при b>а увеличивается возможность возникновения высших мод. Это может привести не только к увеличению суммарных потерь, но и к значительной осцилляцией ной зависимости этих потерь от частоты. Кроме того, при наличии в измерительном тракте на многомодовых волноводах переходов с одного сечения волновода на другой возможно возникновение резонансов, обусловленных переотражением паразитных мод от критических сечений [18, 19]. При резонансе коэффициент пропускания умножается на фактор Dj==Lj/( Lj+зj), Dj>1, Lj -- потери на преобразование основной волны в j-ю волну высшего типа; зj - затухание j-й волны. При Lj> зj Dj<<1 .

Коэффициенты преобразования волны Н10 в волны Нm0 имеют вид: Вm0=2р2m?а/в20(в20- в10)a3.

Наибольшее значение имеет коэффициент преобразования волны Н10 в волны Н11, Е11. При этом происходит распространение смешанной волны, представляющей линейную комбинацию волн Н11 и Е11.

Коэффициент преобразования волны Н10 в Hmn- или Emn- волны при изломе оси на угол ?и определяется из выражения [18]: Bij = Fji?и, где коэффициенты Fji даны в [18].

При повороте сечений волновода друг относительно друга на угол ?и для случая симметричной скрутки (не происходит смещения осей волноводов) коэффициент преобразования волны Н10 в волну с ортогональной поляризацией определяется из выражения [18] B01=4?и(в10+в01)/р2в01.

  • 3. Волны в кольцевой линии
    • 3.1 Резонанс бегущей и стоячей волны в коаксиальной линии

Наиболее просто осуществить создание кольцевой системы на основе коаксиальной линии, так как она обладает определенной гибкостью.

В кольцевом тракте возбуждается СВЧ- волна при помощи ГКЧ, волноводный выход которого соединен со входом направленного ответвителя. Вентиль устанавливается для того, чтобы подавить одну из бегущих волн. Детектированный сигнал поступает на вход индикатора КСВН и ослабления и регистрируется. Характер волнового процесса контролируется при помощи измерительной линии.

Затем эксперимент повторяется, но только в отсутствии вентиля. Снимаются показания индикатора КСВН и ослабления.

После этого, вместо направленного ответвителя в схему включается тройник (Т) и вентиль

В режиме бегущей волны наблюдается картина периодического возрастания амплитуды, рассматриваемая как функция частоты (Рис. 3.1). При коротком замыкании в системе устанавливается режим стоячей волны. Аналогичный режим имеет место при распространении в кольце встречных волн (кольцевой резонатор). Однако, в сравнении с режимом стоячих волн, частотная периодичность резонансов обладает вдвое большим периодом. 1- режим бегущей волны, 2- режим стоячей волны (короткое замыкание)

Рисунок 3.1 Распределение поля, рассматриваемая как функция частоты

Значения КБВ коаксиальной линии представлены на графике (Рис. 3.2)

Рисунок 3.2 КБВ кольцевой коаксиальной линии

Как видно из представленной зависимости, КБВ достаточно невелик, и в зависимости от частоты изменяется в относительно небольших пределах. Возможной причиной может являться наличие диэлектрических потерь. Поэтому для продолжения исследований перспективным представлялся переход к волноводной системе.

3.2 Резонанс бегущей и стоячей волны в волноводе

При измерениях в кольцевой системе, составленной из волноводных отрезков, в режиме бегущих и стоячих волн схема экспериментальной установки выглядит следующим образом

Волноводное кольцо выполнено из отрезков прямоугольного волновода. В состав кольца включены два направленных ответвителя для ввода излучения в кольцо и ответвления части мощности в детектор. Поворотные элементы выполнены в виде уголков с отражающей площадкой.

Характерной особенностью данной частотной зависимости является ее резонансный характер. Данное обстоятельство определяется резонансным характером отражения от неоднородностей в волноводе. Как известно, при расположении неоднородностей на расстоянии в четверть длины волны в волноводе отраженные от них волны в обратном направлении оказываются в противофазе, при интерференции взаимно подавляются, и потому отраженная волна в тракте отсутствует. В волноводном кольце устанавливается режим бегущих волн. Для описанной системы резонансной частотой является частота 6,5 ГГц.

