Распределенная система терминального управления техническим объектом

Основные методы и уровни дистанционного управления манипуляционными роботами. Разработка программного обеспечения системы терминального управления техническим объектом. Численное моделирование и анализ исполнительной системы робота манипулятора.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 09.06.2009
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Украины

Севастопольский национальный технический университет

Кафедра технической кибернетики

пояснительная

записка

к ________________дипломному проекту_________________________

(дипломному проекту (работе); выпускной работе бакалавра, магистра)

на тему: __«Распределенная система терминального управления техническим объектом»

студент группы Зиновьев Константин Игоревич_________

(фамилия, имя, отчество)

Направление подготовки (специальность) _____7.091401 - системы управления и автоматики

Руководитель Альчаков В.В., ассистент кафедры ТК

(фамилия, инициалы, должность)

Консультанты _______ ( _______ )

___________________ ( ________ )

___________________ ( _______ )

______ ________ (________ )

Зав. кафедрой __________ (Краснодубец Л.А.)

2005 г.

Министерство образования и науки Украины

Севастопольский национальный технический университет

«Согласованно»

руководитель дипломного проекта

________________ (В.В. Альчаков)

«Утверждаю»

заведующий кафедрой ТК

______________ (Л.А. Краснодубец)

Техническое задание

К дипломному проекту

«Распределенная система терминального управления техническим объектом»

Исполнитель:

ст. гр. А-61з

_________________ (Зиновьев К.И.)

« ___ » ________________ 2005 г.

Нормоконтролер:

_________________ (Шушляпин Е.А.)

« ___ » ________________ 2005 г.

2005

1 Основание для разработки

Основанием для разработки дипломного проекта на тему «Распределенная система терминального управления техническим объектом» служит приказ ректора № 124п от 30.03.2005.

2 Назначение разработки

Разрабатываемая система предназначена для построения компьютерной программы управления распределенной системой терминального управления сложными техническими объектами, функционирующими в условиях, опасных для жизни человека.

3 Технические требования

3.1 Требования к условиям эксплуатации

Разработанная система должна эксплуатироваться на IBM совместимых компьютерах в помещении, соответствующем санитарным нормам, а, именно: площадью на одного человека не менее 4,5 м2 и объёмом воздуха 15 м3. В помещении должны поддерживаться следующие метеорологические условия:

- в холодный период температура воздуха 20° - 30° С, относительная влажность 40 - 60%;

- в теплый период температура воздуха 22° - 25° С, относительная влажность 40 - 60%.

3.2 Требования к составу и параметрам технических средств

Для эффективной работы программы необходим персональный компьютер типа IBM PC со следующими параметрами:

- процессор семейства Intel Pentium (Celeron)/AMD с тактовой частотой не менее 500 КГц;

- оперативная память (128 Mb);

- видеопамять (32 Мб)

- операционная система Windows 98/NT/2000/Me/XP;

- накопитель на жестком магнитном диске (20 Гб);

- принтер (при необходимости вывода информации на печать);

- монитор SVGA;

- манипулятор типа «мышь».

3.3 Требования упаковке и хранению

Программное обеспечение распределенной системы терминального управления распространяется в виде отдельного исполнительного файла, для хранения которого на жестком диске персонального компьютера отводится отдельная директория. Для поставки заказчику, могут использоваться любые накопители (лазерные диски, flash-диски). Ввиду достаточно большого объема исполнительного файла не рекомендуется использовать гибкие магнитные диски.

3.4 Требования к программному обеспечению (ПО)

Требования, предъявляемые к разрабатываемому программному продукту (ПП) заключаются в следующем:

- ПП должен функционировать под управлением операционной системы семейства MS Windows.

- ПП должен обеспечивать возможность введение исходных данных и управляющих команд с помощью клавиатуры и мыши.

- ПП должен удовлетворять параметрам и техническим требованиям, предъявляемым к программным средствам, разработанным для работы на персональных ЭВМ типа IBM PC, под управлением операционной системы семейства Widows.

- ПП должен обеспечивать точность и стабильность вычислений.

- ПП должен обеспечивать вывод графических и табличных результатов работы на экран.

3.5 Требования к информативной и программной совместимости

Разрабатываемое программное обеспечение может быть реализовано на ЭВМ типа IBM PC, с установленным программным обеспечением:

- операционная система Windows;

- среда визуального программирования C++ Builder;

- пакет для инженерных расчетов Matlab.

3.6 Требования к технической документации

По окончании разработки должна быть представлена в одном экземпляре пояснительная записка к дипломному проекту, содержащая следующие разделы:

- техническое задание;

- пояснительная записка к техническому заданию;

- результаты проведенных исследований;

- описание программной модели;

- текст программной модели;

- расчёт экономической эффективности;

- рекомендации по охране окружающей среды;

- раздел гражданской обороны;

- графический материал, содержащий схему работы программы.

3.7 Порядок приёмки разработки

Результаты разработки проверяются руководителем проекта и нормоконтролером, качество выполнения работы оцениваются руководителем и рецензентом дипломного проекта.

Приёмка разработки осуществляется государственной экзаменационной комиссией по специальности «системы управления и автоматика», порядок работы которой определяется ректором СевНТУ.

