Математическое моделирование

Изучение современных принципов, подходов и методов моделирования сложно формализуемых объектов. Решение задач структурной и параметрической идентификации. Характеристики вычислительных систем как сложных систем массового обслуживания. Теория потоков.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 18.02.2012
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На ранней стадии создания концептуальной модели зачастую выявляется часть параметров, которые определенно войдут в модель. По этим параметрам сбор исходных данных можно вести параллельно с разработкой концептуальной модели. По мере уточнения концептуальной модели определяются остальные параметры. Сбор исходных данных осложняется по следующим причинам. Во-первых, значения параметров могут быть не только детерминированными, но и стохастическими. Во-вторых, не все параметры оказываются стационарными. Особенно это относится к параметрам внешних воздействий. В-третьих, всегда идет речь о моделировании несуществующей (проектируемой, модернизируемой) системы или системы, которая должна функционировать в новых условиях.

Большая часть параметров -- это случайные величины по своей природе. Однако в целях упрощения модели часто многие из них представляются детерминированными средними значениями. Это можно делать, если случайная величина имеет небольшой разброс, или в случае, когда для достижения цели моделирования достаточно вести расчет по средним значениям. Например, производительность процессора может быть задана определенным количеством операций, выполняемых в единицу времени. Но это количество детерминировано только для определенной смеси операций, которые может выполнять процессор. Подмена в расчетах случайных значений параметров детерминированными величинами должна производиться обдуманно, так как она может привести к погрешностям моделирования. Под воздействием случайных факторов результаты функционирования системы не только подвергаются рассеиванию, но могут также получить смещение своих средних значений.

При создании модели может иметь место и обратное явление -- детерминированные параметры представляются случайной величиной. Делается это при интеграции элементов системы или внешних воздействий с целью сокращения размерности модели. Например, при выполнении программы ВС обрабатывается вполне определенное количество данных. При следующем выполнении этой программы может обрабатываться другое, но тоже определенное количество данных. Для моделирования многократного выполнения программы можно задать всю совокупность количеств данных или подменить это множество значений случайной величиной с определенным законом распределения.

Подбор закона распределения. Для случайных параметров организуется сбор статистики и последующая ее обработка. В процессе обработки выявляется возможность представления параметра некоторым теоретическим законом распределения. Это необходимо в связи с тем, что при определенных законах распределения основных параметров системы и нагрузки появляется возможность создания аналитической модели, а при имитационном моделировании может оказаться проще задать вид закона распределения и основные статистические характеристики, чем представлять случайную величину, например, в виде таблицы.

Процедура подбора вида закона распределения заключается в следующем. По совокупности численных значений параметра строится гистограмма относительных частот -- эмпирическая плотность распределения. Гистограмма аппроксимируется плавной кривой. Полученная кривая последовательно сравнивается с кривыми плотности распределения различных теоретических законов распределения. Выбирается один из законов по наилучшему совпадению вида сравниваемых кривых. По эмпирическим значениям вычисляют параметры этого распределения. Затем выполняют количественную оценку степени совпадения эмпирического и теоретического распределения по тому или другому критерию согласия, например, Пирсона (хи-квадрат), Колмогорова, Смирнова, Фишера или Стьюдента. Вопросы подбора вида закона распределения детально разработаны в математической статистике.

Особую сложность представляет сбор данных по случайным параметрам, которые являются функциями времени. В первую очередь такие параметры характерны для внешних воздействий. Пренебрежение фактами нестационарности параметров, которое зачастую имеет место в практике моделирования, приводит к существенным нарушениям адекватности модели.

Аппроксимация функций. Для каждого элемента системы существует функциональная связь между параметрами входных воздействий на этот элемент и его выходными характеристиками. Вид функциональной зависимости для одних элементов бывает очевиден, для других может быть легко выявлен исходя из природы функционирования. Однако для некоторых элементов может быть получена только совокупность экспериментальных данных о количественных значениях выходных характеристик при различных значениях параметров. В этом случае возникает необходимость ввести некоторую гипотезу о характере функциональной зависимости, т. е. аппроксимировать ее определенным математическим уравнением. Поиск математических зависимостей между двумя или более переменными по собранным опытным данным- может выполняться с помощью методов регрессионного, корреляционного или дисперсионного анализа.

Предварительно для описания определенного элемента вид уравнения задает исследователь. При двух переменных это делается достаточно просто по результатам сравнения графика, на который нанесены экспериментальные точки, с графиками наиболее распространенных аппроксимирующих функций, таких как прямая, парабола, гипербола, экспонента и т. д. Затем методами регрессионного анализа вычисляются константы выбранного уравнения таким образом, чтобы обеспечить наилучшее приближение кривой к экспериментальным данным независимо от того, насколько хорошо выбран вид кривой. Зачастую приближение оценивается по критерию наименьших квадратов.