В связи необходимостью осуществления режима бегущих волн в широком диапазоне система была изменена (рис. 3.5). Уголковые поворотные элементы были заменены на плавные переходы, кроме того, для повышения рабочей частоты уменьшено сечение волноводного кольца.

Основными элементами системы являлись генератор качающейся частоты, индикатор, два направленных ответвителя, детекторная секция и собственно волноводное кольцо.

Генератор качающейся частоты предназначен для использования в качестве источника СВЧ сигнала в составе панорамного измерителя коэффициента стоячей волны по напряжению (КСВН) типа Р2-53.

Принцип действия ГКЧ 53 включает в себя блок управления и блок СВЧ №4 5,6-8,3Ггц.

Сменный блок СВЧ вставляется в блок управления и соединяется с последним электрически через разъем.

Основным блоком СВЧ является генератор СВЧ, включающий в себя генераторную головку, стабилизатор напряжения и вентиль.

Генераторная головка выполнена на диоде Гана, генерирующем в диапазоне частот от 5,6 до 12,05 Ггц.

В качестве перестраиваемого высокодобротного контура генератора используется сфера из монокристалла феррита с двумя витками связи, помещенными в поле тороидального электромагнита.

Перестройка частоты генератора в широком диапазоне осуществляется изменением величины магнитного поля, создаваемого электромагнитом при изменении величины тока, протекающего в его катушке.

Зависимость между величиной магнитного поля, а следовательно и между величиной тока, протекающего по катушке электромагнита с частотой генерации прямопропорциональная.

Стабилизатор напряжения предназначен для подачи на диод Ганна напряжения смещения, преобразованного из напряжения постоянного тока (12,6 В) и управляющего напряжения (0-10 В).С целью улучшения амплитудно-частотной характеристики требуется устанавливать оптимальное значение напряжения смещения, линейно падающее от -15 до -6 В, что и обеспечивается управляемым стабилизатором напряжения. Для исключения влияния внешней цепи СВЧ тракта на режим генерации на выходе генераторных головок установлен развязывающий вентиль. На выходе генератора СВЧ установлены фильтры нижних частот, ограничивающие прохождение гармоник.

Вентиль в волноводном тракте не используется, так как направленный ответвитель имеет высокую степень направленности и исключает распространение волны в обратном направлении. Распределение поля, рассматриваемое как функция частоты (Рис. 3.4), где 1- режим бегущей волны, 2- режим стоячей волны.

В качестве регистрирующего элемента использовался Индикатор КСВН и ослабления Р2-67.

Индикатор КСВН и ослабления Я2Р-67 предназначен для использования в составе панорамных измерителей КСВН и ослабления.

Рабочая частота измеряемого сигнала 100±1 кГц. Уход уровня калибровки при изменении частоты в пределах 100 ± 1 кГц не более ± 0,05 дБ.

Пределы измерения ослабления от 0 до минус 35 дБ, пределы измерения КСВН --от 1,035 до 5.

Пределы индикации ослабления -- от 0 до минус 40 дБ.

Пределы индикации КСВН -- от 1,02 до °°.

Несоответствие шкал КСВН линейной шкале dB не более ±0,05 дБ в пределах, соответствующих рабочему участку шкалы dB от минус 5 дБ до плюс 2 дБ.

Погрешность измерения ослабления в логарифмическом масштабе в пределах шкалы от 0 до -30 дБ в децибелах не превышает величины, определяемой по формуле

6А= ±(0,1 | А,

Диапазон входных напряжений канала падающей волны 0,03--10 мВ. При этом уровень напряжения в канале отраженной волны должен быть не менее 1 мкВ.

Уход показаний индикатора при изменении уровня входного сигнала во всем диапазоне входных напряжений канала падающей волны не более ±0,2 дБ, а в положении переключателя ПРЕДЕЛЫ 30 не более ±0,3 дБ.

Входное сопротивление усилителей каналов падающей и отраженной волн на частоте 100 кГц составляет 2,7±0,75 кОм.

Сопротивление входа горизонтальной развертки постоянному току 4,7±1,2 кОм.

Погрешность измерения напряжения канала падающей волны в пределах от 0,4 до 10,0 мВ не более 15%.

Усиление напряжения падающей волны для системы АРМ не менее 15 раз.

