Явление сверхпроводимости

Открытие явления сверхпроводимости. Первые экспериментальные факты. Эффект Мейснера, изотопический эффект. Теория сверхпроводимости. Щель в энергетическом спектре. Образование электронных пар. Квантование магнитного потока (макроскопический эффект).

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 24.08.2010
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Глава 3. Применение сверхпроводимости в науке и технике

Со времён открытия сверхпроводимости обсуждаются возможности технического использования этого явления. Непонятная сверхпроводимость не давала покоя и физикам, и инженерам. Прошло почти полвека, прежде чем сверхпроводимость начала выходить из стен лабораторий на дорогу практического применения. Этому способствовали несколько обстоятельств. Здесь и развитие техники низких температур, и появление теоретических работ, объяснивших природу сверхпроводящего состояния, и открытие новых квантовых эффектов, и, конечно, создание сверхпроводящих материалов с высокими критическими параметрами.

Успехи экспериментального и теоретического исследований дали реальную возможность приступить к работам по освоению этого физического явления. Сверхпроводимость начала как бы вторую жизнь, но теперь уже не в качестве любопытного феномена, а как явление, открывающее перед наукой и техникой весьма серьёзные перспективы. В последние годы, особенно после создания теории сверхпроводимости, интенсивно развивается техническая сверхпроводимость.

3.1 Сверхпроводящие магниты

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются особые сверхпроводники второго рода. Это некоторые сплавы, тонкие сверхпроводящие плёнки. В такие сверхпроводники магнитные поля, превышающие критические, проникают в вещество в виде нитей, пронизывающих образец. Вещество между нитями оказывается сверхпроводящим, и сильные токи могут привести к созданию сверхсильных магнитных полей. Одной из серьёзных проблем, с которой пришлось встретиться проектировщикам и создателям сверхмагнитов, явилась проблема деградации проволоки в соленоидах. Обнаружилось, что значения критических токов, полученных на коротких образцах, не воспринимаются на длинных отрезках. В результате соленоиды, рассчитанные на одно магнитное поле, дают в действительности другое, более слабое.

Исследования показали, что основной причиной эффекта деградации является скачкообразное проникновение магнитного потока в сверхпроводник. При возрастании тока и поля в соленоиде целые связки вихревых нитей, закреплённых на дефектах или неоднородностях кристаллической решётки, срываются и под действием силы Лоренца начинают скачкообразно перемещаться по материалу. Срыв и перемещение вихревых нитей сопровождаются выделением тепла и повышением локальной температуры. Если это тепло отводится недостаточно быстро, то температура поднимается выше критической, возникает зародыш нормальной фазы, который в зависимости от размеров и теплоотдачи может привести к переходу всего соленоида в нормальное состояние.

Стабилизируют сверхпроводящее состояние соленоидов двумя способами: не допускают появления скачков потока, приводящих к возникновению нормальной фазы; создают условия, при которых нормальная фаза не распространялась бы по тонконесущему элементу и не выводила весь соленоид из сверхпроводящего состояния. В первом случае говорят о внутреннем способе стабилизации материала, во втором - о стационарном.

Внутренне стабилизированные сверхпроводящие материалы состоят из тонких нитей сверхпроводника, окружённых нормальным металлом с высокой электро- и теплопроводностью, например медью или алюминием. При хорошем электрическом контакте сверхпроводника с нормальным покрытием (в случае перехода отдельных участков сверхпроводника в нормальное состояние) ток закорачивается через низкоомное покрытие. Местные перегревы ограничиваются, а отвод тепла гелием с большой поверхности упрощается. При достаточной толщине нормального металла таким путём можно получить полностью стабилизированные проводники. Из них изготавливают сравнительно небольшие магнитные системы с запасённой в магнитном поле энергией, не превышающей нескольких сотен килоджоулей.

