• Процес навчання фізики в основній школі. Методика використання методу розмірностей на різних етапах вивчення компонентів змісту шкільного курсу фізики. Оцінка впливу методу аналізу розмірностей на розвиток когнітивних та дослідницьких здібностей учня.

    курсовая работа (349,7 K)
  • Графическое изображение колебаний в виде векторов и в комплексной форме. Построение результирующего вектора по правилам сложения векторов. Биения и периодический закон изменения амплитуды колебаний. Уравнение и построение простейших фигур Лиссажу.

    презентация (124,6 K)
  • Определение значения тока, протекающего по цепи, состоящей из последовательно соединённых ёмкостей, индуктивности и активного сопротивления. Амплитуда напряжения на конденсаторе и катушке индуктивности при резонансе. Активное сопротивление дросселя.

    реферат (137,4 K)
  • Применение гармонической линеаризации для анализа систем автоматического управления, предложенный Л. Гольдфарбом в 1940 г. Процедура замены нелинейного элемента линейным звеном с комплексным коэффициентом передачи. Исследование симметричных автоколебаний.

    контрольная работа (562,2 K)
  • Строение измерительной установки: наземная панель управления, кавернометр КМ-1. Таблица результатов градуировки каверномера. Подсчет начального диаметра и определение "нормального" тока графическим способом. Подсчет абсолютной и относительной погрешности.

    лабораторная работа (292,0 K)
  • Изучение базовых уравнений кинетостатики. Правила вычисления главного вектора сил инерции твердого тела. Рассмотрение случая вращения твердого тела вокруг неподвижной оси. Представление уравнений для определения статических и динамических реакций.

    презентация (236,8 K)
  • Метод конечных элементов (МКЭ) — численный метод решения задач прикладной физики. История возникновения и развития метода, области его применения. Метод взвешенных невязок. Общий алгоритм статического расчета МКЭ. Решение задач методом конечных элементов.

    курсовая работа (2,0 M)
  • Разработка бронежилетов, с которыми взаимодействуют поражающие элементы с различными скоростями. Оценка стойкости экипировки. Определение кинематических параметров поражающего элемента и характера механизмов поведения и разрушения элементов бронежилетов.

    статья (385,0 K)
  • Метод контурных токов позволяет уменьшить количество уравнений системы. Метод узловых потенциалов. Положительное направление всех узловых напряжений принято считать к опорному узлу. Определить токи в ветвях.

    реферат (105,0 K)
  • Основные положения и алгоритм решения задач методом эквивалентного генератора. Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей только два потенциальных узла. Составление эквивалентной схемы замещения.

    презентация (1,8 M)
  • Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.

    презентация (1,8 M)
  • Модели эффекта дальнодействия. Механизм распространения гиперзвуковых волн по дислокациям. Биологическое действие электромагнитных волн миллиметрового диапазона. Эффект дальнодействия при облучении светом в системе "кремний-водный раствор NaCl".

    курсовая работа (744,0 K)
  • Вивчення законів, на яких ґрунтується молекулярна динаміка. Аналіз властивостей та закономірностей системи багатьох частинок. Огляд основних понять кінетичної теорії рідин. Розрахунок сумарної кінетичної енергії та температури для макроскопічної системи.

    реферат (122,5 K)
  • Метод молекулярного моделирования: статистическая механика и ансамбль, метод Монте-Карло, энергия молекулярной системы. Параметры моделирования. Коэффициент Джоуля-Томпсона и инверсное давление. Растворимость газов в полимерах. Фазовые диаграммы.

    дипломная работа (2,4 M)
  • Основные свойства стандартного случайного числа. Потенциал парного взаимодействия частиц. Изучение метода Монте-Карло на примере работы алгоритма Метрополиса-Гастингса для идеальной Леннард-Джонсовской жидкости. Радиальная функция распределения частиц.

    курсовая работа (1,2 M)
  • Эвристические соображения, приводящие к градиентным методам. Теорема о линейной сходимости градиентного метода с постоянным шагом. Эвристические соображения, приводящие к методу Ньютона безусловной оптимизации. Теорема о квадратичной сходимости метода.