Для выяснения того, насколько точно выбранная зависимость согласуется с опытными данными, используется корреляционный анализ. Коэффициент корреляции лежит в пределах от 0 до ±1, что соответствует изменению степени согласования от полного отсутствия корреляции до случая, когда все экспериментальные точки лежат точно на кривой.

Выдвижение гипотез. По части параметров, которые отражают новые элементы будущей системы или новые условия функционирования, отсутствует возможность сбора фактических данных. Для таких параметров выдвигаются гипотезы об их возможных значениях. Важно, чтобы гипотезы выдвигали эксперты-специалисты, которые достаточно хорошо представляют создаваемую систему или новые внешние воздействия на систему. Больший успех может быть достигнут, если представляется возможность получить сведения от группы специалистов. В этом случае можно уменьшить степень субъективности и воспользоваться хорошо отработанными методиками экспертных оценок. При проведении данной работы определенные сведения можно получить в результате анализа функционирования аналогичных, систем или прототипов будущей системы.

Заканчивается этап сбора и обработки исходных данных классификацией на внешние и внутренние, постоянные и переменные, непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические. Для переменных количественных параметров, которыми может варьировать исследователь в ходе моделирования, определяются границы их изменений, а для дискретных -- возможные значения.

3. Разработка математической модели

Обобщенные модели. Концептуальная модель и количественные исходные данные служат основой для разработки математической модели. Создание математической модели преследует две основные цели: 1) дать формализованное описание структуры и процесса функционирования системы для однозначности их понимания; 2) попытаться представить процесс функционирования в виде, допускающем аналитическое исследование системы.

Разработка единой методики создания математических моделей, очевидно, не представляется возможной. Это обусловлено большим разнообразием классов систем. Системы могут быть статические и динамические, со структурным или программным управлением, с постоянной или переменной структурой, с постоянным (жестким) или сменным (гибким) программным управлением. По характеру входных воздействий и внутренних состояний системы подразделяются на непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические. При исследовании ВС может быть получено такое же разнообразие моделей в зависимости от ориентации, а также от степени стратификации и детализации.

Для определенных классов систем разработаны формализованные схемы и математические методы, которые позволяют описать функционирование системы, а в некоторых случаях--выполнять аналитические исследования.

Средствами формализованного описания процессов функционирования систем с программным принципом управления служат определенные языки и системы имитационного моделирования. Некоторые из них описаны ниже.

Агрегативные системы. Одной из наиболее общих формализованных схем является описание в виде агрегативных систем. Этот метод позволяет представить функционирование непрерывных и дискретных, детерминированных и стохастических систем. Он в наибольшей мере приспособлен для описания систем, у которых характерно представление входных и выходных воздействий в виде «сообщений», составленных из совокупностей «сигналов».

В основе метода лежит понятие агрегата как элемента системы. Математическая модель агрегата выражается в виде зависимостей с конкретизацией входных воздействий, состояний и операторов переходов и выходов. В частности, выделяют особые состояния агрегата, к которым относятся состояния в моменты получения входного или управляющего сигнала либо выдачи выходного сигнала. Из особого состояния агрегат скачкообразно может переходить в новое состояние. Агрегативная система образуется при расчленении системы на элементы, каждый из которых представляет собой агрегат.

Единообразное математическое описание исследуемых объектов в виде агрегативных систем позволяет использовать универсальные средства имитационного моделирования.

Кусочно-линейные агрегаты. Дальнейшая конкретизация структуры пространств состояний, входных и выходных воздействий, а также операторов переходов и выходов приводит к понятию кусочно-линейных агрегатов, удобных для формализации широкой совокупности разнообразных процессов и явлений материального мира. В основе подхода лежит кусочно-линейный закон изменения состояния системы, что обеспечивает простоту вычисления опорных моментов времени и, как следствие, простоту реализации модели кусочно-линейного агрегата и системы, составленной из таких агрегатов. В частных случаях для кусочно-линейных агрегативных систем результаты могут быть получены аналитическим методом.

Совместно с формализованным описанием системы в виде совокупности кусочно-линейных агрегатов может применяться метод управляющих последовательностей. Суть метода заключается в том, что функционирование системы определяется управляющими последовательностями, которые имеют определенный физический смысл, а также алгоритмами, описывающими управление системой с помощью введенных последовательностей. Управляющие последовательности и алгоритмы позволяют составлять рекуррентные соотношения для описания функционирования кусочно-линейного агрегата.

Стохастические сети. Для описания стохастических систем с дискретными множествами состояний, входных и выходных воздействий, функционирующих в непрерывном времени, широко используются стохастические сети. Стохастическая сеть представляет собой совокупность систем массового обслуживания, в которой циркулируют заявки, переходящие из одной системы в другую.

