Исследование явного метода Эйлера с постоянным и переменным шагом

Математическая постановка задачи. Алгоритм решения системы обыкновенных дифференциальных уравнений методом Эйлера. Параметры программы, ее логическая структура и функциональное назначение. Анализ входных и выходных данных. Описание тестовых задач.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 26.04.2011
Размер файла 38,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Новосибирский государственный технический университет

Кафедра экономической информатики

Курсовая работа по дисциплине Численные методы

на тему:

Исследование явного метода Эйлера с постоянным и переменным шагом

Факультет: Бизнеса

Преподаватель: Сарычева О.М.

Новосибирск

2004

Введение

Метод Эйлера для решения линейных систем алгебраических уравнений является итерационным методом, который предполагает задание достаточно близких к искомому решению исходных данных.

В данной работе требуется проанализировать влияние шага на ошибки интегрирования и число итераций, а также сравнить решение обычных и жестких систем. Для этого необходимо составить программу на языке MatLAB, реализующую метод, и протестировать ее при различных исходных данных.

1. Математическая постановка задачи

Пусть задана система ОДУ:

Численное интегрирование этой системы заключается в определении значений x(t) на интервале времени от 0 до Т при заданных начальных условиях х(0). При этом интервал времени от 0 до Т разбивается на шаги с интервалом tm=hm=(tm+1-tm), здесь m - номер шага, m=. Очередное значение хm+1 вычисляется на основании предыдущих значений х:

xm+1=xm+hmF(xm,tm)

Для дальнейшего решения системы ОДУ методом Эйлера линеаризируем ее в точке xm,tm:

Матрица , при этом суть константы, вычисленные в точке линеаризации:

=

Входной сигнал при линеаризации является известной функцией времени и при фиксированном tm на шаге hm может считаться константой. Элементы матрицы А меняются лишь с изменением точки линеаризации.

Характеристики метода:

1. Точность. Формула xm+1=xm+hmF(xm,tm) аппроксимирует ряд Тейлора для функции x(tm - 1) до линейного по h члена включительно. Поэтому еami пропорциональна hm2. Можно сказать, что существует такое значение в интервале, при котором

е

2. Устойчивость. Для анализа устойчивость матрицу А приводят к диагональному виду: A = PлP-1. Тогда система примет вид: x' = PлP-1x. Нулевое состояние равновесия системы асимптотически устойчиво при <0, значит и метод Эйлера для этого уравнения, имеющий вид, также асимптотически устойчив. При >0 нулевое состояние равновесия системы неустойчиво. Следовательно, система также неустойчива.

3. Шаг интегрирования. При соблюдении абсолютной или относительной устойчивости:

hmin,

В любых случаях шаг нужно корректировать по условиям точности.

2. Описание программного обеспечения

В этом разделе будут рассмотрены параметры программы и ее логическая структура.

2.1 Общие сведения

Программа написана на языке MatLAB в среде MatLAB 6.5. Для работы программы необходимо наличие операционной системы Windows 95 и выше, а также наличие среды MatLAB 6.5 (на более поздних версиях среды программа не тестировалась). Программа включает в себя 4 файлов: Start.m - головной файл, необходимый для запуска программы на выполнение и построения графика функций и ошибок, Fun.m - содержит ОДУ для вычисления, FunT - функция вычисления точного решения системы, RK1.m - содержит решение системы методом Эйлера.

2.2 Функциональное назначение

Программа предназначена для решения систем линейных ОДУ методом Эйлера. Вывод решения производится по графикам. На них отображены зависимости решения от времени интегрирования.

2.3 Логическая структура

Работу программы можно представить с помощью схемы, изображенной на рис.1:

Размещено на http://www.allbest.ru/

Рис. 1. Блок-схема программы

Рассмотрим каждый из этапов работы программы подробнее.

Ввод исходных данных осуществляется путем внесения изменений в текст программы.

Далее программа вызывает RK1.m, где происходит решение системы методом Эйлера, следуя алгоритму:

1. задание исходных данных, инициализация переменных

2. вычисление значений х, если выбран способ решения с переменным шагом, то происходит вычисление шага и его сравнение с максимальным, который задан изначально

3. формирование t_out, y_out, в которые заносятся соответственно время интегрирования и значения х.

Далее происходит вызов FunT, где вычисляется точное решение системы.