    курсовая работа (209,1 K)
  • Схематическое описание переменного состояния электрической цепи, пример преобразования Лапласа. Проведение расчета оригинала переменного состояния цепи с помощью теоремы разложения. Приближенное состояние электрической цепи и методы его интегрирования.

    презентация (181,7 K)
  • Визначення методу підсилення пасивації дефектів для покращення оптичних та електричних властивостей напівпровідників. Точкові дефекти в напівпровідниках та їх деформація. Дифузія дефектів та підсилення пасивації дефектів воднем за допомогою ультразвуку.

    курсовая работа (312,3 K)
  • Расчет падения напряжения на резисторе. Сущность метода пропорциональных величин. Определение коэффициента подобия. Расчет площади поперечного сечения проводов линии электропередачи. Вычисление тока потребителя. Векторная диаграмма тока и напряжения.

    контрольная работа (1,8 M)
  • Метод совпадений и антисовпадений как один из экспериментальных методов ядерной физики и физики элементарных частиц. Регистрация частиц и квантов с заданной между ними корреляцией в пространстве и во времени. Способы повышения временного разрешения.

    контрольная работа (295,2 K)
  • Визначення поняття сцинтиляційного спектрометра як приладу для реєстрації і спектрометрії частинок. Основні методи спостереження та вивчення зіткнень і взаємних перетворень ядер і елементарних частинок. Принцип дії лічильника Гейгера та камери Вільсона.

    презентация (975,1 K)
  • Основное преимущество метода фазовой плоскости. Элементы фазового портрета. Анализ траекторий в окрестности особых точек. Исследование системы с переменной структурой. Построение временного процесса по фазовой траектории. Сущность метода припасовывания.

    контрольная работа (1,4 M)
  • Теория факторизации: стандартная форма, определение и основная идея, сопряженность операторов, граничное условие. Уравнения математических колебаний. Потенциальная яма конечной глубины. Линейный гармонический осциллятор: модель и квантование энергии.

    курсовая работа (1,4 M)
  • Особенности применения метода эквивалентных синусоид для приближенного расчета режима в нелинейных цепях. Метод эквивалентного генератора для цепей с одним нелинейным элементом. Метод итераций для расчета сложных схем с применением вычислительной техники.

    презентация (273,5 K)
  • Класифікація планарних оптичних хвилеводів. Особливості роботи з хлороформом. Методи вимірювання показника заломлення оптичного хвилеводу. Спектрофотометричні методи вимірювання тонких плівок. Установка для вимірювання товщини тонкоплівкового хвилеводу.

    дипломная работа (2,2 M)
  • Розкладання періодичної функції в ряд Фур'є з погляду фізики. Графоаналітичний метод спектрального аналізу періодичних сигналів. Розрахунок електричної величини. Комп’ютерне моделювання приладу. Використання математичної моделі аналізатора спектру.

    курсовая работа (1,0 M)
  • Контактні методи вимірювання температури полум’я та особливості їх застосування. Метод абсолютної та відносних інтенсивностей спектральних ліній. Безконтактні методи вимірювання температури полум’я. Визначення "обертальної" та "коливальної" температури.

    курсовая работа (247,0 K)
  • Основні відомості про кристали та їх структуру. Сполучення елементів симетрії структур, грати Браве. Кристалографічні категорії, системи та сингонії. Вирощування монокристалів з розплавів. Гідротермальне вирощування, метод твердофазної рекристалізації.

    курсовая работа (5,5 M)
  • Характеристика основних вимог, накладених на різні методи одержання тонких діелектричних плівок (термовакуумне напилення, реактивне іонно-плазмове розпилення, термічне та анодне окислення, хімічне осадження) та визначення їхніх переваг та недоліків.

    курсовая работа (2,4 M)
  • Характеристика методів отримання плівкових матеріалів, заснованих на фізичному випаровуванні: від історично перших методів термічного випаровування до сучасних іонно-плазмових, молекулярно-променевих та лазерних методів осадження. Рідкофазна епітаксія.

    курсовая работа (865,1 K)