4 Календарный план

Стадии разработки

Этапы разработки

Начало разработки

Конец разработки

1

Исследовательские работы

Анализ предметной области и обоснование необходимости разработки

01.02.2005

14.02.2005

2

Работа над проектом

Разработка структуры проекта, концепции и логической структуры

14.02.2005

07.03.2005

3

- “ -

Разработка методического обеспечения

07.03.2005

21.03.2005

4

- “ -

Разработка алгоритмического и программного обеспечения

21.03.2005

18.04.2005

5

- “ -

Тестирование и отладка ПО

18.04.2005

09.05.2005

6

- “ -

Разработка разделов проекта, связанных с экономическим обоснованием разработки, гражданской обороной и охраной труда

09.05.2005

23.05.2005

7

- “ -

Оформление и подготовка проекта к защите

23.05.2005

06.06.2005

Содержание

Введение

1. Постановка задачи

1.1 Функциональные требования к системе

1.2 Требования к программному обеспечению

1.3 Требования к ЭВМ

1.4 Требования к экспериментальной модели

2. Обзор методов дистанционного управления

2.1 Роль дистанционно управляемых систем

2.2 Основные методы и уровни дистанционного управления манипуляционными роботами

2.3 Командное управление манипуляторами и роботами на исполнительном уровне

2.4 Дистанционно-автоматическое управление манипуляционными роботами

3. Методы поиска терминального управления

3.1 Вариационная постановка задачи

3.2 Чисто терминальная постановка задачи

3.3 Синтез терминального управления, реализующего заданное движение системы

4. Концепция распределенной системы терминального управления робототехническим комплексом

4.1 Общая концепция РСТУ робототехническим комплексом

4.2 Концепция системы передачи управляющих команд

4.3 Концепция специализированного ПО РСТУ

5. Разработка экспериментальной модели РСТУ робототехнического комплекса

5.1 Назначение экспериментальной модели РСТУ

5.2 Построение экспериментальной модели

5.3 Численное моделирование и анализ исполнительной системы робота манипулятора

6. Разработка программного обеспечения системы терминального управления техническим объектом

6.1 Выбор среды разработки

6.2 Функциональные возможности ПО РСТУ

6.3 Требования к персональной ЭВМ

6.4 Руководство пользователя

6.5 Описание основных функций

7. Технико-экономическое обоснование дипломного проекта

7.1 Маркетинговые исследования проектируемого продукта

7.7.1 Потребительская ценность продукта

7.1.2 Портрет потребителя

7.1.3 Сегментация рынка

7.1.4 Оценка рыночной направленности

7.1.5 Конкурентоспособность программного продукта

7.2 Определение затрат на проектирование программного продукта

7.2.1 Расчёт трудоёмкости

7.2.2 Расчёт себестоимости часа машинного времени

7.2.3 Расчёт сметы затрат на проектирование

7.3 Формирование цены предложения

7.4 Расчёт капитальных затрат

7.5 Расчёт эксплуатационных расходов потребителя

7.6 Оценка эффективности проектируемого программного продукта.

7.6.1 Определение показателей чистого денежного потока

7.6.2 Определение показателей чистой текущей стоимости

7.7 Вывод

8. Охрана труда и окружающей среды

8.1 Анализ условий труда оператора ЭВМ в компьютерной лаборатории

8.2 Расчётная часть

8.2.1 Проектирование естественного освещения производственных помещений

8.2.2 Проектирование искусственного освещения производственных помещений

8.3 Вывод

Заключение

Библиографический список

Приложение А. Исходные тексты основных функций

Введение

Распределенные системы автоматического управления находят самое широкое применение во многих областях деятельности человека. В том числе это относится и к системам, в состав которых входят дистанционно управляемые роботы и манипуляторы, относящиеся к классу манипуляционных робототехнических систем. Бурное развитие промышленной робототехники, основной базой которой стали автоматически действующие манипуляционные роботы с программным управлением, позволило подойти к решению одной из наиболее актуальных задач - исключения ручного труда человека из сферы производства. При этом не только обеспечивается повышение производительности за счет интенсификации технологических процессов, но и существенно улучшается качество проводимых работ, повышается надежность выполнения операций [1].

Все это свидетельствует об актуальности разработок, связанных с использованием методов построения распределенных систем управления. В первую очередь это касается систем функционирующих в недетерминированных условиях экстремальных сред, где необходимо выполнять сложные операции исследовательского характера, проводить монтажно-сборочные работы с использованием универсального инструмента или оснастки. К таким средам в первую очередь относятся зоны с наличием радиоактивных излучений, опасных для здоровья человека. Подводно-технические работы, осуществляемые на больших глубинах, также рациональнее проводить с помощью манипуляционных роботов с дистанционно-автоматическим управлением.

Принципы дистанционно-автоматического управления представляются весьма перспективными при создании манипуляционных роботов, обслуживающих атомные электростанции и, в будущем, термоядерные энергетические установки. Большие возможности открывает использование манипуляционных роботов с дистанционно-автоматическим управлением в горнодобывающей и нефтеперерабатывающей промышленности.

Как было сказано выше, системы дистанционного управления в первую очередь ориентированны на работу в экстремальных условиях, что накладывает дополнительные требования к повышению точности работы сложных робототехнических устройств. Повысить точность управления можно за счет использования принципов терминального управления [2]. При таком управлении объект управления переходит из начального фазового состояния в предписанное конечное за заданный промежуток времени. Алгоритмы терминального управления получили весьма широкое распространение ввиду простой реализации с помощью ЭВМ. Это позволяет использовать в составе распределенной системы терминального управления микропроцессорную технику, что в свою очередь позволит миниатюризировать достаточно сложные технические решения.

Данный проект ставит своей целью разработку концепции и программного обеспечения для распределенной системы терминального управления техническим объектом, в роли которого выступает робототехнический комплекс. Такая система может быть эффективно использована при решении задач, связанных с построением систем автоматического управления, функционирующих в экстремальных условиях.