При создании крупных сверхпроводящих систем с энергией в десятки и сотни мегаджоулей используются сверхпроводящие материалы со стационарной стабилизацией. В этом случае сверхпроводник занимает небольшой процент площади сечения материала (от 5 до 15% в зависимости от величины системы), а остальное - стабилизирующий металл. Конструкция обмотки, используемой при этом, обеспечивает надёжное охлаждение витков соленоида. А в ряде случаев, если применяется принудительное охлаждение магнитной системы, в теле самого проводника предусматриваются специальные каналы для гелия. Возникшие в результате какого-либо возмущения участок нормальной фазы не распространяется на весь соленоид, так как окружающий нормальный металл способствует быстрому охлаждению нити и отводу тепла в гелий.

Использование магнитных систем для исследований в физике высоких энергий - одно из важнейших направлений в современной прикладной сверхпроводимости. Это магнитные системы ускорителей, каналов транспортировки и сепарации пучков, разнообразные детектирующие системы. Первые сверхпроводящие соленоиды использовались физиками для камер, где искривляемые магнитными полями траектории пролетающих частиц определялись пузырьками вскипающей жидкости. По кривизне траекторий (треков) можно определить как знак заряда частицы, так и её импульс. Сверхпроводящие соленоиды позволяют в значительной степени уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц.

Особо следует сказать о применении сверхпроводящих магнитов в приборах, использующих явление ядерного магнитного резонанса, сокращённо ЯМР. С их помощью можно определить структуру вещества. Специфика применения сверхпроводящих магнитов для исследований с помощью ЯМР состоит в том, что необходимо иметь в пространстве чрезвычайно однородное поле. Техника ЯМР требует индукций магнитного поля от 1 до 10 Тл с высокой однородностью. С помощью обычных магнитов можно было добиться такой однородности в полях с индукцией 2 Тл, и то только за счёт сложных и дорогих источников питания. У сверхпроводящих магнитов есть качество, позволяющее получить высокую однородность в полях, значительно превышающих индукцию, равную 2 Тл, фактически без затрат энергии. Таким качеством является способность сверхпроводящих магнитов работать в режиме замороженного поля. Это означает, что в сверхпроводящей цепи существует не меняющийся во времени электрический ток.

Сверхмагниты, создающие в малых объёмах сильное и очень однородное поле, необходимы физикам, изучающим твёрдое тело. Сильное магнитное поле резко заворачивает траектории электронов, летящих в толще образца. Измерение частоты колебаний этого движения позволяет определить такие важные характеристические параметры электронной системы, как эффективная масса электронов, длина свободного пробега между двумя соударениями, концентрация частиц. В относительно слабых полях круговые траектории, которые описывают электроны под действием силы Лоренца, очень велики, и такие исследования можно проводить лишь на очень чистых образцах с большой длиной свободного пробега. В сильных полях, создаваемых сверхмагнитами, радиус круговых орбит уменьшается и появляется возможность исследовать вещества с меньшей длиной свободного пробега. Становится также возможным сознательно вводить центры рассеивания электронов и изучать влияние этих центров на электронную систему. В решении этих проблем сверхпроводящие магниты незаменимы и сейчас широко используются в физических лабораториях. Маленькие сверхсильные соленоиды в комплекте с системой охлаждения стали уже промышленной продукцией.