Пределы измерения ослабления от 0 до -35 дБ, пределы измерения КСВН от 1,035 до 5. Пределы индикации ослабления от 0 до -40 дБ.

Пределы индикации КСВН -- от 1,02 до .

В основу построения структурной схемы панорамного измерителя КСВН и ослабления положен принцип раздельного выделения и непосредственного детектирования сигналов падающей и отраженной волн. Способ раздельного выделения падающей и отраженной волн заключается в следующем.

Сигнал, пропорциональный мощности, падающей на нагрузку, выделяется направленным ответвителем (или мостовым рефлектометром) падающей волны. Сигнал, отраженный от исследуемой нагрузки, выделяется направленным ответвителем (или мостовым рефлектометром) отраженной волны.

СВЧ сигнал, поступающий на исследуемую нагрузку, промодулирован частотой 100 кГц. Ввиду этого, на выходах детекторов, детектирующих сигналы, пропорциональные мощности отраженной и падающей волн, имеется напряжение частотой 100 кГц. Эти напряжения используются в индикаторе для определения измеряемой величины.

Из принципа работы всего комплекса следует, что в индикаторе должно осуществляться усиление напряжений падающей и отраженной волн -(на частоте модуляции СВЧ сигнала), деление их, детектирование, визуальная индикация на экране ЭЛТ и непосредственный отсчет по шкальному устройству. Кроме того, в индикаторе имеются схемы, обеспечивающие логарифмический режим работы, компенсацию неидентичности частотных характеристик СВЧ трактов, индикацию частотой метки, а также выдачи управляющих сигналов при работе с цифровым блоком.

На вход индикатора подавался сигнал, снимаемый либо с направленного ответвителя, либо с детекторной головки измерительной линии в зависимости от задачи исследования. Поскольку в индикаторе производится автоматическая нормировка сигнала, для получения опорного сигнала применялась детекторная секция на входе в направленный ответвитель.

Мощность вводилась в систему через направленный ответвитель, который являлся составляющим элементом кольцевой системы.

Вентиль в волноводном тракте не используется, так как направленный ответвитель имеет высокую степень направленности и исключает распространение волны в обратном направлении. Распределение поля, рассматриваемое как функция частоты, где 1- режим бегущей волны, 2- режим стоячей волны.

Рисунок 3.3 Распределение амплитуды поля, как функция частоты

На рисунке 3.4 представлена осциллограмма с экрана индикатора, на которой показана картина распределения амплитуды поля по частоте в обоих режимах. Видно, что интервал между соседними максимумами уменьшается ( их число возрастает вдвое) и одновременно падает амплитуда в максимуме, что свидетельствует об уменьшении добротности в режиме стоячих волн.

Рисунок 3.4 Распределение поля, как функция частоты (1- режим бегущей волны, 2- режим стоячей волны)

Контроль режима осуществлялся при помощи измерительной линии, включенной в состав волноводного кольца. На рис 3.8 и 3.9 соответственно представлены частотные зависимости КСВН в волноводном кольце в обоих режимах. Очевидно, что на высоких частотах ( выше 6,5 ГГц), что обусловлено сечением волновода, режим с большой достоверностью можно считать режимом бегущей волны, т.к. значение КСВН для этих частот не превышает 1,8, в то время, как в режиме стоячей волны в этом диапазоне КСВН 2102.

    • 3.3 Метод измерения коэффициента отражения

Задача измерения больших коэффициентов отражения актуальна при определении параметров короткозамкнутых нагрузок в волноводных трактах. Особенностью подобных измерений является большой динамический диапазон измеряемых величин, что затрудняет использование методов, связанных с применением измерительной линии ввиду сложности процедуры обеспечения квадратичности характеристики детектора в требуемом диапазоне. В настоящей работе теоретически и экспериментально обоснована методика измерения больших коэффициентов отражения на основе применения кольцевого резонатора бегущей волны.

При широкодиапазонном возбуждении такого резонатора генератором качающейся частоты наблюдается чередование максимумов и минимумов амплитуды СВЧ-поля, как функция частоты возбуждения. Нетрудно показать, что соответствующие значения амплитуд определяются собственным затуханием линии б. Действительно, амплитуда в максимуме поля определяется, как результат интерференции волн, которые совершили целое число “оборотов” в кольцевой системе.