В первом разделе выполняется постановка задачи на дипломное проектирование. Во втором разделе дается обзор существующих методов построения дистанционно управляемых систем автоматического управления. В третьем разделе описывает основные принципы, использующиеся при синтезе терминальных управлений. Четвертый раздел описывает концепцию распределенной системы терминального управления, разрабатываемой в проекте. Пятый раздел связан с экспериментальной моделью проектируемой системы. Шестой раздел посвящен разработке программного обеспечения для распределенной системы терминального управления. Седьмой раздел связан с технико-экономическим обоснованием дипломного проекта. Восьмой раздел посвящен вопросам охраны труда и окружающей среды. Общие вопросы гражданской обороны освещены в девятом разделе.

1 постановка задачи

В рамках дипломного проекта необходимо разработать концепцию и программное обеспечение распределенной системы терминального управления техническим объектом. В качестве технического объекта необходимо рассматривать робототехнический комплекс.

1.1 Функциональные требования к системе

Разрабатываемая система терминального управления (РСТУ) техническим объектом должна быть адаптирована к функционированию в экстремальных условиях, т.е. условиях, в которых существует угроза жизни и здоровью человека. Система не должна быть полностью автоматической, в ее составе должна быть отведена роль для оператора - лица, принимающего решения и выполняющего установку необходимых параметров для функционирования системы, а также задающего команды исполнительным частям системы. Поскольку условия, в которых работает разрабатываемая система предполагает наличие экстремальных условий работы, необходимо построить распределенную систему терминального управления. В этом случае оператор, осуществляющий контроль и управление системой, и объект управления (робототехническая система), находятся на значительном удалении друг от друга, достаточном для обеспечения безопасности оператора. При формировании закона терминального управления возможно использование информации об окружающей обстановке от распределенных в пространстве датчиков, поэтому необходимо предусмотреть возможность оперативного обновления и поступления информации от измерительных систем датчиков на пульт управления оператору РСТУ.

Контроль и управление должны осуществляться с помощью специализированного программного обеспечения. Пересылка команд объекту управления может быть осуществлена с использованием сетевых технологий. Разрабатываемая система должна отвечать повышенным требованиям к надежности функционирования всех отдельных частей системы, поэтому рекомендуется рассмотреть возможность подключения резервных элементов, наиболее важных для обеспечения работоспособности системы.

1.2 Требования к программному обеспечению

Программное обеспечение (ПО) для РСТУ должно быть ориентировано на работу под управлением операционной системы семейства Windows NT. Использование операционной системы семейства NT позволит повысить отказоустойчивость ПО. Разрабатываемое ПО должно обладать графическим интерфейсом пользователя, обеспечивающим интуитивно понятную работу оператора РСТУ с программой управления системой. Для представления результатов работы необходимо предусмотреть возможность отображения экспериментальных данных в виде таблиц и графических зависимостей. Для анализа аварийных и чрезвычайных ситуаций необходимо предусмотреть возможность протоколирования работы программы управления РСТУ.

При разработке следует использовать модульный подход к разработке программного обеспечения. Это позволит обеспечить возможность адаптации ПО к различным техническим объектам. В соответствии с функциональной спецификой РСТУ, разрабатываемое ПО должно поддерживать возможность обмена данными по локальным (или глобальным) сетям с использованием протокола TCP/IP.

1.3 Требования к ЭВМ

Разрабатываемое ПО пульта управления РСТУ должно быть ориентировано на работу на IBM PC совместимых персональных компьютерах. Минимальная конфигурация должна отвечать следующим условиям:

- процессор класса Intel Pentium/Celeron с тактовой частотой не менее 1 ГГц;

- объем оперативной памяти не менее 256 Мб;

- объем жесткого диска не менее 20 Гб;

- объем видеопамяти не менее 32 Мб;

- наличие сетевой платы, обеспечивающей пропускную способность 100 Мбит в секунду.

Персональная ЭВМ должна быть подключена к источнику бесперебойного питания.

1.4 Требования к экспериментальной модели

Для апробации алгоритмов управления рекомендуется создать имитационную модель, позволяющую промоделировать реакцию робототехнической системы на поданное терминальное управление. Использование экспериментальной имитационной модели позволит сэкономить значительные средства, необходимые для проведения натурных испытаний. Для построения такой модели рекомендуется использовать среду инженерных расчетов и моделирования Matlab. Разработанная модель может быть использована для исследовательских целей. При разработке модели, также как и при разработке программного обеспечение следует использовать модульный подход.

2 обзор методов дистанционного управления

2.1 Роль дистанционно управляемых систем

Дистанционно управляемые роботы и манипуляторы, относящиеся к классу манипуляционных робототехнических си-стем, находят самое широкое применение во многих областях дея-тельности человека.

Бурное развитие промышленной робототехники, основной базой которой стали автоматически действующие манипуляционные роботы с программным управлением, позволило подойти к решению одной из наиболее актуальных задач - исключения ручного труда человека из сферы производства. При этом не только обеспечивается повышение производительности за счет интенсификации технологических процессов, но и существенно улучшается качество проводимых работ, повышается надежность выполнения операций.

Однако использование автоматически действующих роботов, часто называемых манипуляторами с программным управлением, требует серьезной подготовки производства, организации более тесного их взаимодействия с другим технологическим оборудованием. Как правило, действия робота в составе оборудования автоматизированного производства строго определены его назначением, т.е. ограничены какой-либо одной сферой применения.