3.2 Сверхпроводящая электроника

Криоэлектроника очень молодая наука, но несмотря на свою молодость, она имеет уже существенные достижения и обнадёживающие перспективы. За последние годы электроникой создано множество измерительных приборов. Так, исчезновение электрического сопротивления при переходе в сверхпроводящее состояние позволяет сконструировать чувствительные датчики малых электрических сигналов. Сверхпроводящие гальванометры оказались 100…1000 раз чувствительнее обычных. Благодаря чрезвычайно малому внутреннему сопротивлению такие гальвонометры способны уловить напряжения порядка 10-11…10-12 В. С помощью сверхпроводников можно уловить чрезвычайно слабое излучение. Для этой цели используют приборы, называемые болометрами. Его назначение состоит в измерении мощности теплового излучения, где мерой мощности принимаемого излучения служит изменение электрического сопротивления. В связи с тем, что они работают при низких температурах, в них очень слабы флуктационные шумы. Для болометра со сверхпроводниковым приёмником площадью 3*3 мм при температуре 4 К и времени измерения 1с мощность шумов составляет 10-18 Вт. Чувствительный элемент - датчик представляет собой фольгу или плёнку, напылённую на тонкую слюдяную подложку. Датчики обычно изготавливают из олова, тантала или нитрида ниобия и свободно подвешивают в некотором объёме, охлаждаемом жидким гелием. Для пропускания излучения корпус приёмника должен иметь окно, прозрачное в требуемой области длин волн. Сверхпроводящие приёмники могут быть использованы также для регистрации б-частиц или других частиц высокой энергии. Достоинством является их быстродействие: за 1 с сверхпроводниковый счётчик способен регистрировать около 10 млн. частиц.

Простейший квантовый магнитометр -- СКВИД (сверхпроводяший квантовый интерференционный прибор) представляет собой сверхпроводящее кольцо с двумя джозефсоновскими туннельными контактами. Схематически такое устройство показано на рисунке 14. Это полный аналог столь популярного в оптике опыта с интерференцией от двух щелей, только здесь интерферируют не световые волны, а два джозефсоновских тока , каждый со своей амплитудой и фазой. Концы сверхпроводников 1 и 2 присоединены к прибору, который измеряет ток, равный сумме (с учетом фаз!) токов 1 и 2. Таким образом, в СКВИДе волна сверхпроводящих электронов расщепляется на две, каждая из которых проходит свой туннельный контакт, а затем обе половинки сводятся вместе.

Рис 14

СКВИДы бывают двух типов: СКВИД, работающий на постоянном токе, и СКВИД, работающий на переменном высокочастотном токе. СКВИД на переменном токе устроен несколько проще, он содержит один контакт, но описание его работы сложнее, и поэтому мы здесь рассмотрим работу магнитометра на постоянном токе.

Поскольку оба туннельных контакта одинаковы и расположены симметрично, то в отсутствие поля созданный предварительно постоянный ток разделится между ними поровну, фазы его одинаковы и никакой интерференции не возникает. Но если теперь включить магнитное поле, то оно будет наводить в контуре циркулирующий сверхпроводящий ток. Этот ток, направленный, например, по часовой стрелке, в контакте 1 будет вычитаться из постоянного внешнего тока, а в контакте 2 складываться. Теперь обе ветви будут иметь разные токи, туннельные контакты разбалансируются, между ними возникнет разность фаз. Волны сверхпроводящих электронов, пройдя через контакты и вновь соединившись, будут интерферировать, интерференция проявится как зависимость критического тока СКВИДА Ik от внешнего магнитного поля. Эта зависимость показана на рисунке 15 (магнитный поток измеряется в естественных единицах - квантах потока Ф0).

Рис.15

Таким образом, критический ток контура с двумя джозефсоновскими контактами осциллирует в зависимости от внешнего поля, достигая максимума, когда пронизывающий контур магнитный поток равен целому числу квантов. Такой ступенчатый характер зависимости позволяет «чувствовать» отдельные флюксоиды - кванты потока, хотя величина их очень мала (порядка 10-15Вб). Магнитный поток внутри контура меняется, хотя и на малую величину: ДФ = Фо, но скачком, т. е. за очень короткий промежуток времени Дt. Так что скорость изменения магнитного потока ДФ/Дt при таком скачкообразном характере изменения потока оказывается очень большой. Ее можно измерить, например, по величине ЭДС индукции, наводимой в специальной измерительной катушке прибора. В этом и состоит принцип работы квантового магнитометра.

Сегодня сверхчувствительные магнитометры, измеряющие индукции магнитных полей с точностью до 10-15 Тл - это уже промышленная продукция, находящая широкое применение в измерительной технике. С их помощью удалось осуществить ряд тонких экспериментов, исследовать новые физические явления.