Е=

Так-как в максимуме поля = 2k. А в минимуме = (2k+1)/2, то

Емакс= Е0(1-e-б)-1

Емин= Е0(1+e-б)-

1

Если внести в кольцевую систему короткозамкнутую нагрузку, то её можно рассматривать, как отрезок короткозамкнутой линии, в которой установится режим стоячей волны в полном соответствии с рассмотренным во второй главе материалом. Тогда амплитуда поля в максимумах и минимумах аналогично рассмотренному выше для режима бегущих волн с учетом коэффициента отражения от обоих поверхностей представима в виде:

Емакс= Е0(1-Гe-б)-1,

Емин= Е0(1+Гe-б)-1.

Очевидно, что, исключив из уравнений параметры собственного затухания линии, можно определить модуль коэффициент отражения нагрузки Г.

  • 3.4 Реактивная нагрузка в линии

Известно, что внедрение диафрагмы в волновод эквивалентно включению в состав тракта реактивной нагрузки, характер которой определяется ориентацией диафрагмы относительно широкой стенки волновода. Данное обстоятельство позволяет судить о перспективности внедрения отражающей плоскости в кольцевой резонатор бегущей волны с целью его настройки - изменения. На рисунеке приведены осциллограммы частотной зависимости амплитуды поля при введении в зазор кольцевой системы диафрагмы ножевого типа.

Рисунок 3.5 Осциллограмма частотной зависимости амплитуды поля

Более высокие максимумы соответствуют режиму бегущей волны (а), низкие - дополнительные максимумы (б и в), возникающие при введении диафрагмы. Смещение начальных максимумов имеет место, однако составляет незначительную величину, в то время, как смещение побочных максимумов весьма значительно. На рисунке - б представлен случай введения диафрагмы параллельно широкой стенке, а на рисунке в - для случая введения диафрагмы параллельно узкой стенке. Очевидно, что в первом случае частота резонанса сдвигается в сторону низких частот, которые на осциллограмме слева, а во втором - в сторону высоких частот. При полном введении диафрагмы количество максимумов удваивается, и положения обоих добавочных максимумов совпадают. Таким образом, оказывается возможной настройка резонатора бегущей волны на любую частоту. Возможно также введение в волноводное кольцо диафрагмы, ножевая поверхность которой ориентирована перпендикулярно диагонали сечения волновода. В этом случае сопротивление носит чисто активный характер и влияет только на добротность резонатора.

Отмеченное свойство диафрагмы в кольцевой системе позволяет судить о возможности её применения не только для настройки резонатора, но и для целей согласования. Она может быть использована в качестве трансформатора сопротивления в волноводном тракте, в том числе - и в случае реактивной нагрузки для компенсации индуктивной либо емкостной составляющей. На представленных ниже зависимостях видно, что смещение начального максимума пренебрежимо мало и не превышает 5 МГц на основной частоте 7 ГГц.

3.5 Проверка аппаратной функции

При проведении измерений на установке данного типа появилась возможность определения зависимости и проверки аппаратной функции прибора измерения (Генератор качающейся частоты и индикатор КСВН и ослабления) в режиме бегущих волн. Аппаратная функция это закон по которому проходит измерение и изменение каких- либо параметров на конкретной установке, т. е. в нашем случае функция отклика системы на внешнее воздействие.

Для проведения эксперимента в нашу установку, в одно из плеч волноводноготракта был внедрен атенюатор поляризационного типа. Который осуществлял ослабление сигнала СВЧ . Измерения проводились на двух частотах: F1 = 8.355 Гц и F2 = 7.848 Гц. На установке регистрировались значения минимумов бmin(A) и максимумов бmax(A) при введении ослабления от 0 дБ до 10 дБ . Данные измерений приведены в таблице №1 и №2. Далее по этим измерениям были построены графики зависимости относительной величина Ат (отн.ед.) от ослабления аттенюатора A (дБ) в интервалах [0;1] и [0;10]. В ходе анализа графиков выяснилось, что с учетом погрешностей измерения и потерь, наблюдаемая нами зависимость практически линейна. Следовательно и линейна аппаратная функция установки .

A (дБ) - показания ослабления аттенюатора .

бmax(A) - положение максимума при заданной величине ослаблении.