Специализация промышленных роботов позволяет обеспечить наиболее эффективную их эксплуатацию при выполнении определенных работ, например сборки, сварки, окраски и т.п. При этом эффективность эксплуатации робота и качество выполняемой им работы определяются во многом степенью его согласования с другим технологическим оборудованием в строго детерминированных условиях рабочей зоны.

Очевидно, что изменение условий в рабочей зоне требует адаптации самого промышленного робота при его программном управлении. Средства адаптации, входными элементами которых являются как датчики очувствления манипуляционного устройства, так и датчики информации об условиях в рабочей зоне, существенно усложняют робототехническую систему, уменьшая при этом и надежность ее работы. Достаточно большую сложность представляет формализованное описание внешней среды - рабочей зоны робота, необходимое при программировании действий робота в недетерминированных условиях рабочей зоны.

Этим определяется высокая эффективность дистанционного управления в период ввода программы в систему автоматического управления, т.е. в режиме обучения. Действительно, при дистанционном обучении робота человек-оператор имеет возможность непосредственно оценивать условия в рабочей зоне. Зрительный и слуховой аппараты человека достаточно совершенны, чтобы обеспечить действия манипуляционного робота при выполнении весьма сложных операций без привлечения каких-либо систем технического зрения и стереофонических систем, входящих в информационное обеспечение автоматически действующего робота [1].

Степень участия человека-оператора в управлении манипуляционным роботом не только определяется сложностью выполняемой операции, но и существенно зависит от структуры системы и принципа дистанционного управления. Так, при командном, копирующем и полуавтоматическом управлении манипулятором человек постоянно обеспечивает формирование движений его исполнительного устройства.

Супервизорное и диалоговое управления позволяют в значительной степени освободить человека от выполнения простейших, повторяющихся движений, работать в режиме диспетчирования действий робота. Очевидно, что при этом используется микропроцессорная система управления движением манипулятора. В ряде случаев требуется силомоментное или тактильное очувствление робота, позволяющее организовать наиболее рациональное взаимодействие с объектами работы.

Весьма эффективными при выполнении разнообразных операций с помощью манипуляторов универсального назначения являются системы комбинированного дистанционно-автоматического управления. В подобных робототехнических системах оператор подключается к управлению лишь в моменты выполнения наиболее сложных действий манипуляционного робота.

Наличие дистанционного режима позволяет обеспечить и оперативную коррекцию программы движения автоматически действующего робота, которую осуществляет человек-оператор, непосредственно наблюдающий за ходом работы.

Наиболее актуальным является переход с автоматического на дистанционное ручное управление в непредвиденных, заранее не запрограммированных ситуациях и особенно в аварийных условиях. Оперативное вмешательство человека-оператора в процесс автоматического действия робототехнической системы позволяет в целом ряде случаев осуществить сложные ремонтные работы без существенного усложнения самой системы управления робота.

Все это свидетельствует о необходимости широкого привлечения методов дистанционного управления при организации структуры автоматизированного производства. Однако наиболее актуальным остается использование дистанционно управляемых манипуляторов в недетерминированных условиях экстремальных сред, где необходимо выполнять сложные операции исследовательского характера, проводить монтажно-сборочные работы с использованием универсального инструмента или оснастки. К таким средам в первую очередь относятся зоны с наличием радиоактивных излучений, опасных для здоровья человека. Подводно-технические работы, осуществляемые на больших глубинах, также рациональнее проводить с помощью манипуляционных роботов с дистанционно-автоматическим управлением.

Принципы дистанционно-автоматического управления представляются весьма перспективными при создании манипуляционных роботов, обслуживающих атомные электростанции и, в будущем, термоядерные энергетические установки. Большие возможности открывает использование манипуляционных роботов с дистанционно-автоматическим управлением в горнодобывающей и нефтеперерабатывающей промышленности.

2.2 Основные методы и уровни дистанционного управления манипуляционными роботами

Отличительным признаком дистанционно управляемых манипуляционных роботов, однозначно выделяющим их из всего семейства робототехнических систем, является обязательное участие человека-оператора в процессе управления их действиями. Способность человека к быстрой ориентации в рабочей обстановке, анализу окружающей среды, принятию решений и выбору алгоритмов выполнения технологических операций, формированию рациональных законов движения в процессе работы - все эти естественные для него возможности весьма сложно реализуются даже с помощью самых совершенных систем восприятия информации и управляющих систем с элементами искусственного интел-лекта.

Именно этим определяется необходимость использования дистанционного управления для выполнения нетиповых и сложных технологических операций в недетерминированных условиях рабочей зоны. Очевидно, что дистанционное управление оказывается единственно возможным способом обеспечения функционирования манипуляционных роботов в средах, недоступных для человека или опасных для его здоровья.

Первый опыт в использовании дистанционно управляемых манипуляторов был накоплен еще в пятидесятые годы двадцатого столетия при созда-нии копирующих манипуляционных механизмов, выполняющих в боксах и камерах исследовательские работы с радиоактивными веществами. Именно в тот период была подтверждена возможность воспроизведения двигательных функций руки человека на расстоянии. Механические манипуляторы включали кинематически подобные задающее и исполнительное устройства, связанные между собой с помощью тросов и лент таким образом, что все изменения взаимного расположения звеньев задающего устройства (ЗУ) повторялись (копировались) соответствующими звеньями исполнительного устройства (ИУ). Это позволяет в рабочей зоне воспроизводить с достаточной степенью точности движения кисти руки оператора, управляющего положением в пространстве кистевого узла ЗУ. Важной особенностью подобных манипуляторов является возможность ощущения оператором усилий, действующих со стороны объекта манипулирования на ИУ. Это дает возможность оператору формировать законы движения задающего, а, следовательно, и исполнительного устройств с учетом воздействия нагрузки, т. е. так, как это происходит при выполнении человеком работ непосредственно рукой.