Сверхпроводящие магнитометры оказались очень удобными для измерений магнитной восприимчивости различных веществ. Благодаря своей огромной чувствительности они позволяют измерить очень малые восприимчивости и восприимчивости очень малых количеств вещества. Это последнее обстоятельство особенно важно для биохимических исследований. Градиометры на СКВИДах уже позволили измерить предельно малую восприимчивость белков. Применялись они также для измерения восприимчивости различных геологических пород и даже для измерения магнитного момента образцов лунного грунта.

Физики, изучающие микромир, надеются, что квантовые магнитометры помогут им в поисках кварков и гравитационных волн. А вот геофизикам с помощью СКВИДов удалось зарегистрировать чрезвычайно слабые вариации магнитного поля Земли при различных катаклизмах (извержениях, землетрясениях). Установлено, например, что за несколько дней до землетрясения в области линии сдвига земной коры возникают возмущения магнитного поля. Такие данные, помимо их научного значения, могут оказаться ценным средством прогнозирования стихийных явлений.

Самое лучшее, что создает электроника, она с готовностью отдает медицине для сохранения жизни и здоровья человека. Стоило СКВИДам появиться на свет, как сразу же им и здесь нашлось применение. С их помощью удалось получить идеальную кардиограмму, но не электрическую, а магнитную, отобразив с невиданной точностью мельчайшие импульсы, сопровождающие работу сердца. Ведь те же самые токи, которые измеряются при снятии обычной электрокардиограммы (или электроэнцефалограммы), создают также магнитное поле. Токи эти очень слабы, и соответственно магнитные поля имеют порядок миллиардных и менее долей тесла. Понятно, что подобные измерения могут проводиться только в специально экранированных от посторонних магнитных полей помещениях. Это, конечно, усложняет их применение, но все искупается огромной чувствительностью квантовых магнитометров; с их помощью обнаруживаются такие явления, которые не удавалось обнаружить электрическими методами исследования. Очень ценными для медиков оказались, например, магнитографические исследования тонких физиологических процессов. Были зарегистрированы магнитограммы работы мышц, желудка, глаза при различных освещенностях и др. Недалек тот день, когда магнитограммы, снятые с помощью СКВИДов, принципиально изменят существующие возможности для диагностики сердечных заболеваний.

Основные системы со СКВИДами еще полностью не изучены и их еще следует тщательно исследовать. Но уже сейчас устройства, основанные на применении особенностей контактов слабосвязанных сверхпроводников, следует рассматривать как технику, потенциально пригодную для решения любых приборных проблем, требующих предельно высоких параметров чувствительности, точности и быстродействия.[19,С.147]

Сверхпроводники применяются при создании вычислительных машин. Сверхпроводящий ток является незатухающим, поэтому его можно использовать в качестве прекрасного запоминающего устройства, хранящего большие и легко считываемые запасы информации. Скорость «вспоминания» сверхпроводящих устройств весьма велика. Они в состоянии за 10-6с. выбрать нужную информацию из 1011 её единиц.

В вычислительной технике используется двоичная система. Пребывание сверхпроводников в двух состояниях - нормальном или сверхпроводящем - и быстрота их перехода из одного состояния в другое под действием изменения температуры или магнитного поля позволяют использовать сверхпроводники в качестве элементов вычислительных машин. Сверхпроводники используются в качестве переключающих устройств, работающих с высокой скоростью при малых затратах мощности. В подобных устройствах - криотронах - скорость переключения достигает 2 нс. Высокая скорость и простота устройства лежат в основе использования сверхпроводящих криотронов в вычислительной технике. Явление сверхпроводимости применяют для устройства модуляторов (преобразователей слабого постоянного тока в переменный ток звуковой частоты), персисторов и персистронов (сверхпроводящих запоминающих устройствах).

