Алгоритмы решения задач

Реализация интегрирования функции методами прямоугольников, трапеций, Симпсона. Построение графика сравнения точности решения методов интегрирования в зависимости от количества разбиений. Алгоритм расчета энтропии файлов с заданным расширением.

Рубрика Программирование, компьютеры и кибернетика
Предмет Языки программирования
Вид контрольная работа
Язык русский
Прислал(а) Михаил Чинков
Дата добавления 04.05.2015
Размер файла 1011,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Рассмотрение методов приближенного численного анализа. Формулы интегрирования, прямоугольников, трапеций, формула Симпсона. Оценка погрешностей интегрирования. Вычисление интеграла по формуле трапеций с тремя десятичными знаками и по формуле Симпсона.

    курсовая работа [995,7 K], добавлен 09.07.2012

  • Методы левых и правых прямоугольников численного интегрирования для вычисления интегралов. Геометрический смысл определённого интеграла. Программная реализация, блок-схемы алгоритмов. Результат работы тестовой программы. Решение задачи с помощью ЭВМ.

    курсовая работа [180,4 K], добавлен 15.06.2013

  • Исследование внутренней сходимости численного интегрирования методами Симпсона и трапеций различных функций, задаваемых с помощью функций языка C. Результаты исследования, их анализ, описание применения. Условия и характеристики выполнения программы.

    курсовая работа [385,2 K], добавлен 14.03.2011

  • Постановка задачи численного интегрирования. Классификация методов интегрирования: методы Ньютона-Котеса; методы статистических испытаний; сплайновые методы; методы наивысшей алгебраической точности. Метод Симпсона: суть; преимущества и недостатки.

    реферат [165,3 K], добавлен 01.03.2011

  • Применения численного интегрирования. Интерполяционные методы нахождения значений функции. Методы прямоугольников, трапеций и парабол. Увеличение точности, методы Гаусса и Гаусса-Кронрода. Функциональные модели и программная реализация решения задачи.

    курсовая работа [450,9 K], добавлен 25.01.2010

  • Разработка программы, выполняющей интегрирование методом входящих прямоугольников с кратностями и методом Симпсона. Расчет определённого интеграла приближенным и точным методами. Оценка погрешности при вычислении приблизительного значения интеграла.

    контрольная работа [71,7 K], добавлен 13.02.2016

  • Математическое описание численных методов решения уравнения, построение графика функции. Cтруктурная схема алгоритма с использованием метода дихотомии. Использование численных методов решения дифференциальных уравнений, составление листинга программы.

    курсовая работа [984,2 K], добавлен 19.12.2009

  • Рассмотрение методов прямоугольников и трапеций как способов вычисления определенных интегралов. Характеристика графика зависимости погрешности от числа разбиений N. Создание приложения по вычислению интеграла с помощью методов приближенного вычисления.

    курсовая работа [1,6 M], добавлен 20.06.2012

  • Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.

    курсовая работа [3,0 M], добавлен 21.05.2013

  • Идея численного интегрирования. Создание программы, вычисляющей определенный интеграл методом трапеций. Листинг программы, результаты работы. Проверка в среде Mathcad. Зависимость точности вычисления от количества отрезков разбиения, расчет погрешности.

    отчет по практике [106,8 K], добавлен 28.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.