Разработка виртуальных лабораторных работ по исследованию асинхронных двигателей

История появления, возможности, визуализация и графические средства MATLAB, её место среди математических программ. Описание принципа действия асинхронного двигателя. Разработка математической модели асинхронной машины в режимах двигателя и генератора.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 14.02.2015
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Библиотека блоков Simulink (рисунок 4.1) - это набор визуальных объектов, при использовании которых, соединяя отдельные блоки между собой линиями связей, можно составлять функциональную блок-схему любого устройства.

Рисунок 4.1 - Окно Simulink Library Browser

Сборка блок-схемы S-модели заключается в том, что графические изображения выбранных блоков с помощью мыши перетягиваются из окна раздела библиотеки в окно блок-схемы, а затем выходы одних блоков в окне блок-схемы соединяются со входами других блоков (также с помощью мыши). Соединение блоков выполняется следующим образом: указатель мыши подводят к определенному выходу нужного блока (при этом указатель должен приобрести форму крестика), нажимают левую кнопку и, не отпуская ее, перемещают указатель к нужному входу другого блока, а потом отпускают кнопку. Если соединение осуществлено верно, на входе последнего блока появится изображение черной стрелки.

Сборка модели осуществляется в рабочем поле специального окна (рисунок 4.2). Это окно имеет строку меню, панель инструментов и рабочее поле. Меню File (Файл) содержит команды, предназначенные для работы с МDL - файлами; меню Edit (Правка) -- команды редактирования блок-схемы; меню View (Вид) команды изменения внешнего вида окна; меню Simulation (Моделирование) -- команды управления процессом моделирования; меню Format (Формат) -- команды редактирования формата (то есть команды, позволяющие изменить внешний вид отдельных блоков и блок-схемы в целом). Меню Tools (Инструменты) включает некоторые дополнительные сервисные средства, предназначенные для работы с S-моделью.

Рисунок 4.2 - Окно, в котором осуществляется сборка модели

Любая блок-схема моделируемой системы должна включать в себя один или несколько блоков-источников, генерирующих сигналы, которые, собственно, и вызывают «движение» моделируемой системы, и один или несколько блоков-приемников, которые позволяют получить информацию о выходных сигналах этой системы (увидеть результаты моделирования).

Запуск модели на выполнение осуществляется нажатием на кнопку , либо через меню Simulation>Start, остановка нажатием на кнопку , либо через меню Simulation>Stop, пауза - на кнопку , либо через меню Simulation>Pause, пауза активна, когда модель запущена на выполнение. Кнопки расположены на панели инструментов.

4.2 Преобразование уравнений асинхронной машины в неподвижной системе координат

Система уравнений (3.13) в операторной форме примет вид:

(4.1)

Для создания модели, из системы уравнений (4.1) выражаются токи и потокосцепления и система уравнений примет вид:

(4.2)

4.3 Расчёт параметров модели для АД серии 4А

Для моделирования выбран асинхронный двигатель с короткозамкнутым ротором марки 4А112M4У3 со следующими паспортными данными:

- номинальная выходная мощность Р=5.5 кВт,

- номинальное фазное напряжение обмотки статора U=220 В,

- номинальная частота тока f1=50 Гц,

- номинальный коэффициент полезного действия зн= 85.5 %,

- номинальный коэффициент мощности статорной обмотки сosц=0.85,

- критическое скольжение ротора Sk= 25 %,

- номинальное скольжение ротора Sн= 3.6 %,

- число пар полюсов: р=2,

- число фаз: m=3,

- скорость холостого хода: n1=1500 об/мин,

- момент инерции на валу машины: J=0,017 кгм2,

- параметры Г-образной схемы замещения в режиме короткого замыкания (рисунок 4.3) в относительных единицах:

- в номинальном режиме:

R`1*=0.064, X`1*=0.078, R``2*=0.041, X``2*=0.13, Xm*=2.8,

- в режиме короткого замыкания:

R``2*кз=0.048, X``2*=0.062.

Рисунок 4.3 - Г-образная схема замещения

По известным паспортным данным АД и параметрам Г-образной схемы замещения рассчитываются параметры Т-образной схемы замещения в режиме короткого замыкания (рисунок 4.4) и коэффициенты системы уравнений (4.2) и параметры блоков модели АД.

Рисунок 4.4 - Т-образная схема замещения

Номинальный фазный ток статора

А.(4.3)

Базисное значение сопротивления

Ом.(4.4)

Угловая частота тока

с-1. (4.5)

Реактивное сопротивление рассеяния статора в относительных единицах

Х1*=.(4.6)

Коэффициент, связывающий параметры машины в Т и Г-образной схемах замещения

.(4.7)

Реактивное сопротивление рассеяния фазы статора

Ом.(4.8)

Активное сопротивление фазы статора

Ом.(4.9)

Индуктивность рассеяния фазы статора

Гн.(4.10)

Реактивное сопротивление рассеяния фазы ротора

Ом.(4.11)

Активное сопротивление фазы ротора

Ом.(4.12)

Индуктивность рассеяния фазы ротора

Гн.(4.13)

Реактивное сопротивление взаимоиндукции

Ом.(4.14)

Индуктивность взаимоиндукции

Гн.(4.15)

Полная индуктивность фазы статора

Гн.(4.16)

Полная индуктивность фазы ротора

Гн.(4.17)

Суммарные потери мощности в двигатели

Вт.(4.18)

Основные потери в обмотке статора

Вт.(4.19)

Намагничивающий ток

А.(4.20)

Потери в стали статора

Вт,(4.21)

где выбирается из диапазона 0.08-0.2.

Основные потери в обмотке ротора

Вт.(4.22)

Суммарные потери в стали и механические

Вт.(4.23)

Механические потери

Вт.(4.24)

Скорость идеального холостого хода двигателя

с-1.(4.25)

Номинальная скорость вращения двигателя

с-1.(4.26)

Коэффициент трения

НМмМс.(4.27)

Коэффициенты системы уравнений обобщённой асинхронной машины:

Ом,(4.28)

Гн,(4.29)

с, (4.30)

с, (4.31)

.(4.32)

Параметры блоков модели обобщённой асинхронной машины:

Сим, (4.33)

с-1, (4.34)

Ом, (4.35)

, (4.36)

(кг*м2)-1. (4.37)

4.4 Структурная схема модели в неподвижной системе координат и её поблочное описание

По системе уравнений (4.2) собирается схема модели обобщённой машины в неподвижной системе координат (рисунок 4.5) с рассчитанными параметрами. На входы модели подаются напряжения, сдвинутые по фазе на 90 электрических градусов:

где - амплитудное значение номинального фазного напряжения.