3.3 Сверхпроводимость и энергетика

Одной из наиболее острых и важных проблем, решаемых сегодня наукой, является проблема осуществления управляемой термоядерной реакции. Есть веские основания полагать, что успешное решение этой проблемы, которая сулит человечеству неисчерпаемые источники энергии, возможно при использовании мощных магнитов. Уже сейчас обсуждаются технические, экономические и даже экологические показатели будущих термоядерных реакторов различных типов. Наибольшее развитие достигли установки типа «Токамак», где используется сверхпроводящая магнитная система. Они представляются наиболее перспективными на ближайшие годы. Именно на этих установках, широко развивающихся в нашей стране, удалось объединить высокую температуру плазмы (до 80 млн. градусов), её высокую плотность (до 1015 частиц в 1 см3) и значительное время удержания (до 0,1 с).

Термоядерный реактор ещё не работает, но проведённые исследования и разработки стимулировали развитие нового типа производства энергии с помощью магнитогидродинамических генераторов (МГД-генераторов). МГД-генератор предназначен для прямого преобразования тепловой энергии в электрическую. Проводником, пересекающем магнитное поле, является низкотемпературная плазма - газ, нагретый до температуры 2500°С и содержащей добавки легкоионизирующихся веществ (для повышения электропроводности). Когда такой газ с достаточно большой скоростью проходит в специальном канале через сильное магнитное поле, возникает ЭДС. Если электроды, соответствующим образом расположены вдоль плазменного канала, соединить с нагрузкой, то ЭДС создает ток в направлении, перпендикулярном движению газа и силовым линиям магнитного поля, способный совершать работу.

В МГД - генераторе движение газа осуществляется за счет собственного расширения, то есть без применения какого - либо двигателя. В канале МГД - генератора вообще нет движущихся частей, и поэтому материал, из которого сделаны наиболее ответственные элементы, не испытывает сколько-нибудь значительных механических усилий. В этом и состоит одно из важных преимуществ преобразования энергии. Магнитная система для наиболее распространенного типа МГД-генератора, так называемого линейного генератора, подобно отклоняющему магниту, используемому в ускорительной техники. Но размеры магнитной системы крупной МГД-электростанции должны быть значительно больше, чем магнитных систем, создаваемых для любых иных целей. Так, у МГД-генератора мощностью порядка 500МВт сечение канала, в котором создается магнитное поле, будет составлять несколько квадратных метров при длине более 10м. Запасенная в магнитном поле энергия может превышать 1010 Дж.

Сверхпроводящий соленоид можно использовать в качестве накопителя энергии для получения очень мощных энергетических импульсов. Магнитное поле с напряжённостью Н = 107а/м имеет объёмную плотность энергии 62,5 Мдж/м3, в то время как в батареях конденсаторов можно накапливать энергию с объёмной плотностью 0,3 Мдж/м3. мощные сверхпроводящие накопители весьма перспективны не только для питания импульсных нагрузок, но и для регулирования производства и потребления электроэнергии в целых энергосистемах. Они могут изменить энергетику, сделать потребителей более независимыми от источников тока, упростить управление, контроль и защиту оборудования.

С ростом потребляемых мощностей всё острее становится проблема передачи энергии. Идея создания сверхпроводящих кабелей укреплялась в острой научной борьбе. Основная трудность, которая возникает при прокладке сверхпроводящего кабеля, - тепловая защита сверхпроводника. Предохранить кабель от большого притока из вне можно с помощью вакуумной изоляции. Кабель имеет вид многослойной трубы, и, в сущности, представляет собой длинный криостат. Поперечное сечение такого кабеля схематично показано на рисунке 15.

Рис 15

Внутренняя труба диаметром около 70 мм, покрытая слоем сверхпроводящего материала толщиной около 0,3 мм, заполнена жидким гелием, который гонят по ней насосы. В качестве сверхпроводника может быть использован, например сплав ниобия, титана, циркония. Между первой и второй трубами вакуумная изоляция, между второй и третьей течёт жидкий азот, между третьей и четвёртой (наружной) опять вакуумная изоляция.

