Многофазные цепи и системы

Число фаз многофазной системы цепей. Симметричные и несимметричные системы. Трёхфазные цепи переменного тока. Элементы трёхфазных цепей переменного тока. Варианты схем соединений фаз источников и приёмников. Соединение приёмников "звездой".

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 07.04.2007
Размер файла 140,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Многофазные цепи и системы, их классификация

Многофазной системой электрических цепей называют совокупность электрических цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые относительно друг друга по фазе и создаваемые общим источником электрической энергии. Отдельные электрические цепи, входящие в состав многофазной электрической цепи, называются фазами. Число фаз многофазной системы цепей будет обозначаться через m.

Обычно электрические цепи, образующие многофазную систему цепей, тем или иным способом электрически совпадают друг с другом. При этом многофазную систему электрических цепей мы будем кратко называть многофазной цепью. В частности, при
m = 3 мы имеем трёхфазную цепь.

Совокупность ЭДС, действующих в фазах многофазной цепи, а также совокупность токов и напряжений в многофазной цепи называют многофазной системой, соответственно, ЭДС, токов и напряжений.

Рассмотрим основные признаки классификации многофазных систем ЭДС, напряжений и токов.

Различают системы симметричные и несимметричные.

Симметричной называют многофазную систему ЭДС, в которой ЭДС в отдельных фазах равны по амплитуде и отличны по фазе друг от друга на углы, равные ,
где q - любое целое число.

рис. 1

Для трёхфазной цепи (m=3) при q=1 получаем систему трёх равных по амплитуде ЭДС, сдвинутых друг относительно друга на угол (рис. 1,а).

Соответственно, для действующих значений ЭДС в комплексной форме можем написать:

Обозначим = а.

Тогда:

а - фазный множитель.

Соответственно, симметричную трёхфазную систему ЭДС можно записать в виде:

так как

Как видно из рис.1, ЭДС в фазах проходят через максимум в порядке номеров фаз (1, 2, 3, 1, 2, 3). Такую систему называют симметричной системой прямой последовательности.

Приняв q = 2, получим симметричную систему обратной последовательности (рис. 1,б), в которой ЭДС проходят через максимум в обратном порядке номеров фаз (1, 3, 2, 1, 3, 2).

Её можно написать в виде:

Положив q = 0, получим систему нулевой последовательности (рис. 1,в), в которой все три ЭДС проходят через максимум одновременно. Её можно записать в виде:

Отметим важное положение, что для симметричной системы с прямой или обратной последовательностью сумма ЭДС во всех фазах равна нулю:

Всё сказанное выше относится в равной степени к симметричным системам напряжений и токов.

Несимметричными системами называют многофазные системы, не удовлетворяющие вышеуказанным условиям симметрии.

Нередко фазы обозначают буквами A, B, C (или a, b, c). В таком случае при прямом следовании фаз, ЭДС проходят через максимум в порядке алфавита (A, B, C, A, B, C).

Другим важным признаком классификации является зависимость или независимость мгновенного значения мощности многофазной системы от времени.

Уравновешенными называют многофазные системы, мгновенное значение мощности которых не зависит от времени.

Неуравновешенными называют многофазные системы, мгновенное значение мощности которых является функцией времени.

Перейдём теперь к вопросу о связывании многофазных цепей. Основными видами связывания являются связывание звездой и связывание многоугольником (чаще всего треугольником).

Трёхфазные цепи переменного тока

Элементы трёхфазных цепей переменного тока.

Генераторы, линии передачи электроэнергии, электродвигатели оказываются технически более совершенными, и в конечном итоге более выгодными экономически, если они построены на принципах трёхфазных цепей переменного тока.

Создание в 1889г. выдающимся русским учёным Михаилом Осиповичем ???-Добровольским (1862 - 1919) связанной трёхфазной цепи переменного тока явилось важным событием в истории электротехники. (Он же изобрёл и асинхронный двигатель АД).

Трёхфазная электрическая цепь является упорядоченным электрическим соединителем трёх источников переменного напряжения (или тока), имеющих постоянную разность временных фаз, и трёх потребителей (или трёх групп потребителей) электроэнергии.

Каждая ветвь трёхфазной цепи называется фазой.

Упорядоченность трёхфазной цепи проявляется в том, что в фазах источником обеспечивается примерное равенство амплитуд напряжений, а также амплитуд токов. Это достигается конструкцией генераторов и выравниванием сопротивлений фаз потребителей.

Для получения трёхфазного тока на электростанциях применяют специальные трёхфазные генераторы, имеющие три обмотки, сдвинутые относительно друг друга и поэтому дающие три ЭДС с фазовым сдвигом 1200 между собой.

Наличие двух различных напряжений является одним из достоинств трёхфазного тока.

рис. 1

Графики а) и векторная диаграмма б) фазных и одного линейного напряжения.