Большая группа языков имитационного моделирования основана на формализованном представлении систем в виде стохастических сетей. При определенных условиях стохастическая сеть может рассматриваться как совокупность независимых систем массового обслуживания. Это открывает возможность применения достижений теории массового обслуживания для проведения аналитического моделирования.

Системы массового обслуживания. В основе системы массового обслуживания лежит понятие прибора, который может выполнять конечное множество операций. Прибор выполняет операцию, когда возникает заявка -- требование на выполнение операции. Если прибор выполняет любую операцию, то считается, что он занят (работает), в противном случае прибор свободен. Ограничение числа состояний прибора приводит к большей степени абстрактности, чем понятие агрегата.

Временная последовательность заявок называется потоком заявок. Общий поток заявок может состоять из нескольких потоков. В случаях независимости потоков, случайных моментов поступления или завершения обслуживания заявок в системе могут возникать очереди. Очередь -- это заявки, ожидающие обслуживания, когда прибор занят. Прибор может состоять из нескольких элементов (каналов), каждый из которых способен обслужить любую заявку. Совокупность прибора, потоков заявок и очередей к нему называют системой массового обслуживания (СМО).

Теория массового обслуживания хорошо разработана. Поэтому она нашла широкое применение для создания математических моделей, в частности, при моделировании ВС. Применение теории марковских процессов и теории диффузионных процессов для исследования СМО при определенных ограничениях и допущениях позволило получить ряд важных аналитических зависимостей.

Непрерывные детерминированные системы. Если в модели системы не учитывается воздействие случайных факторов, а операторы переходов и выходов непрерывны (это означает, что малые изменения входных воздействий приводят к такого же порядка малым изменениям выходного воздействия и состояния системы), то состояния системы и выхода соответственно могут быть представлены в виде дифференциальных уравнений

(4)

(5)

где h, g -- вектор функции состояний и выходов соответственно;

х, z, у -- векторы входных воздействий, состояний и выходных воздействий соответственно.

В случае линейности таких систем, когда операторы переходов и выходов обладают свойствами однородности и аддитивности, вид уравнений (4) и (5) упрощается, что дает возможность аналитического решения или исследования известными методами с помощью вычислительных машин.

Построение математических моделей непрерывных линейных детерминированных систем в виде дифференциальных уравнений используется при анализе функционирования элементов и электрических цепей ВС.

Автоматы. Рассмотренные выше формализованные математические схемы применимы для систем, функционирующих в непрерывном времени. Системы, состояния которых определены в дискретные моменты времени получили название автоматов. Если за единицу времени выбран такт , то просто пишут: О, 1, 2, .... В каждый дискретный момент времени, за исключением <е> в автомат поступает входной сигнал х (t), под действием которого автомат переходит в новое состояние в соответствии с функцией переходов

(6)

и выдает выходной сигнал, определяемый функцией выходов

(7)

Если автомат характеризуется конечными множествами состояний z, входных сигналов х и выходных сигналов у, он называется конечным автоматом. Функции переходов и выходов конечного автомата задаются таблицами, матрицами или графами.

Стохастические системы, функционирующие в дискретном времени, можно представлять вероятностными автоматами. Функция переходов вероятностного автомата определяет не одно конкретное состояние, а распределение вероятностей на множестве состояний, а функция выходов -- распределение вероятностей на множестве выходных сигналов. Функционирование вероятностных автоматов изучается при помощи аппарата цепей Маркова. Для оценки характеристик систем, представляемых в виде автоматов, могут использоваться аналитические или имитационные методы.

Кроме приведенных математических схем для формализованного описания функционирования систем используются исчисление высказываний, тензорная алгебра, сети Петри, Е-сети и др..

Таким образом, построение математической модели предусматривает анализ концептуальной модели и исходных данных в целях выбора одной из подходящих формализованных схем, подбора необходимых множеств и конкретизации операторов. Если это не удается сделать для всей системы, то формализованные схемы могут быть применены для описания отдельных элементов, а вся система описывается с использованием программного или структурного подхода.

4. Выбор метода моделирования

Аналитические методы. Разработанная математическая модель функционирования системы может быть исследована различными методами -- аналитическими или имитационными. С помощью аналитических методов анализа можно провести наиболее полное исследование модели. В некоторых случаях наличие аналитической модели делает возможным применение математических методов оптимизации. Для использования аналитических методов необходимо математическую модель преобразовать к виду явных аналитических зависимостей между характеристиками и параметрами системы и внешних воздействий. Однако это удается лишь для сравнительно простых систем. Применение аналитических методов для более сложных систем связано с большей по сравнению с другими методами степенью упрощения реальности и абстрагирования. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик всей системы или отдельных ее подсистем, а также на ранних стадиях проектирования систем, когда недостаточно информации для построения более точной модели. Они могут использоваться для анализа параллельных процессов в сложных системах.