При номинальном питающем напряжении реализуется прямой пуск АД

Рисунок 4.5 - Структурная схема модели обобщённой асинхронной машины в неподвижной системе координат

Блоки Usб и Usв (рисунок 4.6) являются генераторами гармонических сигналов, Usб - косинусоиды, Usв - синусоиды. Они имитируют работу источников напряжения.

Настраиваемыми параметрами являются:

Sine type - тип синусоидальной волны,

Amplitude - амплитуда сигнала, для данной схемы В,

Bias - смещение (постоянная составляющая синусоиды),

Frequency - угловая частота колебаний, для данной схемы равная ,

Phase - начальная фаза (в радианах), равная:

- для косинусоиды, 0 - для синусоиды,

Sample time - величина дискрета времени.

Рисунок 4.6 - Блок Usб: а) внешний вид, б) окно параметров

Блок (рисунок 4.7) осуществляет умножение входного сигнала на постоянную величину, значение которой задаётся в настройке блока.

Аналогичные в схеме блоки: , , , , , .

Настраиваемыми параметрами являются:

Gain - коэффициент усиления, для данной схемы =5.756,

Multiplication - тип способа умножения.

Рисунок 4.7 - Блок : а) внешний вид, б) окно параметров

Блок Sum (рисунок 4.8) суммирует поступающие на него сигналы (в том числе с разными знаками).

Настраиваемыми параметрами являются:

Icon shape - форма изображения (круг или прямоугольник),

List of signs - список входов и их знаки.

Рисунок 4.8 - Блок Sum: а) внешний вид, б) окно параметров

Блок (рисунок 4.9) реализует звено введённой в него передаточной функции. Аналогичный в схеме блок: .

Настраиваемыми параметрами являются:

Numerator - числитель, для данной схемы ,

Denominator - делитель, для данной схемы .

Рисунок 4.9 - Блок : а) внешний вид, б) окно параметров

Блок Klych (рисунок 4.10) служит для переключения типа момента нагрузки на валу, либо М2 либо б*М2. Переключение происходит при двойном нажатии правой кнопкой мыши на блоке.

Настраиваемых параметров не имеет.

Рисунок 4.10 - Блок Klych

Блок Product (рисунок 4.11) выполняет умножение (деление) входных сигналов.

Настраиваемыми параметрами являются:

Number of inputs - количество входов,

Multiplication - тип способа умножения.

Рисунок 4.11 - Блок Product: а) внешний вид, б) окно параметров

Блок М2 (рисунок 4.12) формирует постоянную величину нагрузки на валу, которая является неизменной во времени.

Настраиваемыми параметрами являются:

Constant value - постоянная величина.

Рисунок 4.12 - Блок М2: а) внешний вид, б) окно параметров

Блок б*М2 (рисунок 4.13) является задатчиком нагрузки и устанавливает на валу линейно изменяющийся во времени момент нагрузки.

Настраиваемыми параметрами являются:

Slope - изменение величины за 1 секунду. В зависимости от знака возрастает или убывает,

Start time - момент времени в который начинает изменятся нагрузка,

Initial output - начальное значение, с которого начнётся изменение нагрузки.

а) б)

Рисунок 4.13 - Блок б*М2: а) внешний вид, б) параметры

Блок Integrator (рисунок 4.14) представляет идеальное интегрирующее звено. Он позволяет осуществить интегрирование поступающего на него сигнала в непрерывном времени.

Настраиваемыми параметрами являются:

External reset - подключение дополнительного управляющего сигнала,

Initial condition source - определение источника (внутренний или внешний),

Initial condition - начальное значение выходной величины,

Limit output - ограничение величины выхода,

Upper saturation limit - верхнее предельное значение выходной величины,

Lower saturation limit - нижнее предельное значение выходной величины,

Show saturation port - показать порт насыщения,

Show state port - показать порт состояния,

Absolute tolerance - допустимая предельная величина абсолютной погрешности.

а) б)

Рисунок 4.14 - Блок б*М2: а) внешний вид, б) параметры

Графический дисплей «wm, M=f(t)» (рисунок 4.15) позволяет в ходе моделирования наблюдать графики переходных процессов скорости и момента во времени. По горизонтальной оси откладывается значение модельного времени, а по вертикали значение входной величины, отвечающее этому моменту времени. Окно параметров вызывается нажатием на иконку .

Настраиваемыми параметрами являются:

Number of axes - количество осей,

Time range - интервал времени,

Tick labels - метки осей,

Sampling - используется только для дискретных во времени процессов. Его значение (1), установленное по умолчанию, для непрерывных процессов изменять не рекомендуется. Позволяет задать периодичность (через сколько дискретов времени) отображения значений времени.

а) б) в)

Рисунок 4.15 - Блок «wm, M=f(t)»:

а) внешний вид, б) внутренний вид, в) окно параметров

Шинный формирователь Mux (рисунок 4.16) выполняет объединение входных величин в единый выходной вектор (шину), что очень удобно, так как схема получается мене загромождённой.

Настраиваемыми параметрами являются:

Number of inputs - число входов,

Display option - вид отображения блока.

а) б)

Рисунок 4.16 - Блок Mux: а) внешний вид, б) окно параметров

Цифровой дисплей «wm, M» (рисунок 4.17) выводит на экран числовые значения входящих в блок величин (скорости и момента).

Настраиваемыми параметрами являются:

Format - формат вывода чисел,

Decimation - позволяет задать периодичность (через сколько дискретов времени) отображения значений времени,

Sample time - используется только для дискретных во времени процессов. Его значение (-1), установленное по умолчанию, для непрерывных процессов изменять не рекомендуется.

а) б)

Рисунок 4.17 - Блок «wm, M»: а) внешний вид, б) окно параметров

Осциллограф XY (рисунок 4.18) - графическое окно, отображающее зависимость одной переменной от другой. В данной схеме отображает механическую характеристику.

Большим минусом этого блока является то, что в графическом окне нет сетки и нет возможности нанести надписи.

Настраиваемыми параметрами являются:

x-min, x-max, y-min, y-max - пределы осей по Х и У,

Sample time - смотри выше.

а) б) в)

Рисунок 4.18 - Блок XY: а) внешний вид, б) окно параметров, в) графическая область

Блок «Построение механической характеристики» (рисунок 4.19) является ссылкой на специально разработанную M-программу, в которой реализуется графическое построение механической характеристики. Большим удобством является то, что имеется сетка и можно наносить надписи осей и в графической области, а также редактирование полученных результатов.

а) б)

Рисунок 4.19 - Графическое окно для построения характеристик:

а) внешний вид, б) графическая область

4.5 Результаты моделирования

После запуска схемы модели на моделирование и завершения процедуры моделирования можно проанализировать полученные результаты.

Графический дисплей «wm, M=f(t)» отображает переходной процесс скорости и момента во времени, представленный на рисунке 4.20.