Несмотря на простоту конструкции, монтаж такой линии сопряжён со значительными трудностями. Надо обеспечить герметичность кабеля, научиться собирать его из отдельных коротких отрезков, разработать рефрижераторы, концевые устройства, компенсаторы деформаций и другое оборудование. «Холодные» линии должны выдерживать перегрузки и аварийные режимы, поэтому важно совершенствовать и стабилизацию линий.

Сейчас опытные сверхпроводящие кабели проектируются и строятся во многих странах мира. У нас в стране, создан и испытан отрезок кабеля длиной 50 м из Nb3Sn, рассчитанный на силу тока 8 кА и напряжение 10кВт, т.е. на мощность, равную примерно 0,8 ГВт. Подобные кабели мощностью до 5 ГВт испытываются в США и Японии. Расчёты показывают, что уже в настоящее время при всей сложности поддержания гелиевых температур передачу высоких электрических мощностей на десятки тысяч километров экономически выгоднее вести, используя явление сверхпроводимости.

Итак, сверхпроводники могли бы не только качественно изменить электротехнику, повысить эффективность электроэнергетики, но и помочь решению экологической проблемы - загрязнения атмосферы нашей планеты. Увеличение до грандиозных размеров производства энергии за счёт использования природного топлива может привести в конечном счёте к повышению средней температуры земного шара, а следовательно, и атмосферы. Сверхпроводниковая энергетика, конечно не решает проблемы теплового загрязнения планеты, но может её смягчить. Отсутствие электрического сопротивления дало бы не только колоссальный экономический эффект, но и позволило бы значительно снизить потери тепловой энергии без какого-либо ущерба для энергоёмкости промышленных объектов.

3.4 Магнитные подвесы и подшипники

Сверхпроводник, в толщу которого не проникает магнитное поле, всегда окружён «магнитной подушкой» и характеризуются механическим отталкиванием. Это явление используется в настоящее время для создания опор без трения. Сверхпроводящая сфера висит над кольцом, в котором циркулирует незатухающий ток. Происходит это благодаря диамагнетизму сверхпроводников. Сила тяжести сферы уравновешивается «магнитной подушкой», создаваемой сверхпроводящим током. Парить таким образом, как выяснилось, могут довольно тяжёлые предметы. Это явление называется магнитной левитацией.

Если опустить сверхпроводящий диск на сверхпроводящую катушку, в которой течёт незатухающий ток, то можно получить различные устройства, которые позволяют обеспечить устойчивую подвеску в одном, двух или трёх направлениях. Особенно они удобны в тех случаях, когда тело, подвешенное в магнитном поле, должно вращаться с большим числом оборотов. Таким путём можно получить подшипники, практически не обладающие трением, вплоть до максимальных скоростей вращения. Верхний предел числа оборотов ограничивается лишь механической прочностью материала ротора. В одной из моделей ниобиевый ротор в форме шестигранника удалось раскрутить меняющимся полем до 20 тыс. оборотов в минуту. Принцип механического отталкивания положен в основу создания электрических машин, к.п.д. которых благодаря свойствам сверхпроводников близок к 100%, а также транспорта на магнитной подвеске.

Платформы с магнитной подвеской привлекательны во многих отношениях: отсутствие шума при движении, плавность хода, устранение вибраций и др. Здесь используется следующий принцип. В отдельных вагонах поезда устанавливаются катушки, создающие довольно сильное магнитное поле (рис 16). Поездной электромагнит 1 делают сверхпроводящим. Он охлаждается жидким и газообразным гелием. При движении поезда в алюминиевых полосах-рельсах 2 наводятся вихревые токи, которые по правилу Ленца создают магнитное поле, направленное на встречу вызвавшему их магнитному полю, в нашем случае полю магнитов, расположенных в поезде. Это поле и создаёт силу отталкивания. Поезд - вагон приподнимается над эстакадой электромагнитными силами. Горизонтальная часть полосы - рельса 3 создаёт при этом подъёмную силу, а вертикальная обеспечивает боковую устойчивость поезда. Между шинами - полосами проложен третий рельс-линейный двигатель, который и приводит поезд в движение. В сверхпроводящих опорах подъёмная сила при поле с индукцией 1 Тл может достигать 4*105 Н на квадратный метр, что примерно равно давлению воздуха в шинах автобуса. Вполне реально увеличить магнитное поле в 2…3 раза.