Ряд аналитических моделей не поддается аналитическим решениям известными математическими методами. Для их исследования могут быть использованы численные методы. Они применимы к более широкому классу систем, для которых математическая модель представляется в виде системы уравнений, допускающей решение численными методами. Использование численных методов особенно эффективно с помощью быстродействующих ВС. Для исследования ВС, функционирование которых описывается марковскими процессами, разработано, например, программное средство для автоматизированного составления уравнений и их решения на ВС. Результатом исследования систем численными методами являются таблицы значений искомых величин для конечного набора значений параметров системы и нагрузки.

Если полученные уравнения не удается решить аналитическими или численными методами, то прибегают к качественным методам. Качественные методы позволяют в ряде случаев оценить асимптотические значения искомых величин, устойчивость, а также судить о поведении траектории системы в целом. Перечисленные свойства относятся к поведению отдельных траекторий. Рассматриваются и такие качественные свойства, которые характеризуют поведение совокупностей траекторий. Примером такого свойства является непрерывность, наличие которой говорит о том, что при малых изменениях параметров характеристики системы также мало изменяются. Следует отметить, что для сложных систем важность качественных методов возрастает.

Имитационные методы. Имитационное моделирование является наиболее универсальным методом исследования систем и количественной оценки характеристик их функционирования. При имитационном моделировании динамические процессы системы-оригинала подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением таких же соотношений длительностей и временных последовательностей отдельных операций. Поэтому метод имитационного моделирования мог бы называться алгоритмическим или операционным. В процессе имитации, как при эксперименте с оригиналом, фиксируют определенные события и состояния или измеряют выходные воздействия, по которым вычисляют характеристики качества функционирования системы.

Имитационное моделирование позволяет рассматривать процессы, происходящие в системе, практически на любом уровне детализации. Используя алгоритмические возможности ВС, в имитационной модели можно реализовать любой алгоритм управления или функционирования системы. Модели, которые допускают исследование аналитическими методами, также могут анализироваться имитационными методами. Все это является причиной того, чтo имитационные методы моделирования становятся основными методами исследования сложных систем.

Методы имитационного моделирования различаются в зависимости от класса исследуемых систем, способа продвижения модельного времени и вида количественных переменных параметров системы и внешних воздействий.

В первую очередь можно разделить методы имитационного моделирования дискретных и непрерывных систем. Если все элементы системы имеют конечное множество состояний и переход из одного состояния в другое осуществляется мгновенно, то такая система относится к системам с дискретным изменением состояний, или дискретным системам. Если переменные всех элементов системы изменяются постепенно и могут принимать бесконечное множество значений, то такая система называется системой с непрерывным изменением состояний, или непрерывной системой. Системы, у которых имеются переменные того и другого типа, считаются дискретно-непрерывными. У непрерывных систем могут быть искусственно выделены определенные состояния элементов. Например, некоторые характерные значения переменных фиксируются как достижение определенных состояний. При моделировании ВС на системном уровне их зачастую удобно рассматривать как системы с дискретным изменением состояний.

Одним из основных параметров при имитационном моделировании является модельное время, которое отображает время функционирования реальной системы. В зависимости от способа продвижения модельного времени методы моделирования подразделяются на методы с приращением временного интервала и методы с продвижением времени до особых состояний. В первом случае модельное время продвигается на некоторую величину . Определяются изменения состояний элементов и выходных воздействий системы, которые произошли за это время. После этого модельное время снова продвигается на величину , и процедура повторяется. Так продолжается до конца периода моделирования Tm,. Шаг приращения времени зачастую выбирается постоянным, но в общем случае он может быть и переменным. Этот метод называют "принципом ".

Во втором случае в текущий момент модельного времени t сначала анализируются те будущие особые состояния -- поступление дискретного входного воздействия (заявки), завершение обслуживания и т. п., для которых определены моменты их наступления . Выбирается наиболее раннее особое состояние, и модельное время продвигается до момента наступления этого состояния. Считается, что состояние системы не изменяется между двумя соседними особыми состояниями. Затем анализируется реакция системы на выбранное особое состояние. В частности, в ходе анализа определяется момент наступления нового особого .состояния. Затем анализируются будущие особые состояния, и модельное время продвигается до ближайшего. Процедура повторяется до завершения периода моделирования Тm. Данный метод называют «принципом особых состояний», или «принципом z». Благодаря его применению экономится машинное время моделирования. Однако он используется только тогда, когда имеется возможность определения моментов наступления будущих очередных особых состояний.

Количественные параметры системы и внешних воздействий могут быть детерминированными или случайными. По этому признаку различают детерминированное и статистическое моделирование. При статистическом моделировании для получения достоверных вероятностных характеристик процессов функционирования системы требуется их многократное воспроизведение с различными конкретными значениями случайных факторов и статистической обработкой результатов измерений. В основу статистического моделирования положен метод статистических испытаний, или метод Монте-Карло.