бmin(A) - положение минимума при заданной величине ослаблении.

Ат (отн.ед.) - теоритическое значение величины ослабления.

Таблица данных №1.

F1 = 8.355 Гц

A (дБ)

Ат (отн.ед.)

бmax(A)

бmin(A)

0

0,489

5,10

1,225

1

1,052

2,50

1,210

2

1,479

1,90

1,195

3

1,876

1,60

1,175

4

2,057

1,50

1,160

5

2,645

1,32

1,145

6

3,206

1,22

1,125

7

3,358

1,19

1,110

8

3,637

1,17

1,110

9

3,709

1,15

1,095

10

4,016

1,13

1,090

Таблица данных.

F2 = 7.848 Гц

Таблица данных №2.

F1 = 7,848 Гц

A (дБ)

Ат (отн.ед.)

бmax(A)

бmin(A)

0

1,396

1,840

1,110

1

1,840

1,515

1,100

2

2,260

1,350

1,095

3

2,573

1,270

1,090

4

2,868

1,210

1,080

5

3,218

1,170

1,080

6

3,376

1,135

1,060

7

3,770

1,110

1,060

8

4,272

1,090

1,060

9

4,672

1,080

1,060

10

4,663

1,070

1,050

Заключение

В работе экспериментально исследовалась частотная характеристика кольцевых (замкнутых) систем СВЧ - диапазона в режиме бегущих и стоячих волн. Показано, что в обоих случаях частотная зависимость является квазипериодической, причем, количество максимумов на ограниченном интервале для режима бегущих волн вдвое меньше, чем для режима стоячих волн. Экспериментально установлено, что добротность системы в режиме бегущих волн выше (примерно вдвое для рассматривавшейся системы), чем в режиме стоячих волн. На основании проделанных расчетов и экспериментальных исследований предложена методика (способ) определения больших коэффициентов отражения, что является актуальным для контроля качества короткозамыкателей СВЧ. Проведено практическое апробирование предложенной методики на образцах из различных материалов и получены частотные зависимости их коэффициента отражения в диапазоне от 6ГГц до 8,5 ГГц.

Исследовано влияние диафрагмирования волноводного кольца на характер частотной зависимости амплитуды волны в системе. Показано существенное влияние ориентация вводимой диафрагмы ножевого типа относительно широкой стенки волновода на положение максимумов амплитуды. Характер нагрузки при изменении положения диафрагмы изменяется от емкостного до индуктивного, а модуль сопротивления - от нуля до бесконечности, что позволяет производить перенастройку резонатора бегущей волны на любую частоту из рабочего диапазона, переходя от режима бегущих волн к режиму стоячих волн через режим смешанных волн. Проделанное экспериментальное исследование позволяет судить о перспективности использования режима бегущих волн в резонаторах СВЧ системах, по сравнению с традиционно применяющимися резонаторами, использующие стоячую волну.