Из рисунка 4.20 видно, что при прямом пуске вначале наблюдаются значительные колебания момента и скорости. При приложении момента нагрузки, аналогично наблюдаются колебания момента и скорости, но менее значительные, чем при пуске, также видно, что при приложении момента нагрузки наблюдается уменьшение скорости.

Получив механическую характеристику (рисунок 4.21), можно увидеть, что при пуске она получается динамической и на ней также как и на рисунке 4.20 чётко виден колебательный процесс скорости и момента в виде концентрических окружностей с уменьшающимся радиусом по мере затухания колебаний скорости и момента. Аналогичная картина наблюдается при ступенчатом набросе нагрузки. Данные характеристики представлены на рисунке 4.21 и 4.22.

Рисунок 4.20 - Переходной процесс скорости и момента функции времени при пуске на холостом ходу и набросе нагрузки

Рисунок 4.21 - Динамическая механическая характеристика при пуске на холостом ходу и набросе нагрузки, построенная блоком «XY»

Рисунок 4.22 - Динамическая механическая характеристика при пуске на холостом ходу (синяя) и набросе нагрузки (красная), построенная блоком «Построение механической характеристики»

При нагружении двигателя с малой скоростью увеличения нагрузки получается характеристика, близкая к статической естественной механической характеристике. Она представлена на рисунке 4.23 совместно с динамической механической характеристикой.

Рисунок 4.23 - Пусковая динамическая характеристика (синяя) на холостом ходу и естественная механическая характеристика (красная)

5. Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины

Иную возможность анализа АД представляет специализированный раздел по электротехнике Toolbox Power System Block. В его библиотеке имеются блоки виртуальных электрических машин и АД с короткозамкнутым и фазным ротором в том числе.

Схема виртуальной лабораторной работы для исследования двигателя с короткозамкнутым ротором представлена на рисунке 5.1.

Рисунок 5.1 - Схема модели лабораторной работы для исследования асинхронного двигателя с короткозамкнутым ротором

5.1 Поблочное описание схемы

Основными блоками схемы являются: источник трёхфазного напряжения (Source), трёхфазный измеритель напряжения и тока (Three-Phase V-I Measurement), трёхфазный асинхронный двигатель с короткозамкнутым ротором (AD), задатчик нагрузки (М2 и б*М2), измеритель (вывод) скорости и электромагнитного момента на валу (wm, Te).

Дополнительные блоки: переключатели (Klych и K_Z), управляемый ключ (Switch), машинное время (Clock), осциллограф (XY), шинный формирователь (Mux), цифровые и графические дисплеи («wm, M, I1»; «P2, P1, I1, S, KPD, Cos.f»), «Рабочие характеристики», блок «U1. I1. P1».

Блоки программ: «Ввод данных», «Построение механической характеристики» и «Построение рабочих характеристик».

Источник трёхфазного напряжения Source (рисунок 5.2) имитирует работу трёхфазного источника синусоидального напряжения с заземлённой нейтралью N и выходами фаз А, В и С.

Настраиваемыми параметрами являются:

Phase to ground peak voltage (V) - амплитуда фазного напряжения,

Phase angle of phase A (Degrees) - начальный фазовый угол фазы А,

Frequency (Hz) - частота напряжения,

Source resistance (Ohms), inductance (H) - сопротивление и индуктивность источника.

а) б)

Рисунок 5.2 - Блок Source: а) внешний вид, б) окно параметров

Трёхфазный измеритель напряжения и тока Three-Phase V-I Measurement (рисунок 5.3) измеряет трёх фазное мгновенное напряжение и ток, потребляемые нагрузкой от источника.

Настраиваемыми параметрами являются:

Voltage measurement: phase-to-ground - измерение фазного напряжения от фазы до земли,

Use a label - использовать ярлык (ссылку) вместо выхода,

In pu - система относительных единиц,

Current measurement: yes - подтверждение измерения тока.

а) б)

Рисунок 5.3 - Блок Three-Phase V-I Measurement: а) внешний вид, б) параметры

Трёхфазный асинхронный двигатель с короткозамкнутым ротором AD (рисунок 5.4) имитирует работу асинхронного двигателя с короткозамкнутым (или фазным) ротором. Составлен на основе математических уравнений.

Настраиваемыми параметрами являются:

Nom. power Pn - номинальная мощность,

Volt Vn - номинальное линейное напряжение,

Frequency fn - номинальная частота,

Stator (Rotor) R, L - активное сопротивление и индуктивность статора и приведённого ротора,

Mutual inductance Lm - взаимная индуктивность,

Inertia J - момент инерции на валу,

Friction factor F - коэффициент трения,

Pairs of poles - число пар полюсов р,

Initial conditions - начальные данные:

скольжение, угол поворота ротора, ток трёх фаз статора, сдвиг фаз А, В, С.

а) б)

Рисунок 5.4 - Блок AD: а) внешний вид, б) параметры

Задатчик нагрузки М2 (рисунок 4.12) и задатчик нагрузки б*М2 (рисунок 4.13). Описание этих блоков рассмотрено в разделе 4.

Машинное время Clock (рисунок 5.5) отображает время моделирования.

Настраиваемыми параметрами являются:

Display time - отображения времени в блоке,

Decimation - позволяет задать периодичность (через сколько дискретов времени) отображения значений времени.

а) б)

Рисунок 5.5 - Блок Clock: а) внешний вид, б) параметры

Измеритель (вывод) «wm, Te» (рисунок 5.6) выводит для отображения различные параметры асинхронной машины. Имеет возможность выбрать необходимые для вывода параметры из имеющихся. В данной схеме выводятся значения угловой скорости и электромагнитного момента на валу.

Настраиваемыми параметрами являются:

Machine type - тип машины,

Rotor currents [ira irb irc] - трёхфазный ток ротора,

Rotor currents [ir_q ir_d] - ток ротора в осях q, d,

Rotor fluxes [phir_q phir_d] - поток в роторе в осях q, d,

Rotor voltages [vr_q vr_d]- напряжение в роторе в осях q, d,

Stator currents [ia ib ic] - трёхфазный ток статора,

Stator currents [is_q is_d] - ток статора в осях q, d,

Stator fluxes [phis_q phis_d] - поток в статоре в осях q, d,

Stator voltages [vs_q vs_d] - напряжение в статоре в осях q, d,

Rotor speed [wm] - скорость вращения ротора

Electromagnetic torque [Te] - электромагнитный момент,

Rotor angle [thetam] - угол поворота ротора.

а) б)

Рисунок 5.6 - Блок «wm, Te»: а) внешний вид, б) параметры

Переключатели Klych, K_Z и Dinamika (рисунок 5.7) служат для переключения входного сигнала. Klych для переключения типа момента нагрузки на валу, K_Z для переключения на схему снятия пускового момента, а Dinamika для снятия динамической механической характеристики. Переключение происходит при двойном нажатии правой кнопкой мыши на блоке. Настраиваемых параметров не имеет.