Особое значение имеет стационарность или нестационарность случайных независимых переменных системы и внешних воздействий. При нестационарном характере переменных, в первую очередь -- внешних воздействий, что часто наблюдается на практике, должны быть использованы специальные методы моделирования, в частности метод повторных экспериментов.

Еще одним классификационным параметром следует считать схему формализации, принятую при создании математической модели. Здесь прежде всего необходимо разделить методы, ориентированные на алгоритмический (программный) или структурный (агрегатный) подход. В первом случае процессы управляют элементами (ресурсами) системы, а во втором -- элементы управляют процессами, определяют порядок функционирования системы.

Из вышеизложенного следует, что выбор того или иного метода моделирования полностью определяется математической моделью и исходными данными.

Контрольные вопросы

1. Что понимается под сбором факальных данных для построения модели?

2. Как решается подбор вида закона распределения?

3. Что понимается под аппроксимацией функций?

4. Какие виды средств используются для формализации описания функционирования систем?

5. Что вы понимаете под системой массового обслуживания?

Литература

Альянах И.Н. Моделирование вычислительных систем, Л.: Машиностроение, 1988 г. -- 223 стр.

Растригин Л.А. Современные принципы управления сложными объектами, М.: Советское радио, 1980 г. -- 232 стр.

Адлер Ю.П., Маркова Е.В., Грановский Ю.В. - Планирование эксперимента при поиске оптимальных условий, М.: Наука, 1976 г. -278 стр.

Лекция 3. ТЕХНОЛОГИЯ МОДЕЛИРОВАНИЯ (2 часа)

План

1. Выбор средств моделирования

2. Проверка адекватности и корректировка модели

3. Планирование экспериментов с моделью

4. Анализ результатов моделирования

1. Выбор средств моделирования

Технические средства моделирования. После выбора метода моделирования необходимо выбрать технические и программные средства для- проведения исследования модели с помощью ВС. В качестве программных средств могут быть использованы процедурно-ориентированные алгоритмические языки, проблемно-ориентированные языки или автоматизированные системы моделирования.

Для исследования моделей применяются универсальные или специализированные ВС. Для проведения аналитического моделирования с помощью универсальных ВС зачастую не предъявляется каких-либо особых требований к техническим средствам. Основным требованием к универсальным ВС, которые используются для имитационного моделирования, является наличие оперативной памяти достаточно большой емкости. Это объясняется тем, что в процессе модельного эксперимента постоянно производятся чередующиеся обращения к параметрам элементов и воздействий (к атрибутам статических и динамических составляющих), поэтому все они должны находиться в оперативной памяти.

Каждый модельный эксперимент при статистическом моделировании требует существенных затрат машинного времени, поэтому желательно использовать для моделирования высокопроизводительные ВС. Остальные требования к составу и техническим характеристикам универсальных ВС не являются существенными.

К специальным техническим средствам аналитического моделирования относятся аналоговые вычислительные машины, используемые для исследования непрерывных детерминированных систем.

В связи с широким применением имитационного моделирования в различных областях все более актуальными становятся разработка и выпуск специализированных ВС. К таким средствам относятся стохастические машины, машины имитационного моделирования и гибридные моделирующие комплексы. Наиболее мощными специализированными техническими средствами моделирования призваны стать распределенные системы моделирования.

Алгоритмические языки. Для создания программных моделей могут использоваться универсальные процедурно-ориентированные алгоритмические языки высокого уровня такие, как Pascal, Delphi, C++, Java и др. Известны примеры применения алгоритмических языков для составления программ имитационного моделирования ВС. При создании имитационных моделей на языках общего назначения возникает ряд трудностей, не типичных для практики программирования традиционных задач обработки данных. Эти трудности связаны с двумя основными особенностями алгоритмов имитационного моделирования.

Первая особенность заключается в том, что алгоритмы поведения сложных систем относятся к параллельным алгоритмам, т. е. предполагающим выполнение более чем одного преобразования в каждый момент времени. Трудности программирования параллельных алгоритмов состоят в том, что алгоритмические языки ориентированы на описание чисто последовательных процессов. Программная имитация параллельных процессов при использовании языков высокого уровня сводится к Организации псевдопараллельного развития параллельных процессов, что достаточно сложно для программирования.

Вторая особенность состоит в том, что в процессе моделирования необходима обработка данных, объем которых весьма трудно оценить априорно. Это обусловлено динамическим характером имитационных моделей и их направленностью на изучение массовых процессов в системах. При программировании таких алгоритмов первостепенное внимание уделяется динамическому распределению оперативной памяти.

Достоинства применения процедурно-ориентированных языков для составления программ имитационного моделирования состоят в возможности использования стандартного программного обеспечения ВС, написания экономичных по затратам памяти и быстродействующих программ, учета детальных особенностей функционирования моделируемых систем.