Таким образом, механические копирующие манипуляторы обладают свойством двунаправленной передачи не только перемещений, но и усилий. Образно говоря, они как бы увеличивают возможности рук человека, «удлиняя» их и позволяя войти в зоны, недоступные самому человеку.

Опыт создания отечественных копирующих манипуляторов позволил обеспечить отработку принципа дистанционного проведения работ при непосредственном наблюдении оператором условий в рабочей зоне.

Однако существенными недостатками таких манипуляторов являются малая удаленность оператора от опасной зоны, небольшая грузоподъемность, определяемая физическими возможностями оператора, а также существенные потери развиваемых оператором усилий на преодоление трений в механических передачах. Это привело к необходимости разработки и создания уже в полном смысле дистанционно управляемых манипуляторов, оснащенных не только системами управления движением исполнительных манипуляционных устройств, но и развитой информационной системой. Задачами этих систем является обеспечение наибольшей естественности работы оператора, создание эффекта его присутствия в рабочей зоне при выполнении технологических операций.

Большое значение создания дистанционно управляемых манипуляторов определяется широким развитием исследовательских и практических работ, связанных с освоением подводного и космического пространств, а также с созданием атомной и термоядерной энергетики.

Во всех указанных случаях в экстремальных для человека условиях, как правило, выполняются разнообразные операции в изменяющихся условиях рабочей зоны, что требует использования высокоманевренных манипуляционных механизмов.

Однако использование дистанционного управления оказалось эффективным не только для манипуляторов, предназначенных для работы в экстремальных средах. Бурно развивающаяся промышленная робототехника также все чаще обращается к этому методу управления, позволяющему существенно расширить функциональные возможности манипуляционных роботов с автоматическим управлением. Именно в промышленной робототехнике стали все шире использоваться и наиболее прогрессивные принципы дистанционно-автоматического управления.

Использование современной вычислительной и в первую очередь управляющей микропроцессорной техники позволило довести дистанционное управление манипуляционными роботами до уровней диалогового управления, при котором участие человека-оператора характеризуется рациональным сочетанием возможностей естественного интеллекта человека и искусственного интеллекта информационных и управляющих систем робота.

Рассмотрим основные методы дистанционного управления манипуляторами и манипуляционными роботами, которые достаточно однозначно можно соотнести с уровнями управления иерархической системы автоматического управления различных поколений роботов.

Понятие об уровнях управления в робототехнике было впервые введено Е. П. Поповым [3] и является обобщающим как для роботов с автоматическим управлением, так и для дистанционно управляемых манипуляциониых роботов.

Иерархическая схема робототехнической системы может быть достаточно однозначно представлена в виде четырех основных уровней управления (см. рисунок 2.1).

Рисунок 2.1 - Обобщенная схема дистанционного управления манипуляционным роботом

Первый уровень управления, называемый исполнительным, обеспечивает организацию управления движением отдельно в каждой степени подвижности ИУ манипуляционного робота. Распределение сигналов управления по степеням подвижности осуществляется на втором - тактическом уровне управления. Поэтому входной информацией для него является траектория и закон движения конечной точки манипулятора, т. е. рабочего органа, в частном случае - захватного устройства (захвата).

Формирование траекторий и законов движения манипулятора при выполнении элементарной операции происходит на стратегическом уровне управления путем расчленения операции на элементарные действия и движения. Следовательно, входной информацией на этом уровне является формализованное представление всей операции в целом.

На высшем, интеллектном уровне управления осуществляется формирование алгоритма выполнения каждой операции с учетом общих задач технологического процесса и обстановки в зоне проведения работ.

Человек-оператор, обладающий возможностью восприятия, анализа условий выполнения работ и принятия решения, может обеспечить управление на каждом из этих уровней. Однако наличие любого из верхних уровней управления усложняет техническую реализацию всей робототехнической системы, поэтому формирование иерархической структуры системы управления необходимо проводить с учетом возможностей ее технической реализации для каждого объекта автоматизации технологического процесса.

2.3 Командное управление манипуляторами и роботами на исполнительном уровне

Под исполнительным уровнем управления понимается организация управления движением отдельно в каждой из степеней подвижности ИУ манипуляционного робота, что, как правило, реализуется последовательным включением исполнительных приводов того или иного сустава манипулятора. Поскольку такое включение может осуществляться со специального пульта оператора (стационарного или выносного), то данный способ относится к дистанционному виду управления манипулятором. При этом в процессе управления человек-оператор как бы формирует команду на включение того или иного привода, обеспечивающего движение соответствующего звена в нужном направлении. Поэтому подобный метод получил название командного управления манипулятором. Схема системы командного управления предста-влена на рисунке 2.2.

Рисунок 2.2 - Схема управления манипуляционным роботом на исполнительном уровне

Человек-оператор включает исполнительные приводы с помощью специальных устройств командного управления. Наличие датчиков обратной связи (ДОС) по частоте вращения вала двигателя в каждом из приводов позволяет обеспечить регулирование скорости движения звеньев манипуляционного механизма, а следовательно, и рабочего органа, воздействующего на объекты манипулирования.

В том случае, если оператор не имеет возможности непосредственно наблюдать за движениями рабочего органа манипулятора и его взаимодействием с объектом манипулирования, необходимо использовать информационные видеосигналы. Наибольшей эффективностью при восприятии оператором обстановки в рабочей зоне обладают телевизионные системы со стереоскопическим изображением.