Рисунок 5.7 - Блоки Klych, K_Z и Dinamika

Управляемый ключ Switch (рисунок 5.8) служит для управляемого переключения входного сигнала. Имеет три входа, 1 и 3 - информационные, 2 - управляющий. Если величина управляющего сигнала не меньше некоторого ограничения, заданного в поле Threshold, то на выход подаётся сигнал с первого входа, в противном случае - сигнал с третьего входа. В схеме на первый вход подаётся вектор значений скорости и момента, также и на третий вход подаётся вектор скорости и момента при условии, что ключ Dinamika в верхнем положении, а на второй вход время.

Настраиваемыми параметрами являются:

Criteria for passing first input - критерий для прохождения сигнала с первого входа,

Threshold - порог переключения входа.

а) б)

Рисунок 5.8 - Блок Switch: а) внешний вид, б) параметры

Осциллограф XY (рисунок 4.18). Описание этого блока рассмотрено в разделе 4.

Шинный формирователь Mux (рисунок 4.16). Описание этого блока рассмотрено в разделе 4.

Графический дисплей «wm, M, I1=f(t)» (рисунок 4.15). Описание этого блока рассмотрено в разделе 4. Цифровые дисплеи «wm, M», «P2, P1, I1, S, KPD, Cos.f» (рисунок 4.17). Описание этих блоков рассмотрено в разделе 4.

Блок «Рабочие характеристики» (рисунок 5.9) - это не стандартный блок, он разработан при создании данной виртуальной лабораторной работы. Внутри него реализуется расчёт рабочих характеристик по следующим формулам:

,

,

,

,

к входной мощности добавляются потери в стали рсm1, так как в модели они не учитываются.

Настраиваемых параметров не имеет.

Рисунок 5.9 - Блок «Рабочие характеристики»

Блок «U1. I1. P1» (рисунок 5.10) также является не стандартным. В нём реализуется преобразование входных трёхфазных напряжений и токов в действующие значения, а также вычисление активной мощности.

Настраиваемых параметров не имеет.

Рисунок 5.10 - Блок «U1. I1. P1»

Блоки программ: «Ввод данных», «Построение механической характеристики» и «Построение рабочих характеристик» (рисунок 5.11) - являются ссылками на специально написанные M-программы, в которых реализуется ввод данных с помощью меню (рисунок 5.12) и графическое построение (рисунок 5.13) механической и рабочих характеристик.

Рисунок 5.11 - Блоки программ

При открытии блока «Ввод данных», в котором реализована подпрограмма “Menu”, на экран выводится меню, в котором можно изменить параметры моделирования. Это является очень удобным элементом, так как ненужно перенастраивать саму модель и её блоки.

В меню ввода данных для модели:

время переходного процесса - это время необходимое для разгона двигателя до холостого хода при исчезновении колебаний момента и скорости,

время моделирования - время необходимое для выполнения одной процедуры моделирования,

амплитуда фазного напряжения - это номинальное значение U умноженное на ,

частота - частота питающего напряжения.

Рисунок 5.12 - Меню ввода данных

Рисунок 5.13 - Графическое окно для построения характеристик

5.2 Результаты моделирования

Графический дисплей «wm, M=f(t)» отображает переходной процесс скорости и момента во времени, представленный на рисунке 5.14.

Рисунок 5.14 - Переходной процесс скорости и момента функции времени при пуске на холостом ходу и набросе нагрузки

Из рисунке 5.14 видно, что при прямом пуске вначале наблюдаются значительные колебания момента и скорости. При приложении момента нагрузки, аналогично наблюдаются колебания момента и скорости, но менее значительные, чем при пуске, также видно, что при приложении момента нагрузки наблюдается уменьшение скорости.

Получив механическую характеристику, можно увидеть, что при пуске она получается динамической и на ней также как и на рисунке 5.14 чётко виден колебательный процесс скорости и момента в виде концентрических окружностей с уменьшающимся радиусом по мере затухания колебаний скорости и момента. Аналогичная картина наблюдается при мгновенном набросе нагрузки. Данные характеристики представлены на рисунках 5.15 и 5.16.

Рисунок 5.15 - Динамическая механическая характеристика при пуске на холостом ходу и набросе нагрузки, построенная блоком «XY»

Рисунок 5.16 - Динамическая механическая характеристика при пуске на холостом ходу (синяя) и набросе нагрузки (красная), построенная блоком «Построение механической характеристики»

При нагружении двигателя с малой скоростью увеличения нагрузки получается характеристика, близкая к статической естественной механической характеристике. Она представлена на рисунке 5.17 совместно с динамической механической характеристикой.

Рисунок 5.17 - Пусковая динамическая характеристика (синяя) на холостом ходу и естественная механическая характеристика (красная)

Рабочие характеристики при нагружении двигателя от скорости холостого хода до нагрузки 130% от номинальной представлены на рисунке 5.18.

Рисунок 5.18 - Рабочие характеристики

5.3 Сравнение моделей АД в неподвижной системе координат и модели на базе виртуальной асинхронной машины

По результатам моделирования полученных в разделах 4 и 5 видно, что переходные процессы скорости и момента при пуске и ступенчатом набросе нагрузке, динамические механические характеристики, а также естественные механические характеристики абсолютно идентичные. Это доказывает, что блок виртуальной асинхронной машины AD в своей структуре имеет математические уравнения обобщённой асинхронной машины.

6. Разработка методики выполнения лабораторной работы

6.1 Программа работы

6.1.1 Ознакомление с программой MatLab

6.1.2 Объект исследования

6.1.3 Исследование АД с короткозамкнутым ротором

6.1.3.1 Ознакомление со схемой лабораторной работы

6.1.3.2 Ввод данных в модель

6.1.3.3 Определение пускового момента и тока при коротком замыкании

6.1.3.4 Снятие динамической характеристики при параметрах короткого замыкания

6.1.3.5 Снятие естественной механической характеристики

6.1.3.6 Построение естественных рабочих характеристик

6.1.3.7 Снятие искусственных механических характеристик при

- разных значениях U1

- разных значениях f1

- разных значениях f1 и

6.1.4 Исследование АД с фазным ротором

6.1.4.1 Ознакомление со схемой лабораторной работы

6.1.4.2 Ввод данных в модель

6.1.4.3 Пуск при заданном пусковом сопротивлении

6.1.4.4 Снятие естественной механической характеристики

6.1.4.5 Построение естественных рабочих характеристик

6.1.4.6 Снятие искусственных механических характеристик при

- разных значениях R2доб

- разных значениях U1

- разных значениях R2доб и U1

6.2 Ознакомление с программой MatLab и пакетом Simulink

После вызова программы MATLAB 6.5 на экране появляется окно MATLAB, представленное на рисунок 6.1. В нём могут отображаться несколько окон, главными являются Окно команд, Текущий каталог и Рабочая область. По необходимости через меню Вид, которое располагается на передней панели, можно настроить окна по собственному желанию.