Каждая фаза имеет начало и конец. Начало фаз принято обозначать латинскими буквами A, B, C, а концы - буквами X, Y, Z.

Практически используются две схемы симметричных соединений трёх фаз: звезда (рис. 2а), когда соединяются вместе концы всех обмоток X, Y, Z, и треугольник (рис. 2б), когда соединяются начало одной обмотки с концом другой в последовательности A - Z,
B - X, C - Y.

Фазы генератора:

Начала и концы фаз обозначаются соответственно:

A - X, B - Y, C - Z.

Фазы потребителя:

Начала и концы фаз обозначаются соответственно:

a - x, b - y, c - z.

рис. 1

рис. 2

Фазы трёхфазного потребителя, так же как и у трёхфазного источника, соединяются либо звездой (соединение точек x, y, z), либо треугольником (соединение a - y,
b - z, c - x).

Варианты схем соединений фаз источников и приёмников

И П

рис. 3

1 - «треугольник» - «треугольник»

2 - «треугольник» - «звезда»

3 - «звезда» - «треугольник»

4 - «звезда» - «звезда».

Трёхпроводная линия соединяет начала соответствующих фаз источника и приёмника ( A - a, B - b, C - c).

Участки цепи A - a, B - b, C - c называются фазами линии.

Возможны любые сочетания схем соединений у источника «И» и приёмника «П» (рис. 3). В цепях с соединением «звезда» - «звезда» используется также четвёртая линия, соединяющая нуль источника (соединение X, Y, Z) и нуль приёмника (соединение x, y, z). Эта соединительная нейтраль называется нейтральным (нулевым) проводом.

В трёхфазной цепи возможно включение отдельных однофазных потребителей (или их сочетаний) на фазы линии и на одну фазу и нулевой провод (рис. 4).

рис. 4

Провода, соединяющие фазы генератора и приёмника, называются - линейными, а токи в них линейными токами (). Напряжение этих токов условно принято указывать от генератора к приёмнику, также как направление ЭДС () от концов фаз к их началам. Напряжения между началами и концами фаз называются фазными и обозначаются . Напряжения между началами фаз называются линейными и обозначаются .

Фазными токами называются токи, протекающие по фазам, причём у источников их положительные направления принимаются от конца фазы к её началу (), а у приёмников - в противоположном направлении ().

Мгновенные значения токов описываются уравнениями:

Соединение приёмников «звездой»

Соединение, выполненное звездой, представляет собой такое соединение фаз генератора или приёмника, при котором все начала (или концы) фаз соединены в один узел, называемый нулевой или нейтральной точкой.

На рис. Показано соединение звездой фаз генератора и комплексных сопротивлений приёмников.

(1)

(Направление тока в нулевом проводе условно указывается от приёмника к генератору).

Линейные и фазные напряжения приёмника связаны соотношениями:

(2)

Падение напряжения на сопротивлении нулевого провода равно:

(3)

где

Если известны ЭДС генератора и сопротивления фаз приёмника, то фазные напряжения приёмника определяются выражениями:


Подобные документы

  • Однофазные и трехфазные цепи переменного тока. Индуктивное и полное сопротивление. Определение активная, реактивной и полной мощности цепи. Фазные и линейные токи, их равенство при соединении звездой. Определение величины тока в нейтральном проводе.

    контрольная работа [30,8 K], добавлен 23.09.2011

  • Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.

    курсовая работа [777,7 K], добавлен 15.04.2010

  • Произведение расчетов разветвленной цепи постоянного тока с несколькими источниками электрической энергии; цепи переменного тока с параллельным соединением приемников, трехфазной цепи при соединении "звездой"; однокаскадного низкочастотного усилителя.

    контрольная работа [2,2 M], добавлен 31.01.2013

  • Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа [351,4 K], добавлен 10.05.2013

  • Расчёт неразветвлённой цепи с помощью векторных диаграмм, разветвлённой цепи с помощью векторных диаграмм. Расчет ложных цепей переменного тока символическим методом, трёхфазной цепи при соединении приемника в звезду, неразветвлённой цепи.

    курсовая работа [123,9 K], добавлен 03.11.2010

  • Явление резонанса в цепи переменного тока. Проверка закона Ома для цепи переменного тока. Незатухающие вынужденные электрические колебания. Колебательный контур. Полное сопротивление цепи.

    лабораторная работа [46,9 K], добавлен 18.07.2007

  • Линейные цепи постоянного тока, вычисление в них тока и падения напряжения, сопротивления. Понятие и закономерности распространения тока в цепях переменного тока. Расчет цепей символическим методом, реактивные элементы электрической цепи и их анализ.

    методичка [403,7 K], добавлен 24.10.2012

  • Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.

    реферат [122,8 K], добавлен 27.07.2013

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

  • Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".

    методичка [658,2 K], добавлен 06.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.