Метод командного управления на исполнительном уровне наиболее удобен применительно к транспортным средствам, которые, как правило, работают в прямоугольной системе координат. Этим объясняется широкое использование командного управления и для обеспечения транспортных движений манипуляционного робота при его выводе в рабочую зону.

Командное управление оказалось весьма эффективным и при обучении промышленных роботов процессу выполнения технологических операций. Именно поэтому закономерно оснащение большинства современных промышленных роботов специальным выносным пультом дистанционного командного управления. Формирование траекторий перемещения ИУ робота с помощью подобного пульта позволяет оператору вводить в блок памяти сигналы датчиков положения по каждой степени подвижности без какого-либо дополнительного преобразования и пересчета координат.

Как правило, человек-оператор, имея в руках переносной пульт командного управления, формирует все перемещения робота, непосредственно наблюдая за его движениями. Это обеспечивает высокую точность позиционирования в процессе обучения. Однако командное управление можно осуществлять и при дистанционном наблюдении за процессом работы.

Командное управление на исполнительном уровне оказывается предпочтительным не только для обучения промышленного робота, действующего в автоматическом режиме, но и для управления его действиями в непредвиденных и особенно в аварийных ситуациях. Возникновение сложной ситуации при заклинивании деталей, поломке механизма и т. п. связано с необходимостью перехода с автоматического управления на ручное. И наиболее предпочтительным в этом случае является командное управление на исполнительном уровне. Именно ручное командное управление позволяет обеспечить быстрый вывод манипулятора из сложной ситуации и привести его в исходное положение для дальнейшей работы в автоматическом режиме.

Оснащение промышленных роботов устройствами дистанционного управления на исполнительном уровне существенным образом расширяет функциональные возможности роботов, обеспечивая возможность выполнения сложных, заранее не запрограммированных операций. Фактически такие роботы можно рассматривать как робототехнические системы с комбинированным дистанционно-автоматическим управлением. Устройства командного управления находят широкое применение в робототехнических системах, требующих максимального упрощения вычислительной аппаратуры при обеспечении ее высокой надежности.

Таким образом, командное управление, основанное на введении управляющих сигналов на исполнительном уровне позволяет считать его наиболее простым и надежным методом дистанционного управления, а также удобным способом формирования программ движения исполнительного устройства при обучении промышленного робота.

2.4 Дистанционно-автоматическое управление манипуляционными роботами

Основная задача, стоящая перед создателями манипуляционных роботов, заключается в повышении их эффективности и облегчении условий работы оператора путем автоматизации процесса управления при выполнении типовых повторяющихся операций. Ее решение во многом зависит от выбора метода управления роботом.

Требования, предъявляемые к системе управления при выполнении различных операций, достаточно противоречивы. Так, для транспортирования грузов с помощью манипулятора требуется высокая точность позиционирования захвата при движении по задаваемой оператором траектории, особенно при наличии препятствий, а для выполнения операций при силовом взаимодействии с объектом, например, при сборке, шлифовании с помощью манипулятора и т.п., необходимо, чтобы система управления обладала свойством «податливости». В ряде случаев, например при выполнении «тонких» операций, необходимо обеспечить возможность дозирования развиваемых сил и моментов в рабочем органе манипулятора.

Очевидно, что каждый из рассмотренных способов управления обладает различной эффективностью при выполнении разнообразных конкретных операций, поэтому выбор одного из них для выполнения определенных технологических операций может значительно осложнить, а иногда и сделать невозможным выполнение других. Ограниченные возможности системы управления оператор всегда вынужден компенсировать повышенным вниманием и более осторожной работой. Это неизбежно приводит к его быстрой утомляемости и существенно снижает эффективность работы всего манипуляционного робота.

Очевидно, что наиболее перспективным является применение комбинированных систем управления манипуляционным роботом, которые могут допускать возможность работы в различных режимах. Оператор выбирает тот или иной режим в зависимости от вида и условий выполняемой работы. Это может сопровождаться изменением структуры и параметров системы управления манипулятором.

Реализация таких комбинированных систем управления возможна на основе использования совершенных, как правило, микропроцессорных устройств управления. Именно развитие микропроцессорной техники позволило приступить к созданию систем управления манипуляторами, которые могут обеспечить широкие функциональные возможности робота. Применение микроЭВМ позволяет сравнительно просто реализовать дистанционные и автоматические режимы управления как по заранее введенным программам выполнения простейших операций, так и по формируемым в процессе обучения робота программам. Именно такие системы дистанционно-автоматического управления наиболее предпочтительны для выполнения сложных и нетиповых работ в изменяющихся условиях рабочей зоны.

Система управления обеспечивает связь с используемыми в манипуляционном роботе ЗУ и датчиками исполнительного механизма, переработку информации, получаемой от них, формирование управляющих сигналов на задающие и исполнительные устройства в соответствии с заложенными законами и методами управления.

Важной особенностью системы дистанционно-автоматического управления робота является возможность проведения работ в различных режимах, наиболее эффективных в конкретной ситуации. Все элементы операций, поддающиеся формализации и программированию (в том числе с простейшей адаптацией), особенно те, которые часто повторяются, выполняются роботом в автоматическом режиме с управлением от ЭВМ. Оператор в этом случае лишь наблюдает за действиями робота. Программы для автоматического режима могут быть либо составлены заранее и вызываться оператором по мере надобности, либо вводиться в память ЭВМ путем обучения робота, когда оператор с помощью ЗУ перемещает в дистанционном режиме исполнительный механизм, движение которого программируется для последующего многократного повторения в автоматическом режиме.