Рисунок 6.1 - Окно MATLAB

В командном окне появляются символы команд, которые набираются пользователем с клавиатуры, отображаются результаты выполнения этих команд, текст исполняемой программы и информация об ошибках выполнения программы, распознанных системой. В окне текущего каталога отображается содержимое выбранной для работы папки: различные модели, м-программы, файлы данных, фигуры. В окне рабочей области отображаются временные данные текущего сеанса работы: параметры, вводимые в схему, результаты вычислений и измерений, время модели, выходные данные.

Признаком того, что программа MATLAB готова к восприятию и выполнению очередной команды, является наличие в последней строке командного окна знака приглашения (»), справа от которого расположен мигающий курсор.

В верхней части окна (под заголовком) находится строка меню. Для того чтобы открыть какое-либо меню, следует установить на нём указатель мыши и нажать её левую кнопку. Наиболее необходимые для работы команды, такие как: открыть имеющийся или создать новый файл, сохранить или распечатать и т.д. расположены в меню Файл и представлены на рисунке 6.2.

Рисунок 6.2 - Команды меню Файл

Для удобства работы, на переднюю панель вынесены кнопки первой необходимости:

- с помощью кнопки (…) выбирается текущий для работы каталог, рядом отображается путь к нему.

- кнопка с изображением чистого листа служит для создания нового файла программы, а кнопка с изображением папки для открытия уже имеющегося файла.

- кнопка с изображением блоков служит для запуска программного пакета Simulink, при её нажатии появляется окно библиотеки Simulink представленное на рисунке 4.1. Из этого окна можно создать новый файл модели (рисунок 4.2) и из имеющихся в библиотеке блоков собрать необходимую модель.

Описание пакета Simulink рассмотрено в разделе 4.

6.3 Объект исследования

В лабораторной работе исследуются асинхронные двигатели серии 4А с исполнением по степени защиты IP 44 для АД с короткозамкнутым ротором и с исполнением IP 23 для АД с фазным ротором. Паспортные данные, этих двигателей приведены в таблицах П1-П2 и П4-П5:

- номинальная выходная мощность Р,

- номинальный коэффициент полезного действия зн,

- номинальный коэффициент мощности статорной обмотки сosцн,

- момент инерции на валу машины J кгм2,

- номинальный электромагнитный момент Мн,

- кратность пускового момента Мп / Мн,

- кратность максимального момента Мк / Мн,

- кратность пускового тока I1п / I,

- критическое скольжение ротора Sk= 25 %,

- номинальное скольжение ротора Sн= 3.6 %.

- параметры Г-образной схемы замещения (рисунок 4.3) в относительных единицах:

в номинальном режиме:

- активное и реактивное сопротивления R`1*, X`1*,

- активное и реактивное сопротивления R``2*, X``2*,

- реактивное сопротивление взаимоиндукции Xm*,

в режиме короткого замыкания:

- активное и реактивное сопротивления R``2*кз, X``2*.

В таблицах П3 и П6 приведены значения величин, необходимых для моделирования и рассчитаны по данным таблиц П1-П2 и П4-П5:

- добавочное сопротивление R2 доб,

- потери в стали Pst,

- коэффициент трения Ftr,

в номинальном режиме:

- активное сопротивление и индуктивность рассеяния фазы статора Rs, Ls,

- активное сопротивление и индуктивность рассеяния фазы ротора R`r, L`r,

- индуктивность взаимоиндукции Lm,

в режиме короткого замыкания:

- активное сопротивление и индуктивность рассеяния фазы ротора R`r кз, L`r кз,

6.4 Исследование АД с короткозамкнутым ротором

Описание принципа действия, устройства, способов пуска и регулирования скорости приведено в разделе 2.

6.4.1 Ознакомление со схемой лабораторной работы

Для выбора схемы необходимо в окне MATLAB (рисунок 6.1) выбрать в качестве текущего каталога папку, в которой находится файл со схемой асинхронного двигателя с короткозамкнутым ротором: «C:\MATLAB6p5\work\AD\AKZ\AKZ.mdl». На экране появится схема модели лабораторной работы для исследования асинхронного двигателя с короткозамкнутым ротором, представленная на рисунке 6.3.

Основными блоками схемы являются: источник трёхфазного напряжения (Source), трёхфазный измеритель напряжения и тока (Three-Phase V-I Measurement), трёхфазный асинхронный двигатель с короткозамкнутым ротором (AD), задатчик нагрузки (М2 или б*М2), измеритель (вывод) скорости и электромагнитного момента на валу (wm, Te).

Дополнительные блоки: переключатели (Klych и K_Z), управляемый ключ (Switch), машинное время (Clock), осциллограф (XY), шинный формирователь (Mux), цифровые и графические дисплеи («n, M»; «P2, P1, I1, S, KPD, Cos.f»; «n, M, I1»), рабочие характеристики, блок «U1. I1. P1», усилитель «-К-».

Блоки программ: «Ввод данных», «Построение механической характеристики» и «Построение рабочих характеристик».

Рисунок 6.3 - Схема модели лабораторной работы для исследования асинхронного двигателя с короткозамкнутым ротором

6.4.2 Ввод данных в модель

Данные исследуемого двигателя для своего варианта (таблицы П1 и П3) необходимо ввести в модель, для этого необходимо дважды щёлкнуть левой кнопкой мыши по блоку асинхронной машины AD и в открывшемся окне ввести данные двигателя (рисунок 5.4). В качестве примера использован двигатель 4А112М4У3.

6.4.3 Определение пускового момента и тока при коротком замыкании

Опыт короткого замыкания асинхронного двигателя с короткозамкнутым ротором соответствует питанию обмотки статора при заторможенном роторе. Опыт проводится с целью определения пускового момента и пускового тока [4].

Для проведения опыта необходимо открыть блок AD и изменить параметры Rotor [Rr'(ohm) Llr'(H)] на соответствующие параметры ротора при коротком замыкании R`2 кз и L`r кз для заданного варианта, а также переключить блок K_Z (рисунок 5.7) в нижнее положение щёлкнув на нём дважды левой кнопкой мыши. Это приведёт к переключению на схему, когда электромагнитный момент подаётся на вход М2. В этом случае щ=0 и получается режим короткого замыкания.

Запустить систему на моделирование нажатием на кнопку и в установившемся режиме (когда показания блоков перестанут изменяться) остановить моделирование нажатием на кнопку , записать пусковой момент Мп и пусковой ток I1п с цифровых дисплеев «P2, P1, I1, S, KPD, Cos.f» и

«n, M». Определить кратность пускового тока и пускового момента . Сравнить полученные значения с паспортными.