Языки моделирования. При создании программ имитационного моделирования возникают задачи, общие для широкого класса моделей. Это -- организация псевдопараллельного выполнения алгоритмов; динамическое распределение памяти; операции с модельным временем, отображающим астрономическое время функционирования оригинала; имитация случайных процессов; ведение массива событий; сбор и обработка результатов моделирования. Для облегчения решения этих и некоторых других задач созданы специальные проблемно-ориентированные средства (программные системы), которые называют языками моделирования. Решение перечисленных выше задач осуществляется полностью или частично внутренними средствами языка.

Описательные средства языков моделирования позволяют идентифицировать и задавать параметры моделируемой системы и внешних воздействий, алгоритмы функционирования и управления, режимы и требуемые результаты моделирования. По структуре и правилам программирования языки моделирования подобны процедурно-ориентированным алгоритмическим языкам высокого уровня. Они имеют тот или иной набор операторов, сопровождаемых соответствующими * операндами. Но операторы языков моделирования предопределяют выполнение более сложных процедур, поэтому языки моделирования имеют более высокий уровень по сравнению с уровнем алгоритмических языков, что упрощает составление программ. Языки моделирования следует рассматривать как формализованный базис создания математических моделей.

В настоящее время известно более 500 языков моделирования. Такое множество языков частично обусловлено разнообразием классов моделируемых систем, методов их формализованного математического описания, целей и методов моделирования. По классу систем языки подразделяются на семейства, ориентированные на моделирование дискретных, непрерывных и комбинированных систем. В отдельное семейство выделяются языки, предназначенные для автоматизированного составления схем соединения блоков аналоговых ЭВМ. Другим классификационным признаком может служить алгоритмический или структурный подход к описанию процессов функционирования систем. Можно подразделить языки и по другим признакам.

Автоматизированные системы моделирования. Желание дальнейшего упрощения и ускорения процесса создания машинных моделей привело к реализации идей по автоматизации программирования имитационных моделей. Создан ряд систем, которые избавляют исследователя от программирования. Программа создается автоматически по одной из формализованных схем на основании задаваемых исследователем параметров системы, внешних воздействий и особенностей функционирования. Исходные данные представляются в той или иной канонической форме или в ходе диалога с ВС. По результатам машинного эксперимента основные выходные данные вычисляются и выводятся автоматически, дополнительные -- по указанию исследователя. Такие системы называют еще универсальными автоматизированными имитационными моделями, или генераторами имитационных программ.

Перед исследователями систем, использующими имитационное моделирование, неизбежно возникает задача выбора соответствующих программных средств моделирования. Обилие этих средств, в большинстве своем реализованных на разнотипных ВС, отсутствие исчерпывающей документации, единой методики сравнения существующих систем значительно усложняет решение этой задачи. Усилиями рабочей группы Международной ассоциации по применению математических методов и вычислительных машин в имитационном моделировании разработаны единые классификационные таблицы для представления средств программного обеспечения машинного моделирования, которые позволяют в компактной форме описать различные системы моделирования, особенности их реализации и применения.

Программные и технические средства моделирования выбираются с учетом ряда критериев. Непременное условие при этом -- достаточность и полнота средств для реализации концептуальной и математической модели. Среди других критериев можно назвать доступность средств, наличие у исследователя информации о тех или других средствах. Немаловажное значение имеет простота и легкость освоения программных средств моделирования, скорость и корректность создания программной модели, существование методики использования средств для моделирования систем определенного класса.

После выбора языка разрабатывают программную модель. Этот процесс включает разработку алгоритма, конкретизацию форм представления входных данных и результатов, написание и отладку программы. Это важный и трудоемкий этап, но по технологии он практически не отличается от всякого другого программирования и поэтому здесь детально не рассматривается.

2. Проверка адекватности и корректировка модели

Проверка адекватности. Проверка адекватности модели системе заключается в анализе ее соразмерности с исследуемой системой, а также равнозначности системе. Однако модель не должна быть полным отображением системы, иначе теряется смысл ее создания. Адекватность нарушается из-за идеализации внешних условий и режимов функционирования, исключения тех или других параметров, пренебрежения некоторыми случайными факторами. Отсутствие точных сведений о внешних воздействиях, определенных нюансах структуры системы, принятые аппроксимации, интерполяции, предположения и гипотезы тоже ведут к уменьшению соответствия между моделью и системой. Перечисленные и другие факторы могут стать причиной того, что результаты моделирования будут существенно отличаться от реальных.

Естественной простейшей мерой адекватности может служить отклонение некоторой характеристики y0 оригинала и ym модели:

или, что лучше, отношение отклонения к характеристике оригинала

/y0

Тогда можно считать, что модель адекватна с системой, если вероятность того, что отклонение у не превышает предельной величины , больше допустимой вероятности Р:

Однако практическое использование данного критерия адекватности зачастую невозможно по следующим причинам.