Запрограммированные элементы операций могут сочетаться в различных комбинациях, причем необходимая последовательность их выполнения задается каждый раз либо программным путем, либо в супервизорном режиме, когда оператор с помощью пульта управления выполняет переключение программ или вызывает целый их цикл для обеспечения запрограммированных операций (принять исходное положение, взять инструмент и прибыть в заданную точку рабочей зоны и т. п.). Затем оператор включает другую программу автоматического проведения роботом последующей операции.

Режим дистанционного управления применяется оператором в любых незапрограммированных ситуациях или в случаях отказа автоматической системы управления. При этом оператор использует ЗУ на своем пульте управления.

Принцип взаимодействия элементов системы дистанционно-автоматического управления манипуляционного робота может быть рассмотрен по схеме, представленной на рисунке 2.3.

Рисунок 2.3 - Схема системы дистанционно-автоматического управления манипуляционного робота

Система включает исполнительные приводы, управляющие положением звеньев в каждой степени подвижности исполнительного манипуляционного механизма, а также ЗУ. Каждая из исполнительных систем замкнута по положению. На входы систем сигналы поступают со специализированного вычислителя-переобразователя координат. В кистевых узлах исполнительного и задающего устройств встроены многокоординатные датчики моментов МДМ, формирующие сигналы по векторам моментов, действующих со стороны оператора и объекта манипулирования.

Полуавтоматическое управление роботом может осуществляться как в позиционном копирующем режиме, так и в скоростном, а также с использованием силового очувствления. Выполнение наиболее сложных операций, не внесенных в программу автоматических режимов работы манипулятора при его взаимодействии с объектами в рабочей недетерминированной зоне, может осуществляться при копирующем управлении с силовым очувствлением. При этом сигналы многостепенных моментных датчиков сравниваются в управляющей ЭВМ.

Суммарный сигнал, обусловленный моментом оператора и нагрузочным моментом, поступает на специализированный вычислитель-преобразователь координат, который формирует управляющие воздействия на приводы каждой степени подвижности робота.

Система управления может также содержать устройства интегрирования сигналов, которые формируют сигналы управления по положению при наличии сигналов по моменту. Подобная система позволяет придать манипуляционному роботу свойства двустороннего действия, что обеспечивает наиболее эффективную работу оператора в сложных ситуациях.

При выполнении транспортных операций в свободном пространстве рабочей зоны и ряда других легко программируемых операций использование копирующего режима малоэффективно. В этих случаях применяется автоматический или полуавтоматический режим работы робота. В непредвиденных ситуациях для этого используется метод управления по разности векторов моментных воздействий со стороны оператора и со стороны нагрузки при заторможенном ЗУ. Реализация такого способа управления обеспечивается фиксацией ЗУ в исходном (наиболее удобном для оператора) положении.

Использование принципов дистанционно-автоматического управления придает манипуляционной робототехнической системе широкие функциональные возможности.

Возможно дифференцированное использование принципов дистанционно-автоматического управления для осуществления движений различными суставами ИУ манипуляционного робота. Например, транспортные движения могут иметь автоматическое, т. е. заранее запрограммированное, управляющее воздействие и осуществлять вывод кистевого узла манипулятора в заданную точку рабочего пространства. В то же время управление локальными движениями в кистевых суставах, как правило, требует учета воздействий со стороны объекта работ, поэтому такое управление рационально осуществлять в дистанционном режиме с очувствлением по значению этого силового воздействия.

Особенно актуально применение принципов комбинированного управления при выполнении сложных сборочных операций и при достаточно детерминированных условиях взаимодействия с технологической оснасткой в рабочей зоне, когда определенная податливость захвата требуется на ограниченном пространстве рабочей зоны. Совместное использование принципов автоматического и дистанционного управления дает положительный эффект при дистанционной коррекции траекторий и законов движения ИУ робота, осуществляемого в автоматическом режиме.

Действительно, если программа движений в автоматическом режиме не требует изменений, но на каком-либо отрезке траектории движения необходимо ее скорректировать, то возможно использование параллельно действующего дистанционного режима управления. Это существенно упрощает процедуру выполнения операций в изменяющихся условиях внешней среды.

С другой стороны, параллельная работа в различных режимах возможна при дистанционном управлении манипулятором, находящимся на подвижном основании. В этом случае целью автоматического управления положением рабочего органа манипулятора может быть стабилизация его положения в пространстве, причем это осуществляется управлением по каждой степени подвижности ИУ от специального информационно-измерительного устройства, определяющего отклонение конечной точки манипулятора от исходного положения, вызванного подвижностью основания. Очевидно, что это возможно лишь в ограниченном диапазоне перемещений.

Автоматическая стабилизация положения в пространстве кистевого узла манипулятора существенно упрощает режим дистанционного управления при выполнении сложной операции. Это является наиболее важным, например, при выполнении подводно-технических работ с помощью манипулятора, размещенного на подводном аппарате, который находится в так называемом состоянии зависания над объектом и испытывает воздействие течений водной среды.

Очевидно, что совместное параллельное или последовательное использование режимов дистанционного и автоматического управления требует применения вычислительной аппаратуры, способной осуществлять это сложное управление в реальном времени.

3 Методы поиска терминального управления

3.1. Вариационная постановка задачи

В работах Летова А.М. [4] терминальные задачи управления формулировались как задачи оптимизации функционала вида

, (3.1)

где W, - некоторые неотрицательные и достаточно гладкие функции своих аргументов, а r, s - неотрицательные числа. Функции , описывают движение возмущенное по Ляпунову. Второе слагаемое функционала (3.1) характеризует меру отклонения систем от заданного конечного состояния в момент времени t = T.