6.4.4 Снятие динамической характеристики при параметрах короткого замыкания

Опыт проводится с параметрами двигателя из пункта 6.4.3. Блок K_Z переключить в верхнее положение, это приведёт к переключению схемы в режим снятия характеристик, а также переключить блок Klych и Dinamika (рисунок 5.7) в верхнее положение и открыв блок М2 (рисунок 4.12), установить в нём значение равное 0.

Запустить систему на моделирование, двигатель начнёт разгоняться, и скорость дойдёт до холостого хода, в установившемся режиме остановить модель. Открыть блок «Построение механической характеристики» при этом вызовется подпрограмма построения характеристики в графическом окне Figure и построит динамическую механическую характеристику пуска двигателя (рисунок 6.4). Если необходимо, вызвать редактор свойств осей через меню Edit>Axes properties (рисунок 6.5) и изменить пределы осей X и Y до удобных. Через меню File>Export сохранить характеристику как рисунок, предварительно создав для этого на диске собственную папку. Окно с характеристикой закрыть. В блоке «n, M, I1=f(t)» просмотреть переходные процессы скорости, момента и тока статора во времени (рисунок 6.6). Нажатие сочетания клавиш «Alt + Print Screen» на клавиатуре приведёт к копированию активного окна в буфер, т.е. окна с переходными процессами, откуда их можно вставить в графическую программу Paint или в Word. Сохранить рисунок с переходными процессами в ранее созданной папке для создания отчёта.

Рисунок 6.4 - Динамическая механическая характеристика двигателя при пуске без нагрузки с параметрами короткого замыкания

Снятие естественной механической характеристики

Механической характеристикой называют зависимость частоты вращения ротора от вращающего электромагнитного момента.

Механическая характеристика называется естественной, если она соответствует номинальному напряжению, номинальной частоте и отсутствию внешних сопротивлений в цепях обмоток [6].

По методике пункта 6.4.2 ввести в блок AD параметры номинального режима. Блок Klych и Dinamika переключить в нижнее положение. В блоке б*М2 (рисунок 4.13) задать скорость нарастания нагрузки Slope равной 0,15*Мн. Это значение обуславливается тем, что при большой скорости нарастания нагрузки механическая характеристика становится динамической и появляется отклонение от естественной характеристики, что наглядно видно из рисунка 6.7, а при очень маленькой скорости нарастания нагрузки процесс вычисления занимает много времени.

Рисунок 6.7 - Механические характеристики при различных значениях б

Запустить систему на моделирование, двигатель начнёт разгоняться и скорость дойдёт до холостого хода, по завершении переходного процесса блок б*М2 начнёт нагружать двигатель и в блоке XY (рисунок 4.18) будет отображаться статическая механическая характеристика. При нагрузке больше критической двигатель остановится и прейдёт в режим противовключения. При отрицательной частоте вращения приблизительно равной 0.3Мn1 об/мин остановить модель. Открыв блок «Построение механической характеристики» вызовется подпрограмма построения механической характеристики в графическом окне Figure, окно с характеристикой не закрывать.

Повторить опыт, предварительно изменив в блоке б*М2 скорость нарастания нагрузки в поле Slope на отрицательное значение. При отрицательной нагрузке двигатель прейдёт в генераторный режим с отдачей электроэнергии в сеть. При частоте вращения приблизительно равной 2Мn1 об/мин остановить модель. Повторно открыть блок «Построение механической характеристики», при этом снятая новая характеристика построится вместе с уже имеющейся (рисунок 6.8).

Рисунок 6.8 - Механическая характеристика АД во всех режимах работы

Вызвать редактор свойств осей и изменить пределы осей X и Y до удобных. Сохранить характеристику на диске как рисунок и закрыть окно.

Рисунок 6.9 - Механическая характеристика после редактирования осей

Построение естественных рабочих характеристик

При изменении нагрузки двигателя изменяются токи в обмотках, мощности, частота вращения и другие эксплуатационные показатели. Под рабочими характеристиками поминают зависимость подводимой мощности, тока, скольжения, КПД и коэффициента мощности от отдаваемой мощности на валу при неизменных значениях напряжения, частоты тока питающей сети и внешних сопротивлений в цепях обмоток [6].

Рабочие характеристики снимают при увеличении нагрузки от холостого хода до 1.3 номинальной. Опыт производится аналогично пункту 6.4.5 при параметрах номинального режима. Скорость нарастания нагрузки в блоке б*М2 должна быть 0.15*Мн.

Запустить систему на моделирование, при нагрузке более 1.3 от номинальной (показания контролировать на цифровом дисплее «n, M») остановить модель. Открыв блок «Построение рабочих характеристик» получить снятые характеристики (рисунок 6.10) и сохранить их на диске как рисунок.

Рисунок 6.10 - Рабочие характеристики

Повторить опыт, сняв одну точку при нагрузке М2=0.5ММн. Для этого необходимо переключить блок Klych в верхнее положение и в блоке М2 установить значение равное 0.

Запустить систему на моделирование, после разгона двигателя до холостого хода открыть блок М2 и установить в нём заданную нагрузку. В установившемся режиме снять показания: n, M2, P1, I1 и по этим данным рассчитать рабочие характеристики при заданной нагрузке по формулам:

,

,

,

,

к входной мощности добавляется мощность потерь в стали рсm1, так как в модели она не учитывается.

Снятие искусственных механических характеристик

Характеристики, не соответствующие номинальным значениям напряжения и частоты тока питающей сети, а также при наличии сопротивлений в цепях обмоток называют искусственными [6].

Во всех опытах ключ Dinamika в нижнем положении.

Снять естественную и искусственные характеристики при трёх значениях U1 и построить их в одних осях. Естественная характеристика снимается при U1= U. Для снятия искусственных характеристик необходимо задать напряжение U1< U, открыв блок «Ввод данных», при этом на экране появится меню (рисунок 5.12). Нажав кнопку «Амплитуда фазного напряжения (V, B)» в окне команд MATLAB появится приглашение ввести новое значение напряжения, следует ввести его и нажать «Enter» (рисунок 6.11), по завершении ввода данных нажать «Выход».

Рисунок 6.11 - Приглашение ввести новое значение напряжения в окне команд MATLAB

Опыт проводить по методике пункта 6.4.5 при значениях напряжения 0.5U , 0.75U и U, снятие характеристики в генераторном режиме не производить. Результаты представлены на рисунке 6.12.

Рисунок 6.12 - Механические характеристики при трёх значениях U1

6.4.7.2 Снять естественную и искусственные характеристики при трёх значениях f1 и построить их в одних осях. Для снятия характеристик необходимо задать через меню ввода данных частоту равную 0.7f, f и 1.3f. Методика снятия характеристик аналогична пункту 6.4.7.1. Результаты представлены на рисунке 6.13.