Во-первых, для проектируемых или модернизируемых систем отсутствует информация о значении характеристики У0, а моделируются, как правило, именно такие системы. Можно сравнивать характеристики модели и некоторой системы-аналога, но тогда будет одинаковая степень недоверия к этим характеристикам. Во-вторых, система оценивается не по одной, а по множеству характеристик, у которых может быть разная величина отклонения. В-третьих, характеристики могут быть случайными величинами и функциями, а часто и нестационарными функциями. Для стохастических систем может оказаться, что статистические характеристики, полученные на модели с высокой степенью адекватности, более точны, чем соответствующие характеристики, вычисленные по результатам измерений на реальной системе Это объясняется тем, что результаты моделирования определяются по большому числу реализации, в то время как количества измерений на реальной системе всегда ограничены. В-четвертых, отсутствует возможность априорного точного задания предельных . отклонений и допустимых вероятностей Р.

Тем не менее проверять адекватность необходимо, так как по неверным результатам моделирования могут быть приняты неправильные решения. На практике оценка адекватности обычно проводится путем экспертного анализа разумности результатов моделирования. Можно выделить следующие виды проверок:

· проверка моделей элементов (в сомнительных случаях следует детализировать элемент или провести дополнительный анализ);

· проверка модели внешних воздействий (принятые предположения, аппроксимации и гипотезы необходимо оценить математическими методами);

· проверка концептуальной модели функционирования системы (выявляются ошибки постановки задачи);

· проверка формализованной и математической модели;

· проверка способов измерения и вычисления выходных характеристик; выявляются ошибки решения;

· проверка программной модели (анализируется соответствие операций и алгоритмов функционирования программной и математической модели, проводятся контрольные расчеты при типовых и предельных значениях переменных, выявляются инструментальные ошибки программирования).

Корректировка модели. Если по результатам проверки адекватности выявляется недопустимое рассогласование модели и системы, возникает необходимость в корректировке или калибровке модели. При этом могут быть выделены следующие типы изменений:

глобальные, локальные и параметрические.

Необходимость в глобальных изменениях возникает в случае обнаружения методических ошибок в концептуальной или математической модели. Устранение таких ошибок приводит к разработке новой модели. Локальные изменения связаны с уточнением некоторых параметров или алгоритмов. Они выполняются, например, путем замены моделей компонентов системы и внешних воздействий на эквивалентные, но более точные модели. Локальные изменения требуют частичного изменения математической модели, но могут привести к необходимости разработки новой программной модели. Для уменьшения вероятности таких изменений рекомендуется сразу разрабатывать модель с большей степенью детализации, чем это необходимо для достижения цели моделирования.

К параметрическим относятся изменения некоторых специальных параметров, называемых калибровочными. Для обеспечения возможности повышения адекватности модели путем параметрических изменений следует заранее выявить калибровочные параметры и предусмотреть простые способы варьирования ими.

Стратегия корректировки модели должна быть направлена на первоочередное введение глобальных изменений, затем -- локальных и, наконец, параметрических изменений. Общая методика корректировки приведена в работе. Для выработки тактики параметрических изменений большое значение имеет анализ чувствительности модели к вариациям ее параметров.

Завершается этап проверки адекватности и корректировки модели определением и фиксацией области пригодности модели. Под областью пригодности понимается множество условий, при соблюдении которых точность результатов моделирования находится в допустимых пределах.

3. Планирование экспериментов с моделью

Стратегическое планирование. Цели моделирования достигаются путем исследования разработанной модели. Исследования заключаются в проведении экспериментов, в результате которых определяются выходные характеристики системы при разных значениях управляемых переменных параметров модели. Эксперименты следует проводить по определенному плану. Особую важность приобретает планирование экспериментов при численном и статистическом имитационном моделировании на универсальных ВС. Это обосновывается большим числом возможных сочетаний значений управляемых параметров, а каждый машинный эксперимент проводится при определенном сочетании значений параметров. Например, при пяти управляемых параметрах, каждый из которых может иметь три значения, количество сочетаний параметров равно 243, при десяти параметрах (по пять значений каждого) число сочетаний приближается к 10 млн. При ограниченных вычислительных и временных ресурсах обычно не представляется возможным провести все эксперименты. Возникает необходимость в выборе определенных сочетаний параметров и последовательности проведения экспериментов. Это называется стратегическим планированием.

Разработка плана начинается на ранних этапах создания модели, когда выявляются характеристики качества и параметры, с помощью которых предполагается управлять качеством функционирования системы. Эти параметры называют в теории планирования экспериментов факторами. Затем выделяются возможные значения количественных параметров и варианты качественных (функциональных) параметров. Их называют уровнями q. При этом число сочетаний

где k -- число факторов.