Рис. 16

Сверхпроводники могут оказать большую услугу не только наземному транспорту, но и подводным кораблям. При стеснённых габаритах и ограниченном водоизмещении на корабле можно установить лёгкие, компактные и в то же время мощные генераторы и двигатели (МГД-двигатели).

В настоящее время космонавты часто оказываются в зоне повышенной радиации. Для защиты от неё необходимо магнитное поле, искривляющее траекторию заряженных частиц и «уводящее» радиацию. С этой целью на космических кораблях должна находиться установка, создающая магнитную защиту с помощью сверхпроводящих соленоидов. Кроме этого соленоиды используются и для торможения корабля при входе его в плотные слои атмосферы. Торможение возникает в результате взаимодействия магнитного поля, движущегося вместе с кораблём, с ионизированным газом, возникающим в результате трения обшивки о воздух.[2,С.125]

В космических аппаратах, самолётах, на кораблях, подводных лодках, в системах навигации используют гирокомпасы основу их составляет гироскоп - быстро вращающийся волчок, который сохраняет неизменным своё положение в пространстве. Погрешность гирокомпаса зависит главным образом от трения в подшипниках. Уже эксплуатируются сверхточные гироскопы, в которых ниобиевый шарик, висящий в магнитном поле, после получения импульса может вращаться без трения в течение весьма длительного времени. За сутки дрейф таких гироскопов достигает примерно 20.

Явление сверхпроводимости используется для получения сильных магнитных полей. Широкое распространение имеют магниты, основанные на сверхпроводящих соленоидах, которые позволяют в значительной степени уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц, защитить космический корабль от радиационного излучения, а также служат в качестве накопителя энергии для получения очень мощных энергетических импульсов.

1) Сверхпроводники применяются при создании вычислительных машин. Они используются в качестве переключающих устройств (криотронов), работающих с высокой скоростью при малых затратах мощности.

2) Сверхпроводящие подвесы применяются в гироскопах, двигателях и других устройствах.

4) Явление сверхпроводимости применяют для устройства модуляторов, выпрямителей, коммутаторов, персисторов и персистронов, измерительных приборов.

Заключение

В работе была рассмотрена история открытия сверхпроводимости, свойства сверхпроводников:

1)отсутствие удельного сопротивления,

2) выталкивание магнитного поля из толщи сверхпроводника.

Изучена основная теория сверхпроводимости - БКШ, созданная в 1957 году Бардиным, Купером и Шриффером. Также в работе рассказывается о термодинамике сверхпроводимости, стационарном и нестационарном эффекте Джозефсона, о квантовании магнитного потока и практическом применении явления сверхпроводимости в науке и технике. На основе проделанной работы, можно сделать вывод, что сверхпроводимость - это одна из наиболее сложных для понимания областей физики, явление, открывающее перед инженерной практикой серьёзные перспективы. Эффект сверхпроводимости применяется во многих отраслях человеческой деятельности. Исследование способов увеличения критического магнитного поля позволяет создавать сверхпроводники, имеющие возможность пропускать высокие токи. На электростанциях достаточно давно применяются криотурбогенераторы, способные увеличивать мощность станций примерно на 40%. С явлением сверхпроводимости неразрывно связан наблюдаемый в жидком гелии эффект сверхтекучести. Сверхпроводимость имеет также огромное значение для более глубокого понимания процессов, происходящих на уровне внутреннего строения атомов.