Рисунок 6.13 - Механические характеристики при трёх значениях f1

Снять естественную и искусственные характеристики при трёх значениях f1 и , построить их в одних осях. Для снятия характеристик необходимо задать через меню ввода данных значения частот тока 0.5f при напряжении 0.5U, 0.75f при напряжении 0.75U и f при напряжении U так, чтобы сохранялось условие . Методика снятия характеристик аналогична пункту 6.4.7.1. Результаты представлены на рисунке 6.14.

Рисунок 6.14 - Механические характеристики при трёх значениях частоты f1 и

6.5 Изучение двигателя с фазным ротором

Описание принципа действия, устройства, способов пуска и регулирования скорости приведено в разделе 2.

Ознакомление со схемой лабораторной работы

Для выбора схемы необходимо в окне MATLAB (рисунок 6.1) выбрать в качестве текущего каталога папку, в которой находится файл со схемой асинхронного двигателя с фазным ротором: «C:\MATLAB6p5\work\AD\AFR\AFR.mdl». На экране появится схема модели лабораторной работы для исследования асинхронного двигателя с фазным ротором, представленная на рисунке 6.15.

Рисунок 6.15 - Схема модели лабораторной работы для исследования двигателя с фазным ротором

Схема аналогична схеме двигателя с короткозамкнутым ротором, отличием является блок AD, в настройках которого указан фазный ротор и наличие блоков добавочного сопротивления R2_dobav в каждой фазе ротора.

Ввод данных в модель

Данные исследуемого двигателя для своего варианта (таблицы П4 и П6) необходимо ввести в модель, для этого необходимо дважды щёлкнуть левой кнопкой мыши по блоку асинхронной машины AD и в открывшемся окне ввести данные двигателя. В качестве примера использован двигатель 4АНК160М4У3. Пуск при заданном пусковом сопротивлении

Воспользовавшись блоком «Ввод данных», в меню установить добавочное пусковое сопротивление для своего варианта (таблица П6). Это сопротивление обеспечивает пуск двигателя при значении пускового момента, равного 0.85 от критического.

Блок Klych и Dinamika установить в верхнее положение, открыть блок М2 и установить в нём значение равное 0.

Запустить систему на моделирование, двигатель начнёт разгоняться, и скорость дойдёт до холостого хода, в установившемся режиме остановить модель. Открыть блок «Построение механической характеристики», в графическом окне Figure построится динамическая механическая характеристика пуска двигателя (рисунок 6.16). Если необходимо, вызвать редактор свойств осей и изменить пределы осей X и Y до удобных. Сохранить характеристику как рисунок в предварительно созданной папке на диске. Окно с характеристикой закрыть. Открыв блок «n, M, I1=f(t)» просмотреть переходные процессы скорости, момента и тока статора во времени (рисунок 6.17). Скопировать в буфер активное окно, т.е. окно с переходными процессами, откуда их можно вставить в графическую программу Paint или в Word. Сохранить рисунок с переходными процессами в ранее созданной папке для создания отчёта.

Рисунок 6.16 - Динамическая механическая характеристика двигателя при пуске без нагрузки с пусковым сопротивлением

Рисунок 6.17 - Переходные процессы скорости, момента и тока статора при пуске без нагрузки с пусковым сопротивлением

Снятие естественной механической характеристики

Воспользовавшись блоком меню «Ввод данных», установить добавочное сопротивление равное 0. Блок Klych и Dinamika переключить в нижнее положение. В блоке б*М2 задать скорость нарастания нагрузки в графе Slope равной 0,15*Мн. Запустить систему на моделирование, выполнение проводить аналогично пункту 6.4.5.

Рисунок 6.18 - Механическая характеристика АД во всех режимах работы

Построение естественных рабочих характеристик

Рабочие характеристики снимают при увеличении нагрузки от холостого хода до 1.3 номинальной.

Опыт производится аналогично пункту 6.5.4. Запустить систему на моделирование, при нагрузке более 1.3 от номинальной остановить модель. Открыв блок «Построение рабочих характеристик», получить снятые характеристики (рисунок 6.19) и сохранить их на диск как рисунок.

Повторить опыт, сняв одну точку при нагрузке М2=0.5ММн аналогично пункту 6.4.6.

Рисунок 6.19 - Рабочие характеристики

Снятие искусственных механических характеристик

Во всех опытах ключ Dinamika в нижнем положении.

При разном значении U1

Снять естественную и искусственные характеристики при трёх значениях U1 и построить их в одних осях. Естественная характеристика снимается при U1= U. Для снятия искусственных характеристик необходимо задать напряжение U1< U, открыв блок «Ввод данных», при этом на экране появится меню (рисунок 5.12). Нажав кнопку «Амплитуда фазного напряжения (V, B)» в окне команд MATLAB появится приглашение ввести новое значение напряжения, следует ввести его и нажать «Enter» (рисунок 6.11), по завершении ввода данных нажать «Выход».

Опыт проводить по методике пункта 6.4.5 при значениях напряжения 0.5U , 0.75U и U, снятие характеристики в генераторном режиме не производить. Результаты представлены на рисунке 6.20.

Рисунок 6.20 - Механические характеристики при трёх значениях U1

Снять естественную и искусственные характеристики при трёх значениях добавочного сопротивления в цепи ротора и построить их в одних осях. Для снятия характеристик необходимо ввести через меню ввода данных добавочное сопротивление равное 0, R2пуск и 0.5 R2пуск. Методика снятия характеристик аналогична пункту 6.5.6.1. Результаты представлены на рисунке 6.21.

Рисунок 6.21 - Механические характеристики при трёх значениях R2доб

Снять естественную и искусственные характеристики при трёх значениях U1 и R2доб, и построить их в одних осях. Для снятия характеристик необходимо задать через меню ввода данных R2доб = 0 при U1= U, R2доб = R2пуск при напряжении 0.8U и R2доб = 0.5R2пуск при напряжении 0.9U. Методика снятия аналогична пункту 6.5.6.1. Результаты представлены на рисунке 6.22.

Рисунок 6.22 - Механические характеристики при трёх значениях R2доб и U

7. Разработка программного обеспечения виртуальных лабораторных работ

В ходе разработки виртуальных лабораторных работ возникла необходимость в дополнительных программах. Эти программы написаны на встроенном в MATLAB языке программирования, который носит название

М-язык. Программы написаны в специальном редакторе М-программ, окно которого изображёно на рисунке 7.1.

Рисунок 7.1 - Окно редактора М-программ

Как уже было сказано в разделе 5, в схеме имеются специальные блоки «Ввод данных», «Построение механической характеристики» и «Построение рабочих характеристик», при открытии которых вызываются необходимые программы. Назначение этих блоков понятно из их названия и также описано в пункте 5.

