Определение параметров косинусного излучателя

Определение силы света косинусного излучателя, его яркости и светимости. Расчет спектральной плотности энергетической светимости для заданной длины волны. Метод расчета постоянной Планке. Вычисление периода вращения электрона в атоме по теории Бора.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 01.07.2009
Размер файла 74,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Межрегиональный центр переподготовки специалистов

Контрольная работа

По дисциплине: Физика

Новосибирск, 2009

Вариант 3

703. Светильник в виде цилиндра из молочного стекла имеет размеры: длину 25 см, диаметр 24 мм. На расстоянии 2 м при нормальном падении лучей возникает освещенность 15 лк. Определить силу света; яркость и светимость его, считая, что указанный излучатель косинусный.

Решение: Источники, яркость которых одинакова по всем направлениям, называются ламбертовскими или косинусными. Величина светового потока равна

Где - освещенность на поверхности

- площадь поверхности, для сферы

Для изотропного источника сила света равна

Светимость объекта - отношение светового потока, испускаемого источником к площади поверхности источника освещения. Для упрощения пренебрежением излучением, испускаемых с торца цилиндра.

где - диаметр светящегося цилиндра

- длина светящегося цилиндра

Для косинусного источника света светимость и яркость объекта связаны соотношением:

, где - яркость объекта

Ответ: Сила света

Светимость

Яркость

713. Температура абсолютно черного тела Т = 2 кК. Определить длину волны ?m, на которую приходится максимум испускательной способности и спектральную плотность энергетической светимости (r?,)max для этой длины волны.

Решение: По закону Вина

(1)

где - константа

- температура тела,

Этот закон связывает длину волны максимума испускательной способности с температурой тела.

Плотность энергетической светимости определим из формулы Планка:

(2)

где - постоянная Планка,

- циклическая частота света, связанная с длиной волны сооношением:

(3)

- скорость света,

- постоянная Больцмана,

- температура абсолютно черного тела.

Подставим (3) в (2) получим:

где - постоянная Планка,

Определим по закону Вина длину волны

Найдем спектральную плотность энергетической светимости

Размерность

Ответ:

723. Фотон с энергией ? = 10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс р, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин.

Решение: Формула Эйнштейна для фотоэффекта

(1)

Где - энергия падающего фотона

- масса фотоэлектрона,

- скорость фотоэлектрона

Импульс фотона равен:

(2)

где - скорость света,

Таким образом, из закона сохранения импульса, импульс , полученный пластиной, равен:

Скорость вылета фотоэлектрона из пластины из уравнения (1) равна

Откуда, импульс пластины равен:

Размерность

Ответ: импульс пластины

733. Определить постоянную Планке h, если известно, что фотоэлектроны, вырываемые с поверхности металла светом с частотой 2,2М 1011 с-1, полностью задерживаются обратным потенциалом 6,6 В, а вырываемые светом с частотой 4,6М 1011 c-1 - потенциалом 16,5 В.

Решение: Формула Эйнштейна для фотоэффекта

(1)

где - постоянная Планка (необходимо найти)

- частота падающего света

- работа выхода фотоэлектрона

- кинетическая энергия, с которой фотоэлектрон выходит с поверхности.

Под действием приложенного поля кинетическая энергия фотоэлектрона переходит в потенциальную энергию электрона в электрическом поле, тогда

(2)

где - заряд фотоэлектрона,

- величина задерживающего потенциала

Тогда из уравнения (2) следует:

Размерность

Ответ: постоянная Планка

743. Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол ?=?/2 рад? Энергия фотона до рассеяния ? = 0,51 МэВ.

Решение: Запишем формулу Комптона:

) (1)

где - изменение длины волны фотона

- постоянная Планка,

- масса электрона,

- скорость света,

- угол между фотоном и электроном после столкновения

- энергия фотона до столкновения

(2)

где - первоначальная длина волны

Энергия фотона ?после столкновения:

(3)

Из закона сохранения энергии, энергия, переданная электрону, равна:

- (4)

И доля энергии , переданная электрону, равна:

(5)

С учетом выражения (2) получаем:

Подставим значение (учитывая, что )

Мы использовали тот факт, что энергия покоя электрона

Ответ: доля энергии фотона, затраченная на электрон отдачи

753. Определить коэффициент отражения ? поверхности, если при энергетической освещенности Ее = 120 Вт/м2 давление р света на нее оказалось равным 0,5 мкПа.