  • Список использованных источников
    • 1. Гуреев А.В.// Радиотехника и электроника (Москва).- 1994 -39 №6.- С.929-936
    • 2. Ковалёв С. В., Нестеров С. М., Скородумов И. А. // Радиотехника и электроника (Москва)- 1993.- 38 №12.- С. 2138- 2140
    • 3. Кирочкин Ю. А., Степанов К.Н. // Журнал экспериментальной и технической физики- 1993.- 104, №6.- С. 3955-3970.
    • 4. Кубышкин Е. И. // Изв. РАН. Мех. тверд. тела.- 1992, №6.- С.- 42- 47.
    • 5. Семин И. А. // Радиотехника и электроника.- 1993.- 38, №3.- С. 436- 439.
    • 6. Свешников А. Г., Боголюбов А. Н., Минаев Д. В., Сычкова А. В. // Радиотехника и электроника - 1993.- 38 №5.- С. 804- 810
    • 7. Кириленко А. А., Сенкевич С. Л., Тысик Б. Г.// Радиотехника и электроника (Москва).- 1990.- 35, №4.- С. 687- 694.
    • 8. Козлова А. Н., Эткин В. С. // Журнал “Успехи физических наук”
    • 9. Под редакцией Валитова Р. А. и Макаренко Б. И.// Измерения на миллиметровых и субмиллиметровых волнах (Москва).- 1984.-с. 91- 98.
    • 10. Каценеленбаум Б. З. // Нерегулярные волноводы с медленно меняющимися параметрами.- М.: Изд- во АН СССР, 1961.- с.196.
    • 11. Ваганов Р. Б., Матвеев Р. Ф., Мериакри В. В. // Многоволновые волноводы со случайными нерегулярностями.- М.: Сов.радио, 1972.- с.232.
    • 12. Под редакцией Гроднева В.А. .. Многоволноводные круглые волноводы.- М.: Связь, 1972.- с. 198.
    • 13. Валитова Р. А. // Методы и техника. М.: Радио и техника, 1984.- с.296
    • 14. Вамберский М. В., Казанцев В. И., Шелухин С. А. // Передающие устройства СВЧ.- Москва «высшая школа»,1984.- с.57-74
    • 15. Под ред. Мириманова // Миллиметровые и субмиллиметровые волны. Изд- во иностранной литературы.
    • 16. Куликов Мю Н., Стальмахов В. С. // К расчету электронно- волнового усилителя типа М с тонким лучом. Радиотехника и электроника, 1964, т. 11, №2.-с. 252.
    • 17. Лошаков Л. Н. // К теории электронного прибора СВЧ с взаимодействием в поперечном направлении. Радиотехника и электроника, 1960, т.5, №9.-с.1448.
    • 18. Лошаков Л. Н. // О применении леммы Лоренца для приближенного расчета постоянных распространения в электронном приборе типа лампы с поперечным взаимодействием. Радиотехника и электроника, 1961, т.6, №12.-с.2012.
    • 19. Лопухин В. М. // Возбуждение э\м колебаний и волн электронными потоками. Гостехиздат, 1953.
    • 20. Под ред. Федотова // Электронные СВЧ приборы со скрещенными полями. Изд- во ин. лит., 1961.
    • Приложение

Таблица.1 Исследование параметров волны в линии при введении нагрузки параллельно узкой стенке

L

(мм)

f

f

Амплитуда волны

f

(db)

f (db)

0

1

2

3

4

5

1

0

7,175

7,175

0

0

2

0,4

7,178

7,178

0

0

3

0,8

7,184

7,176

-0,5

-7,5

4

1,1

7,194

7,173

-4,5

-9

5

1,2

7,204

7,175

-7

-8

6

1,6

7,218

7,177

-5

-5

7

2

7,224

7,178

-4

-4,5

8

2,4

7,227

7,178

-3

-4

9

2,8

7,229

7,177

-3

-4,2

10

3

7,232

7,178

-3,2

-5

Таблица 2 Исследование параметров волны в линии при введении нагрузки параллельно узкой стенке

L

(мм)

f

f

Амплитуда волны

f(db)

f (db)

0

1

2

3

4

5

1

0

7,690

7,690

0

-9,8

2

0,4

7,692

7,688

-0,2

-9

3

0,8

7,697

7,682

-1,6

-7,8

4

1,1

7,710

7,683

-8

-8,2

5

1,2

7,715

7,685

-7,9

-8,1

6

1,6

7,730

7,685

-7,8

-8

7

2

7,739

7,686

-8

-7

8

2,4

7,774

7,688

-7,4

-5,6

9

2,8

7,745

7,692

-6

-5,6

10

3

7,745

7,693

-5,5

-5,7

Таблица 3 Исследование параметров волны в линии при введении нагрузки параллельно узкой стенке

L

(мм)

f

f

Амплитуда волны

f(db)

f (db)

0

1

2

3

4

5

1

0

8,225

8,225

0

0

2

0,4

8,226

8,228

0

0

3

0,8

8,232

8,225

-1

-9,8

4

1,1

8,246

8,223

-6,8

-10

5

1,2

8,250

8,225

-8

-11

6

1,6

8,273

8,226

-10,2

-11,3

7

2

8,287

8,227

-10

-10

8

2,4

8,287

8,228

-9

-9,8

9

2,8

8,288

8,229

-8

-8,8

Таблица 4 Исследование параметров волны в линии при введении нагрузки параллельно широкой стенке

L

(мм)

f

f

Амплитуда волны

f(db)

f (db)