Первое слагаемое налагает на управление дополнительное требование: помимо перевода объекта в заданное конечное состояние оно должно обеспечить ему некоторые полезные свойства. Относительно выбора вида функций W и обычно не делается никаких строгих рекомендаций.

Если в (3.1) положить r = 0, то система оптимизируется по функционалу

. (3.2)

Отметим, что в случае использования функционала (3.2) задача вырождается в чисто краевую, так как единственной целью управления становится соблюдение конечных условий. В этом случае никаких дополнительных требований фазовой траектории не предъявляется.

В 1968 г. Н.Н. Красовский [5] отметили значительные трудности, возникающие при решении краевых задач в вариационной постановке. Для решения краевых задач применительно к задачам управления самолетом он предложил способ минимизации следующего функционала, который обеспечивает не только перевод объекта в заданное состояние, но и хорошее качество этого перевода

.

Здесь p, q - положительные числа, удовлетворяющие соотношению , и такие, что zp, zq, - четные функции z; ki - заданные вещественные числа; V=V(X1, X2, …, Xn, t) - решение уравнения при граничном условии . Полученные законы управления обеспечивали вывод самолета на взлетно-посадочную полосу (ВПП) без перерегулирования.

Работа [6] посвящена синтезу оптимального управления для линейного объекта . Критерием качества служит функционал

, (3.3)

минимизирующий энергетические затраты на управление.

В качестве примера решена задача вывода ракеты в течение времени T в заданную точку с координатой xf1 и конечной скоростью xf2. Управляющая функция имеет вид

. (3.4)

Здесь u - заданное ускорение объекта; T - требуемое время выполнения задачи; x1(t), x2(t) - текущие значения координаты и скорости объекта; xf1, xf2 - конечные значения координаты и скорости.

Полученный закон управления является замкнутым и переводит объект в течение времени T из произвольной начальной точки фазовой плоскости в произвольную конечную. Однако этот закон обладает особенностью в конечной точке: при t = T знаменатель в (3.4) обращается в нуль. Эта особенность закона затрудняет его практическое применение.

Описанное в приведенных работах направление базируется на теории оптимизации квадратичных функционалов. Ввиду этого все рассмотренные подходы отличает повышенная трудность решений. В тоже время в постановках задач отмечаются следующие особенности. У большинства авторов невязки по фазовым координатам в конечный момент времени T включены в функционал. Зачастую кроме этих невязок функционал ничего другого не содержит. Следовательно, в этих случаях достигается единственная цель - перевод объекта в конечное фазовое состояние. Никакие дополнительные требования к фазовой траектории не предъявляются. Таким образом, сложные вариационные методы применяются здесь лишь как средство решения краевой задачи.

В большинстве рассмотренных работ управляемый объект переводится в начало координат фазового пространства. Так как при этом заданные конечные значения фазовых координат равны нулю, то в окончательные выражения для управлений они не входят. Нужно особо подчеркнуть, что перевод фазовой точки в начало координат или в произвольную точку фазового пространства - не одно и то же. Конечные значения фазовых координат входят в формулы для управлений со своими весовыми коэффициентами (3.4) и определение этих коэффициентов является составной частью задачи синтеза.

В некоторых работах требуется в течение заданного времени Т < Tопт перевести фазовую точку на возможно близкое расстояние к началу координат. Так как в этом случае конечное фазовое состояние объекта неизвестно, то оно также не входит в окончательные формулы.

Найденные оптимальные управления, как правило, принадлежат классу кусочно-непрерывных функций времени, мгновенно переключающихся с одного ограничения на другое.

Таким, образом, построенные на этой основе САУ не имели, бы обратных связей и не могли бы противодействовать внешним возмущениям. Кроме того, переключательные управляющие функции недопустимы для значительного числа управляемых объектов из соображений безопасности, прочности и т.д. По этой причине они не нашли достаточного практического применения в технике.

Оценивая данное направление в целом, следует заключить, что оно не дало пока приемлемых для инженерной практики решений. И может быть применено лишь в некоторых ограниченных случаях.

3.2 Чисто терминальная постановка задачи

Как указывалось выше, вариационная постановка задачи поиска терминального управления используется лишь с единственной целью - свести эту задачу к известному классу и применить достаточно разработанный, хотя и сложный метод решения.

Очевидно, что в этих случаях вариационный метод используется лишь как инструмент для решения краевой задачи. При наличии простых специальных методов решения краевых задач от вариационной постановки можно было бы отказаться ввиду математических сложностей, к которым она приводит. Вариационные методы должны использоваться там, где они действительно необходимы.

Иное направление в решении терминальной проблемы дает поиск управлений в заданном классе непрерывных функций или поиск управлений, реализующих заданное движение системы.

Невариационный, или чисто терминальный, подход был впервые предложен Грином в 1961 г. для управления мягкой посадкой космического аппарата [7]. Поиск управления, представляющего собой заданное ускорение объекта, производился в классе постоянных во времени функций u = Со, которые реализуют равномерно замедленное движение. При переходе к замкнутой форме этот закон принимает вид

, (3.5)

где u - заданное ускорение аппарата; V - текущая вертикальная скорость аппарата; R - оставшееся до посадочной площадки расстояние. Однако этот закон имеет существенный недостаток: в момент приземления знаменатель в (3.5) обращается в нуль. Если устранить эту особенность в конечной точке, то закон примет вид


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.