Блок «Ввод данных» использует программу «AKZ_menu.m» или «AFR_menu.m», в зависимости от исследуемого двигателя с короткозамкнутым или фазным ротором.

Данная программа позволяет ввести в блоки схемы необходимые данные, и основана на условии выбора одной из предложенных позиций. При выборе, какой либо позиции предлагается ввести значение необходимой величины, которое впоследствии вводится в параметры блока в схеме, тем самым позволяет избежать многократного процесса изменения значения это величины, если она используется несколькими блоками.

Блок «Построение механической характеристики» использует программу «n_f_M.m». Данная программа отвечает за построение механической характеристики. Она считывает данные вектора скорости и момента, формирует графическое окно Figure, название характеристики, оси и подписи осей и в полученном окне строит механическую характеристику.

Блок «Построение рабочих характеристик» использует программу «Rabochiе.m». Программа аналогична выше описанной, считывая данные входной и выходной мощности, тока статора, скольжения, КПД и коэффициента мощности она выполняет построение рабочих характеристик в графическом окне Figure..

Для упрощения расчёта данных для двигателя написана следующая программа «Raschet_Dvigok.m». Эта программа реализует переход от параметров Г-образной схемы замещения к Т-образной и рассчитывает параметры необходимые для моделирования.

Код программ приведён в приложении.

8. Экономическая часть

8.1 Исходные данные

количество форм переменной входной информации -два;

сложность алгоритма - три;

количество форм выходной информации - два;

степень новизны комплекса задач - В;

сложность алгоритма - три;

объём входной информации - до 50000 документострок;

сложность организации контроля входной информации - 11;

сложность организации контроля выходной информации - 22;

использование стандартных типов проектов и моделей - 25 %;

проект разрабатывается с учётом обработки информации в режиме работы в реальном времени.

8.2 Определение затрат времени на разработку (ПМО) по стадиям проектирования

Расчёт произведён по литературе [8] и данные сведены в таблице 8.1.

Таблица 8.1 - Определение затрат времени на разработку программного обеспечения по стадиям разработки проекта

Стадия

Разработки

Проекта

Затраты времени

Поправочный коэффициент

Затраты времени с учётом ПК, дней

Значение,

дней

Осно-вание

Значение

Основание

1 Разработка технического задания

Затраты времени

разработчика постановки задачи

Затраты времени

разработчика ПО

29,00

29,00

Таблица 4.1

норма 13Г

Таблица 4.1

норма 13Г

0,65

0,35

Примечание к таблице 4.1

Примечание к таблице 4.1

18,85

10,15

2 Разработка программы

Затраты времени

разработчика постановки задачи

Затраты времени

разработчика ПО

44,00

44,00

Таблица 4.2

норма 13Г

Таблица 4.2

норма 13Г

0,7

0,3

Примечание к таблице 4.2

Примечание к таблице 4.2

30,8

13,2

3 Отладка программы

Затраты времени разработчика постановки задачи

14,00

Таблица 4.27

норма 3В

К1=0,832

К2=1

К3=1,26

Кобщ=1,05

п.1.7(таблица 1.1)

п.1.7(таблица 1.3)

п.1.9(таблица 1.5)

Кобщ1•К2•К3

14,7

Затраты времени

разработчика ПО

12,00

Таблица 4.28

норма 3В

К1=0,832

К2=1

К3=1,26

Кобщ=1,05

п.1.7(таблица 1.1)

п.1.7(таблица 1.3)

п.1.9(таблица 1.5)

Кобщ1•К2•К3

12,6

Продолжение таблицы 8.1

3 Разработка рабочего проекта

Затраты времени

разработчика постановки задачи

Затраты времени

разработчика ПО

8,00

42,00

Таблица 4.53

норма 3В

Таблица 4.54

норма 2В

К1=1

К2=1

К3=1,07

К4=1,32

К5=0,7

Кобщ=0,98

К1=1

К2=1

К3=1

К4=1,32

К5=0,7

Кобщ=0,98

п.1.7(таблица 1.2)


Подобные документы

  • Возможности, визуализация и графические средства MATLAB. Устройство асинхронных двигателей. Математические модели асинхронной машины. Пакет визуального программирования Simulink. Преобразование уравнений асинхронной машины в неподвижной системе координат.

    дипломная работа [2,1 M], добавлен 30.08.2010

  • Регулирование скорости вращения асинхронных двигателей. Разработка структурной и функциональной схемы двигателя. Рассмотрение возможности регулирования действующего значения напряжения нагрузки в цепи переменного тока с помощью тиристорного регулятора.

    курсовая работа [43,3 K], добавлен 14.11.2010

  • Обзор и сравнительный анализ современных математических пакетов. Вычислительные и графические возможности системы MATLAB, а также средства программирования в среде MATLAB. Основные возможности решения задач оптимизации в табличном процессоре MS Excel.

    дипломная работа [6,6 M], добавлен 04.09.2014

  • Лазерные средства отображения информации. Особенности сопряжения имитационной модели Matlab-Simulink и программное обеспечение визуализации. Возможности средств разработки виртуальных миров, использующих VRML, для визуализации моделирования системы.

    курсовая работа [1,6 M], добавлен 01.12.2014

  • Общая характеристика и свойства системы Matlab - пакета прикладных программ для решения задач технических вычислений. Разработка математической модели в данной среде, программирование функций для задающего воздействия. Проектирование GUI-интерфейса.

    курсовая работа [1023,2 K], добавлен 23.05.2013

  • Обоснование необходимости разработки данных лабораторных работ. Основные средства измерения затухания методами светопропускания. Методы измерения оптической мощности. Разработка оболочки пакета программ. Оценка эффективности разработанных интерфейсов.

    дипломная работа [3,8 M], добавлен 20.10.2013

  • Разработка программы, включающей все программы предыдущих лабораторных работ, информацию об авторе. Группировка программ, используя оператор вывода switch и созданные функции из программ лабораторных работ. Анализ реакции программы на сообщение об ошибке.

    лабораторная работа [221,4 K], добавлен 23.11.2014

  • Сравнительный анализ Matlab и Mathcad при моделировании динамических систем. Подсистема Simulink пакета MATLAB. Расчёт базовой модели и проведения исследований. Описание математической модели. Векторные и матричные операторы. Нижние и верхние индексы.

    курсовая работа [338,5 K], добавлен 06.02.2014

  • Математическое моделирование. Изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования. Интегрирование функций MATLAB.

    курсовая работа [889,3 K], добавлен 27.09.2008

  • История появления интегрированных математических программных систем для научно-технических расчетов: Eureka, PC MatLAB, MathCAD, Maple, Mathematica. Интерфейс и возможности интегрированных систем для автоматизации математических расчетов класса MathCAD.

    курсовая работа [906,1 K], добавлен 04.06.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.