После чего происходит построение графиков.

2.4 Входные данные

В качестве входных данных выступают:

a) линейное ОДУ

b) шаг интегрирования

c) допустимая ошибка аппроксимации

d) начальные значения х

2.5 Вызов и загрузка

обыкновенный дифференциальный уравнение эйлер

Вызов программы происходит через среду MatLAB. Для этого надо указать директорию доступа к файлам программы и ввести в командную строку имя головного файла - start.m. Программа занимает 1.5 Кб места жесткого диска (начальное время интегрирования). При вычислении результата и построении графиков используется незначительный объем памяти.

2.6 Выходные данные

Выходная информация представляется в графическом виде. Значения всех переменных можно просмотреть через среду MatLAB.

3. Описание тестовых задач

В ходе тестирования программ, реализующих метод Эйлера для обычных и жестких линейных ОДУ, исследовалось влияние шага интегрирования на ошибку аппроксимации и число итераций. Для этого исследования вводились различные значения.

Для обычных линейных ОДУ

Программа тестировалась на системе:

Величина шага

Ошибка аппроксимации

число итераций

0,1

0,0099

256

0,01

0,01

1932

0,001

0,0073

358

0,0001

0,01

2569

0,00001

0,0015

1

При решении этой же системы c переменным шагом число итераций возросло до 2530, при этом ошибка аппроксимации составила 0,0099.

Для жестких ОДУ

Программа тестировалась на системе:

Величина шага

Ошибка аппроксимации

число итераций

0,1

0,0091

157

0,01

0,01

1169

0,001

0,01

7129

0,0001

0,01

25258

0,00001

0,0012

1

Число итераций при решении системы составило 2016, ошибка аппроксимации равна 0,01.

В Приложении 2 содержаться графики итераций для шага 0,01 и 0,001 для обычных систем и для шага 0,01 - для жестких.

Выводы

Проведя анализ результатов тестирования, можно сказать, что наиболее эффективна программа при шаге интегрирования равном 0,00001, так как именно тогда ошибка аппроксимации минимальна и число итераций равно 1.

Видно, что чем меньше ошибка аппроксимации, тем меньше итераций требуется для решения.

При шаге 0,00001 на графики были в виде прямых, что можно списать на округление значений при вычислении.

Исходя из графиков, также можно сказать, что решения совпадают, однако, при заданном максимуме итерационного шага количество итераций в этом методе значительно превышает количество итераций при том же шаге в методе с постоянным шагом, практически не влияя при этом на ошибку аппроксимации.

Проанализировав результаты решения жесткой системы, можно сказать, что плохая обусловленность матрицы делает практически непоказательным графическое решение, так как по нему очень сложно судить о поведении обеих переменных, в силу того что на фоне одной из них (х2) не заметна другая.

То есть:

· величина шага влияет на число итераций

· точность решения зависит от величины шага

· решение систем с переменным или постоянным шагом, равным максимальному шагу способа с переменным шагом, одинаково

· жесткость системы затрудняет анализ результата решения

Заключение

В данной работе был исследован явный метод Эйлера для решения обычных и жестких систем ОДУ. Было проанализировано влияние величины шага интегрирования на ошибку аппроксимации, и ее влиянии на число итераций. Для этого была написана программа (Приложение 1), реализующая метод, и протестирована при различных исходных данных.

Список использованных источников

1 Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными.-М.: Мир, 1975.- 558 стр.

2 Самарский А.А., Гулин А.В. Численные методы: Учеб. Пособие для вузов.- М.: Наука,1989.- 432 стр.

3 Сарычева О.М. Численные методы в экономике / О.М.Сарычева.- Новосибирск, 1995.- 67 стр.

