Лисп-реализация математических операций над комплексными числами

Анализ математических и алгоритмических значений величин, получающихся в результате решения квадратных уравнений, которые имеют название комплексных чисел. Особенности их сложения, вычитания, деления и произведения. Программная реализация решения задачи.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 22.01.2010
Размер файла 443,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

Введение

1. Постановка задачи

  • 2. Математические и алгоритмические основы решения задачи
  • 2.1 Понятие о комплексных числах
  • 2.2 Действия с комплексными числами
  • 2.2.1 Сложение комплексных чисел
  • 2.2.2 Вычитание комплексных чисел
  • 2.2.3 Произведение комплексных чисел
  • 2.2.4 Деление комплексных чисел
  • 3. Функциональные модели и блок-схемы решения задачи
  • 4 Программная реализация решения задачи
  • 5. Пример выполнения программы
  • Заключение
  • Список использованных источников и литературы

Введение

Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами.

Комплексные числа широко использовал отец русской авиации Н.Е.Жуковский (1847 - 1921) при разработке теории крыла, автором которой он является.

Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.

Цель настоящей курсовой работы: Лисп-реализация математических операций над комплексными числами.

1. Постановка задачи

Требуется разработать программу, реализующую математические операции над комплексными числами, опираясь на следующие правила выполнения операций:

1). Сложение:

.

2). Вычитание:

.

3). Умножение:

.

4). Деление:

.

Пример 1.

Выполнить сложение двух комплексных чисел: и .

Решение:

.

Ответ: .

Пример 2.

Выполнить вычитания двух комплексных чисел: и .

Решение:

.

Ответ: .

Пример 3.

Выполнить умножение двух комплексных чисел: и .

Решение:

.

Ответ: .

Пример 4.

Выполнить деление двух комплексных чисел: и .

Решение:

.

Ответ: i.

2. Математические и алгоритмические основы решения задачи

2.1 Понятие о комплексных числах

Для решения алгебраических уравнений недостаточно действительных чисел. Поэтому естественно стремление сделать эти уравнения разрешимыми, что в свою очередь приводит к расширению понятия числа. Например, для того чтобы любое уравнение x+a=b имело корни, положительных чисел недостаточно и поэтому возникает потребность ввести отрицательные числа и нуль.

Древнегреческие математики считали, что a=c и b=а только натуральные числа, но в практических расчетах за два тысячелетия до нашей эры в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за 2 века до нашей эры. Отрицательные числа применял в 3 веке нашей эры древнегреческий математик Диофант, знавший уже правила действий над ними, а в 7 веке нашей эры эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменение величин. Уже в 8 веке нашей эры было установлено, что квадратный корень из положительного числа имеет два значение - положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа х, чтобы х2 = -9. В 16 веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения  х3+3х-4=0), а если оно имело 3 действительных корня (например, х3-7х+6=0), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим 3 корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж.  Кардано в 1545 предложил ввести числа новой природы. Он показал, что система уравнений х+у=10, ху=40 не имеющая решений в множестве действительных чисел, имеет решение всегда , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что . Кардано называл такие величины  «чисто отрицательными» и даже «софистически отрицательными», считая их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в котором были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637г. французский математик и философ Р. Декарт, а в 1777г. один из крупнейших математиков VIII века Х. Эйлер предложил использовать первую букву французского числа (мнимой единицы), этот символ вошел во всеобщее употребление благодаря К. Гауссу (1831г).

В течение 17 века продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалась техника операций над комплексными числами. На рубеже 17-18 веков была построена общая теория корней n-й степени сначала из отрицательных, а впоследствии и из любых комплексных чисел.

В конце 18 века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянным коэффициентом. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Я. Бернулли применил комплексные числа для вычисления интегралов. Хотя в течении 18 века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведение, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами. В конце 18- начале 19 веков было получено геометрическое истолкование комплексных чисел. Датчанин Г.Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число точкой М(а,b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой М, а вектором ОМ, идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами.

Геометрические истолкования комплексных чисел позволили определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости, в теоретической электротехнике.

2.2 Действия с комплексными числами

Рассмотрим решение квадратного уравнения х2 +1 = 0. Отсюда х= -1. Число х, квадрат которого равен -1, называется мнимой единицей и обозначается i. Таким образом , i2 = -1, откуда . Решение квадратного уравнения, например, х2 - 8х + 25 = 0, можно записать следующим образом:

.

Числа вида 4+3i и 4-3i называют комплексными числами. В общем виде комплексное число записывается а + bi, где a и b- действительные  числа, а i - мнимая единица. Число а называется действительной частью комплексного числа, bi-мнимой частью этого числа, b- коэффициентом мнимой части комплексного числа.

2.2.1 Сложение комплексных чисел

Суммой двух комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (a+c) + (b+d)i.  Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а,

(а+bi) + (а-bi) = 2а.

Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комплексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi = c+di, если a = c, b = d.   Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z=a + bi = 0, если a=0, b=0.  Действительные числа являются частным случаем комплексных чисел. Если b=0, то a+bi=a - действительное число. Если а = 0, , то a + bi = bi - чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

2.2.2 Вычитание комплексных чисел

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi  и  с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х = а-с, у = b-d. Значит,

(а+bi) - (c+di) = (a-c) + (b-d)i.

2.2.3 Произведение комплексных чисел

Произведение комплексных чисел z1=a+bi и z2=c+di называется комплексное число

z =(ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Легко проверить, что умножение комплексных чисел можно выполнять как умножение многочленов с заменой i2 на -1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу:

(a + bi)(a - bi) = a2 + b2

2.2.4 Деление комплексных чисел

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:

.

3. Функциональные модели и блок-схемы решения задачи

Функциональные модели и блок-схемы решения задачи представлены на рисунках 1 - 4.

Используемые обозначения:

§ N1 - первое комплексное число;

§ N2 - второе комплексное число;

§ A - действительная часть первого комплексного числа;

§ C - мнимая часть первого комплексного числа;

§ B - действительная часть второго комплексного числа;

§ D - мнимая часть второго комплексного числа.

Рисунок 1 - Функциональная модель решения задачи для функции SUM_COMPLEX

Рисунок 2 - Функциональная модель решения задачи для функции SUBTR_COMPLEX

Рисунок 3 - Функциональная модель решения задачи для функции MULT_COMPLEX

Рисунок 4 - Функциональная модель решения задачи для функции DIV_COMPLEX

4. Программная реализация решения задачи

ЗАВОДИМ ПЕРЕМЕННЫЕ ДЛЯ КОМПЛЕКСНЫХ ЧИСЕЛ

(SETQ NUM1 0)

(SETQ NUM2 0)

(SETQ INPUT_STREAM (OPEN " D:\\COMLEX_NUMBERS.TXT" :DIRECTION :INPUT));ЧИСЛА ХРАНЯТЬСЯ В ФАЙЛЕ В ВИДЕ СПИСКА (A B); ГДЕ A - ДЕЙСВИТЕЛЬНАЯ ЧАСТЬ, B - МНИМАЯ; СЧИТЫВАЕМ ЧИСЛА ИЗ ФАЙЛА

(SETQ NUM1 (READ INPUT_STREAM))

(SETQ NUM2 (READ INPUT_STREAM))

(CLOSE INPUT_STREAM)

СУММА КОМПЛЕКСНЫХ ЧИСЕЛ

(DEFUN SUM_COMPLEX (N1 N2)

(LIST (+ (CAR N1) (CAR N2)) (+ (CADR N1) (CADR N2))))

РАЗНОСТЬ КОМПЛЕКСНЫХ ЧИСЕЛ

(DEFUN SUBTR_COMPLEX (N1 N2)

(LIST (- (CAR N1) (CAR N2)) (- (CADR N1) (CADR N2))))

ПРОИЗВЕДЕНИЕ КОМПЛЕКСНЫХ ЧИСЕЛ

(DEFUN MULT_COMPLEX (N1 N2)

ОБЪЯВЛЕНИЕ ВСПОМОГАТЕЛЬНЫХ ПЕРЕМЕННЫХ

(DECLARE (SPECIAL A))

(DECLARE (SPECIAL B))

(DECLARE (SPECIAL C))

(DECLARE (SPECIAL D))

(SETQ A (CAR N1))

(SETQ B (CADR N1))

(SETQ C (CAR N2))

(SETQ D (CADR N2))

(LIST (- (* A C) (* B D)) (+ (* A D)(* B C))))

ДЕЛЕНИЕ КОМПЛЕКСНЫХ ЧИСЕЛ

(DEFUN DIV_COMPLEX (N1 N2)

ОБЪЯВЛЕНИЕ ВСПОМОГАТЕЛЬНЫХ ПЕРЕМЕННЫХ

(DECLARE (SPECIAL A))

(DECLARE (SPECIAL B))

(DECLARE (SPECIAL C))

(DECLARE (SPECIAL D))

(SETQ A (CAR N1))

(SETQ B (CADR N1))

(SETQ C (CAR N2))

(SETQ D (CADR N2))

(LIST (FLOAT (/ (+ (* A C) (* B D)) (+ (* C C) (* D D)))) (FLOAT (/ (- (* B C) (* A D)) (+ (* C C) (* D D))))))

ЗАПИСЫВАЕМ РЕЗУЛЬТАТ

(SETQ OUTPUT_STREAM (OPEN " D:\\RESULT.TXT" :DIRECTION :OUTPUT)) (DEFUN PRINT_OPERATIONS (N1 N2)

(MAPCAR 'SUM_COMPLEX N1 N2))

(PRINT (LIST 'NUMBER1 NUM1) OUTPUT_STREAM)

(PRINT (LIST 'NUMBER2 NUM2) OUTPUT_STREAM)