Библиография

1. Боголюбов Н.Н., Толмачёв В.В., Ширков Д.В. «Новый метод в теории сверхпроводимости» - М.: Изд-во АН СССР, 1958.

2. Бушманов Б.Н., Хромов Ю.А. «Физика твёрдого тела» - М.: «Высшая школа», 1971.

3. Гинзбург В.Л. «Сверхпроводимость» - М.-Л.: Изд-во АН СССР, 1948.

4. Давыдов А.С. «Теория твёрдого тела» - М.: «Наука», 1976.

5. Детлаф А.А., Яворский Б.М. «Курс физики» - М.: «Высшая школа», 1989.

6. Епифанов Г.И. «Физика твёрдого тела» - М.: «Высшая школа», 1977.

7. Жданов Г.С. «Физика твёрдого тела» -М.: Изд-во МГУ, 1962.

8. Займан Дж. «Принципы теории твёрдого тела» - М.: «Мир», 1966.

9. Зисман Г.А., Тодес О.М. «Курс общей физики» т.2 - М.: «Наука», 1969.

10. Киттель Ч. «Введение в физику твёрдого тела» - М.: «Наука», 1978.

11. Кресин В.Л. «Сверхтекучесть и сверхпроводимость» - М.: «Мир», 1989.

12. Кузнецов В.Д. «Физика твёрдого тела» - Т.:1952.

13. Кунце Х. - И. “Методы физических измерений”, - М.: « Мир», 1989.

14. Лангенберг Д. Н., Скалапино Д. Дж., Тейлор Б.Н. «Эффект Джозефсона» - М.: «Мир»,1972.

15. Ландау Л.Д. «Физика» - М.: «Физмат», 1993.

16. Левич В.Г. «Курс теоретической физики» т.2 - М.: Физматгиз, 1962.

17. Лутинов В.С. Физические основы сверхпроводимости: Учеб. для спец.

вузов. - М.: Высш. шк., 1989.

18. Минтон Л. «Сверхпроводимость» - М.: «Мир», 1964.

19. Мнеян М.Г. «Сверхпроводники в современном мире» - М.: «Просвещение», 1991.

20. П. Де Жэн «Сверхпроводимость металлов и сплавов» - М.: «Мир», 1970.

21. Пайерлс Р. «Квантовая теория твёрдых тел» - М.: ИЛ, 1956.

22. Палицкий Э.А. Основы теории сверхпроводимости: Учеб. для спец. вузов. - М.: Высш. шк., 1985.

23. Покров А.М. «БСЭ», -М.: 1971.

24. Регалин С.М. «Введение в теорию сверхпроводимости»

25. Савельев И.В. «Курс общей физики» кн. 5 - М.: Наука - Физматлит, 1998.

26. Стронг Д. “Техника физического эксперимента”, - Л.:Лениздат,1943

27. Тилле Дж. «Сверхпроводимость и сверхтекучесть» - М.: «Москва», 1986.

28. Уэрт Ч., Томсон Р. «Физика твёрдого тела» - М.: «Мир», 1966.

29. Френкель Я. И. Введение в теорию металлов. М., ГИТТЛ, 1950.

30. Ципенюк Ю.М. Физические основы сверхпроводимости: Учеб. для спец. вузов. - М.: Высш. шк., 1996.

31. Шмидт В.В. Введение в физику сверхпроводников. - М.: Знание, 1982.


Подобные документы

  • Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.

    контрольная работа [156,0 K], добавлен 09.02.2012

  • Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.

    реферат [42,2 K], добавлен 01.12.2010

  • Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.

    курсовая работа [851,5 K], добавлен 04.06.2016

  • Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".

    презентация [471,0 K], добавлен 22.11.2010

  • Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.

    курсовая работа [3,6 M], добавлен 24.07.2010

  • Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья [205,4 K], добавлен 09.12.2010

  • Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа [254,2 K], добавлен 20.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.