Приложение

Текст головной программы:

h=0.01; % шаг интегрирования

t0=0; % начальное время интегрирования

x0=[0;0];

Edop=0.01;

[t_out,y_out]=RK1(t0,x0,h,Edop); % вызов RK1

ytoch=FunT(t_out); % точное решение

% построение графика решения методом Рунге-Кутта 1

plot(t_out,y_out);

grid;

title('Solution for x1 and x2 by method Runge-Kutta 1');

ylabel('x');

xlabel('t');

Текст программы для решения ОДУ методом Эйлера с постоянным шагом:

function [t_out,y_out]=RungeKutta1(t0,x0,h,Edop);

% функция решения методом Рунге-Кутта 1

t=t0;

x=x0;

t_out=t;

y_out=x0;

E=[1;1];

while E>Edop

K1=Fun(t,x);

dx=h*K1;

x0=x;

x1=x0+(h/2)*Fun(t+h,x);

x1=x1+(h/2)*Fun(t+h,x1);

x=x+dx;

E=abs(x1-x);

t=t+h;

t_out=[t_out,t];

y_out=[y_out,x];

end

Текст программы для решения ОДУ методом Эйлера с переменным шагом:

function [t_out,y_out]=RungeKutta1(t0,x0,h,Edop);

% функция решения методом Рунге-Кутта 1

t=t0;

hmax=h;

x=x0;

xmax=max(x0)

t_out=t;

y_out=x0;

E=[1;1];

while E>Edop

K1=Fun(t,x);

dx=h*K1;

x0=x;

x1=x0+(h/2)*Fun(t+h,x);

x1=x1+(h/2)*Fun(t+h,x1);

x=x+dx;

E=abs(x1-x);

hi=(0.001*xmax)./(abs(Fun(t,x))+(0.001*xmax)./hmax);

h=min(hi);

if h>hmax

hmax=h;

end

t=t+h;

t_out=[t_out,t];

y_out=[y_out,x];

end

Размещено на Allbest.ru


Подобные документы

  • Принцип и значение метода Эйлера для расчета дифференциальных уравнений. Анализ его геометрического смысла. Улучшение метода за счет аппроксимации производной. Разработка блок-схем и программы на языке Turbo Pascal для проверки методов интегрирования.

    курсовая работа [385,7 K], добавлен 15.06.2013

  • Обзор методов решения в Excel. Рекурентные формулы метода Эйлера. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Эйлера с шагом h/2. Решение дифференциальных уравнений с помощью Mathcad. Модифицированный метод Эйлера.

    курсовая работа [580,1 K], добавлен 18.01.2011

  • Основные этапы математического моделирования. Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Написание компьютерной программы, которая позволит изучать графики системы дифференциальных уравнений.

    курсовая работа [1,9 M], добавлен 05.01.2013

  • Разработана программа решения двух задач на языке программирования Turbo Pascal. Спецификация задания. Описание входных и выходных данных. Математическая постановка задачи. Алгоритм ее решения. Описание и блок-схема программы. Результаты тестирования.

    курсовая работа [275,8 K], добавлен 28.06.2008

  • Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений: Эйлера, Рунге-Кутта, Адамса и Рунге. Техники приближенного решения данных уравнений: метод конечных разностей, разностной прогонки, коллокаций; анализ результатов.

    курсовая работа [532,9 K], добавлен 14.01.2014

  • Роль операционной системы Windows для решения инженерных задач. Исследование и анализ аналитических выражений, реализующих численный метод Эйлера в табличном редакторе Excel. Оценка эффективности методики построения таблиц расчетов переходных процессов.

    реферат [105,5 K], добавлен 29.10.2013

  • Рассмотрение двух методов нахождения приближенного корня дифференциального уравнения, применение их на практике. Графическая интерпретация метода Эйлера. Решение задачи усовершенствованным методом Эйлера. Программная реализация, блок-схемы и алгоритм.

    курсовая работа [246,8 K], добавлен 17.06.2013

  • Численные решения задач методом Коши, Эйлера, Эйлера (модифицированный метод), Рунге Кутта. Алгоритм, форма подпрограммы и листинг программы. Решение задачи в MathCad. Подпрограмма общего решения, поиск максимальных значений. Геометрический смысл задачи.

    курсовая работа [691,4 K], добавлен 17.05.2011

  • Метод половинного деления как один из методов решения нелинейных уравнений, его основа на последовательном сужении интервала, содержащего единственный корень уравнения. Алгоритм решения задачи. Описание программы, структура входных и выходных данных.

    лабораторная работа [454,1 K], добавлен 09.11.2012

  • Разработка программы для решения системы обыкновенных дифференциальных уравнений на базе языка программирования Паскаль АВС. Чтение исходных данных из внешнего файла. Вывод исходных данных и результатов на дисплей и во внешний файл. Суть метода Ейлера.

    реферат [126,1 K], добавлен 12.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.