(PRINT OUTPUT_STREAM)

(PRINT (LIST 'SUM (MAPCAR 'SUM_COMPLEX NUM1 NUM2)) OUTPUT_STREAM)

(PRINT (LIST 'SUBTRACTION (MAPCAR 'SUBTR_COMPLEX NUM1 NUM2)) OUTPUT_STREAM)

(PRINT (LIST 'MULTIPLICATION (MAPCAR 'MULT_COMPLEX NUM1 NUM2)) OUTPUT_STREAM)

(PRINT (LIST 'DIVISION (MAPCAR 'DIV_COMPLEX NUM1 NUM2)) OUTPUT_STREAM)

(TERPRI OUTPUT_STREAM)

(CLOSE OUTPUT_STREAM)

5. Пример выполнения программы

Пример 1.

Рисунок 5 - Входные данные

Рисунок 6 - Выходные данные

Пример 2.

Рисунок 7 - Входные данные

Рисунок 8 - Выходные данные

Пример 3.

Рисунок 9 - Входные данные

Рисунок 10 - Выходные данные

Заключение

Применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках -- электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

Итогом работы можно считать созданную функциональную модель для реализации математических операций над комплексными числами. Созданная функциональная модель и ее программная реализация могут служить органической частью решения более сложных задач.

Список использованных источников и литературы

Выгодский, М.Я. Справочник по элементарной математике. [Текст] / М.Я. Выгодский - М.: АСТ: Астрель, 2006. С. 509.

Дадаян, А.А. Алгебра и геометрия. [Текст] / А.А Дадаян, В.А.Дударенко. - М.: Минск, 1999. С. 342.

Камалян, Р.З. Высшая математика. [Текст] / Р.З.Камалян. - М.: ИМСИТ, 2004. С.310.

Комплексное число [Электронный ресурс] - Режим доступа: http://ru.wikipedia.org/wiki/Комплексное_число.

Степанов, П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А.Степанов, А.В.Бржезовский. - М.: ГУАП, 2003. С. 79.


Подобные документы

  • Понятие и функции комплексных чисел. Правила выполнения арифметических операций с комплексными числами. Действия с комплексными числами: сложение, вычитание, произведение, деление. Программная реализация решения задачи. Пример выполнения программы.

    курсовая работа [398,8 K], добавлен 01.02.2010

  • Математические и алгоритмические основы решения задачи. Функциональные модели и блок-схемы решения задачи. Программная реализация решения задачи. ЛИСП-реализация вычисления неэлементарных функций. Вычисления гамма функции для положительных неизвестных х.

    курсовая работа [621,2 K], добавлен 18.01.2010

  • Теоретическая и практическая реализация комплексной арифметики на языке программирования Си. Разработка программы, производящей арифметические действия с комплексными числами. Автоматизации решения комплексных чисел. Матричная и стандартная модель.

    курсовая работа [495,4 K], добавлен 21.01.2012

  • Изучение способов решения линейных и квадратных уравнений методом простой итерации: доказательство теоремы о сходимости и геометрическая интерпретация. Анализ математического решения задачи, ее функциональной модели, блок-схемы и программной реализации.

    реферат [411,5 K], добавлен 25.01.2010

  • Изучение методов и этапов создания класса Complex, позволяющего работать с комплексными числами и производить с ними следующие операции: сложение, вычитание, умножение, деление двух комплексных чисел. Написание кода для ввода и вывода исходных данных.

    курсовая работа [628,4 K], добавлен 11.09.2010

  • Программная реализация на языке ЛИСП расписания встреч участников соревнования с использованием круговой и олимпийской системы проведения соревнований. Математические и алгоритмические основы решения задачи. Функциональные модели и блок-схемы решения.

    курсовая работа [1,0 M], добавлен 25.01.2010

  • Системы линейных алгебраических уравнений. Код программы для решения систем линейных алгебраических уравнений. Математические и алгоритмические основы решения задачи методом Гаусса. Программная реализация решения. Алгоритмы запоминания коэффициентов.

    лабораторная работа [23,5 K], добавлен 23.09.2014

  • Рассмотрение истории развития психологического тестирования. Практическая разработка программы по обработке результатов опросов: составление математической, функциональной моделей решения задачи, соответствующие им блок-схемы и программная реализация.

    курсовая работа [714,9 K], добавлен 25.01.2010

  • Построение и использование математических и алгоритмических моделей для решения линейных оптимизационных задач. Освоение основных приемов работы с инструментом "Поиск решения" среды Microsoft Excel. Ввод системы ограничений и условий оптимизации.

    лабораторная работа [354,7 K], добавлен 21.07.2012

  • Использование математических и программных средств моделирования при решении задачи минимизации транспортных издержек. Использование метода потенциалов, разработка алгоритма программы на языке программирования Turbo Pascal 7.0. Методы реализации.

    курсовая работа [156,6 K], добавлен 16.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.