Решение: Давление света при нормальном падении на поверхность

где - энергетическая освещенность

- скорость света,

- коэффициент отражения

Откуда получаем:

Подставим значения:

Ответ: коэффициент отражения

803. Вычислить по теории Бора период Т вращения электрона в атоме водорода, находящегося в возбужденном состоянии, определяемом главным квантовым числом n = 2.

Решение: Период обращения электрона в модели атома по Бору:

(1)

где - радиус орбиты

- скорость движения электрона по орбите

Условие для стационарных орбит:

где - масса электрона,

(2)

- постоянная Планка,

- главное квантовое число

Ньютоновское уравнение движения по орбите:

(3)

где - заряд электрона,

- электрическая постоянная,

Получим из (2) и (3) выражение для радиуса орбит:

Откуда выражение для периода вращения:

Размерность

Ответ: период обращения

823. Какова должна быть кинетическая энергия Т протона в моноэнергетическом пучке, используемого для исследования структуры с линейными размерами l?10-13 см?

Решение: Соотношение неопределенностей для координат и импульса:

(1)

где - неопределенность проекции импульса на ось ОХ

- неопределенность координаты

- постоянная Планка,

Таким образом, для неопределенности импульса

(2)

Импульс частицы связан с кинетической энергией

(3)

где - масса покоя протона,

Подставим (3) в (2), получим:

Размерность

или

Ответ: кинетическая энергия должна быть больше


Подобные документы

  • Определение длины волны, на которую приходится максимум испускательной способности, определение спектральной плотности энергетической светимости. Вычисление по теории Бора периода вращения электрона в атоме водорода, находящегося в возбужденном состоянии.

    контрольная работа [296,4 K], добавлен 24.06.2010

  • Описание основных понятий и формул теплового излучения. Вычисление спектральной плотности и интегральной энергетической светимости (излучательности). Закон Кирхгофа, законы Стефана-Больцмана и Вина. Формула Рэлея-Джинса и Планка. Оптическая пирометрия.

    курсовая работа [892,3 K], добавлен 31.10.2013

  • 1 квантово-механическая гипотеза Планка о квантованности излучения (поглощения) и вывод формулы для спектральной плотности энергетической светимости черного тела - теоретическое обоснование экспериментально наблюдавшихся законов излучения черного тела.

    реферат [71,4 K], добавлен 08.01.2009

  • Излучение электромагнитных волн. Характеристика электродинамических потенциалов. Понятие и особенности работы элементарного электрического излучателя. Поля излучателя в ближней и дальней зонах. Расчет резонансной частоты колебания. Уравнения Максвелла.

    контрольная работа [509,3 K], добавлен 09.11.2010

  • Определение длины волны де Бройля молекул водорода, соответствующей их наиболее вероятной скорости. Кинетическая энергия электрона, оценка с помощью соотношения неопределенностей относительной неопределенности его скорости. Волновые функции частиц.

    контрольная работа [590,6 K], добавлен 15.08.2013

  • Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.

    методичка [211,1 K], добавлен 30.04.2014

  • Состояние электрона в атоме, его описание набором независимых квантовых чисел. Определение энергетических уровней электрона в атоме с помощью главного квантового числа. Вероятность обнаружения электрона в разных частях атома. Понятие спина электрона.

    презентация [313,7 K], добавлен 28.07.2015

  • Энергия отдачи ядер. Излучениеми релятивистские эффекты. Скорость движения электрона вдали от ядра. Кинетическая энергия образовавшегося иона. Длина волны гамма квантов, волны света. Скорость пиона до распада. Уровни энергии электрона в атоме водорода.

    реферат [165,2 K], добавлен 22.11.2011

  • Изучение дифракции света на одномерной решетке и определение ее периода. Образование вторичных лучей по принципу Гюйгенса-Френеля. Расположение главных максимумов относительно центрального. Измерение среднеарифметического значения длины световой волны.

    лабораторная работа [67,1 K], добавлен 25.11.2010

  • Изучение методики обработки результатов измерений. Определение плотности металлической пластинки с заданной массой вещества. Расчет относительной и абсолютной погрешности определения плотности материала. Методика расчета погрешности вычислений плотности.

    лабораторная работа [102,4 K], добавлен 24.10.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.