0

1

2

3

4

5

1

0

8,228

8,228

0

0

2

0,3

8,220

8,220

-3

-3

3

0,6

8,201

8,222

-5,2

-8,8

4

0,9

8,194

8,224

-5,1

-10

5

1,2

8,182

8,230

-5,4

-11,8

6

1,5

8,179

8,234

-4,8

-8

Таблица .5 Исследование параметров волны в линии при введении нагрузки параллельно широкой стенке

L

(мм)

f

f

Амплитуда волны

f(db)

f (db)

0

1

2

3

4

5

1

0

7,691

7,691

0

0

2

0,3

7,684

7,684

-2,2

-2,2

3

0,6

7,674

7,687

-9

-7,6

4

0,9

7,663

7,687

-10,3

-8,9

5

1,2

7,652

7,692

-9,5

-9,5

6

1,5

7,646

7,694

-9

-9

Таблица 6 Исследование параметров волны в линии при введении нагрузки параллельно широкой стенке

L

(мм)

f

f

Амплитуда волны

f(db)

f (db)

0

1

2

3

4

5

1

0

7,188

7,188

0

0

2

0,3

7,179

7,188

-7

-4

3

0,6

7,172

7,188

-9

-7,3

4

0,9

7,156

7,188

-9,2

-8

5

1,2

7,145

7,188

-9,2

-9,2

6

1,5

7,138

7,190

-8,2

-8,2


Подобные документы

  • Законы Ома и Кирхгофа. Определение частотных характеристик: функции передачи электрической цепи и резонансной частоты. Нахождение амплитудно-частотной и фазово-частотной характеристики для заданной электрической цепи аналитически и в среде MicroCap 8.

    курсовая работа [1,3 M], добавлен 06.08.2013

  • Расчёт стационарных характеристик электрической цепи. Построение таблиц и графиков амплитудно-частотной и фазо-частотной характеристик. Практические графики, смоделированные в Micro-Cap. Расчёт переходной характеристики с помощью преобразования Лапласа.

    контрольная работа [447,8 K], добавлен 13.06.2012

  • Структура электромагнитного поля. Уравнения Максвелла. Условия реализации обычной магнитной поляризации среды. Возбуждение электродинамических полей в металле. Закон частотной дисперсии волнового числа магнитной волны. Характер частотных зависимостей.

    доклад [93,2 K], добавлен 27.09.2008

  • Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: уравнения плоской и сферической волн, эффект Доплера. Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн.

    презентация [362,6 K], добавлен 24.09.2013

  • Определение напряженности магнитного поля элементарного вибратора в ближней зоне. Уравнения бегущих волн. Их длина и скорость их распространения в дальней зоне. Направления вектора Пойнтинга. Мощность и сопротивление излучения электромагнитных волн.

    презентация [223,8 K], добавлен 13.08.2013

  • Определение параметров волны. Комплексные и мгновенные значения векторов напряженностей электрического и магнитного полей. Построение графиков зависимостей мгновенных значений векторов поля. Построение амплитудно-частотной характеристики коэффициента.

    контрольная работа [148,7 K], добавлен 04.05.2015

  • Составление уравнений по законам Киргофа. Расчет напряжений в нагрузке, комплексной передаточной функции, амплитудно-частотной характеристики и фазочастотной характеристики. Построение логарифмической амплитудной частоты, определение крутизны среза.

    практическая работа [459,7 K], добавлен 24.12.2017

  • Открытый оптический резонатор. Собственные волны и типы поляризации. Методы расчета характеристик оптических резонаторов. Моделирование резонаторов с неплоским контуром. Измерение потерь в исследуемых резонаторах, путем сравнивания с калибровочным.

    дипломная работа [1,7 M], добавлен 19.12.2015

  • Область применения ультракоротких волн - радиовещание с частотной модуляцией, телевидение, радиолокация, связь с космическими объектами. Формула определения затухания на радиолинии ультракоротких волн. Выбор диапазонов волн для линий связи Земля-Космос.

    реферат [446,0 K], добавлен 01.06.2015

  • Исследование частотных и переходных характеристик линейной электрической цепи. Определение электрических параметров ее отдельных участков. Анализ комплексной передаточной функции по току, графики амплитудно-частотной и фазово-частотной характеристик.

    курсовая работа [379,2 K], добавлен 16.10.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.