Если число факторов велико, то для проведения исследований системы используется один из методов составления плана по неполному факторному анализу. Эти методы хорошо разработаны в теории планирования экспериментов и частично рассмотрены в книге. Особую важность приобретает тщательное планирование экспериментов при исследовании нестационарных систем в связи с необходимостью существенного увеличения общего количества экспериментов.

Тактическое планирование. Совокупность методов уменьшения длительности машинного эксперимента при обеспечении статистической достоверности результатов имитационного моделирования получила название тактического планирования. На длительность одного .эксперимента (периода моделирования Тm) влияет степень стационарности системы, взаимозависимости характеристик и значения начальных условий моделирования.

Данные, собранные в эксперименте, можно рассматривать как временные ряды, состоящие из замеров определенных характеристик. Ряд замеров характеристики у может рассматриваться как выборка из стохастической последовательности. Если эта последовательность стационарна, ее среднее у не зависит от времени. Оценкой является среднее по временному ряду y1, .... уN. Для эргодической последовательности точность этой оценки возрастает с ростом N.

Если заданы максимальная допустимая ошибка оценки (доверительный интервал) и минимальная вероятность того, что истинное среднее у лежит внутри этого интервала, то существует минимальный размер исследуемой выборки. Этот размер соответствует минимальной длительности эксперимента. Для оценки нескольких характеристик период моделирования определяется по максимальному значению.

Требуемый размер выборки существенно зависит от дисперсии оцениваемой характеристики. Чем больше дисперсия, тем больше должен быть размер выборки. Для коррелированных случайных характеристик следует оценивать дисперсии. Имеются специальные приемы обработки результатов моделирования, которые получили название методов уменьшения дисперсии. Они используют априорную информацию о системе и позволяют уменьшить размер выборки при сохранении заданной точности оценок. К ним относятся методы коррелированных, стратифицированных выборок и др.

Большинство имитационных моделей используются для изучения установившихся равновесных режимов функционирования. Но в начальный период работы системы или модели существует переходный режим даже при неизменных значениях параметров входных воздействий. Как показали исследования, длительность переходного режима может быть весьма большой. Значения выходных характеристик, измеренные в переходный период, смещают их общие оценки.

Существует три основных метода уменьшения ошибки, обусловленной начальными условиями. Первый состоит в достаточном увеличении периода моделирования. С увеличением числа замеров влияние начального смещения на статистическую оценку стремится к нулю. Второй метод состоит в том, чтобы начинать сбор статистики не с начального момента, а по истечении некоторого времени. Третий метод заключается в инициализации модели не с «нулевого», а специально заданного состояния, близкого к установившемуся.

Первые два метода приводят к увеличению длительности эксперимента и не дают гарантии уменьшения ошибки, так как априорно неизвестна длительность переходного режима. Третий метод можно применять при наличии информации о подходящем начальном состоянии. В последующих экспериментах для задания начальных состояний могут использоваться уточненные сведения из предшествующих экспериментов.

При моделировании нестационарных систем установившийся. режим может полностью отсутствовать. Естественным методом определения характеристик имитационного моделирования нестационарных систем является метод повторных экспериментов. В этом случае число экспериментов существенно увеличивается, что приводит к особым требованиям по их планированию.

4. Анализ результатов моделирования

Обработка измерений имитационного эксперимента. При статистическом моделировании в ходе имитационного эксперимента измеряются множества значений по каждой выходной характеристике. Эти выборки необходимо отрабатывать для удобства последующего анализа и использования. Поскольку выходные характеристики зачастую являются случайными величинами или функциями, обработка заключается в вычислении оценок математических ожиданий, дисперсий и корреляционных моментов. Оценки, полученные в результате статистической обработки измерений, должны быть состоятельными, несмещенными и эффективными.

Для того чтобы исключить необходимость хранения в машине всех измерений, обработку проводят по рекуррентным формулам, когда оценки вычисляют в процессе эксперимента методом нарастающего итога по мере появления новых измерений.

Для стохастических характеристик можно построить гистограмму относительных частот -- эмпирическую плотность распределения. С этой целью область предполагаемых значений характеристики Y разбивается на интервалы. В ходе эксперимента по мере измерений определяют число попаданий характеристики в каждый интервал и подсчитывают общее число измерений. После завершения эксперимента для каждого интервала вычисляют отношение числа попаданий характеристики к общему числу измерений и длине интервала. Для построенной гистограммы можно попытаться подобрать теоретический закон распределения. Делается это так же, как и при подготовке исходных данных моделирования.

Если искомая характеристика является стационарной случайной функцией времени y(t) и обладает свойством эргодичности, то для ее оценки вычисление среднего по времени заменяется вычислением среднего по множеству измерений при одном достаточно продолжительном эксперименте.

Для случайных нестационарных характеристик период моделирования T разбивается на отрезки с постоянным шагом Tm (прогоны или сечения), и запоминаются значения характеристики в конце каждого прогона. Проводится серия экспериментов с разными последовательностями случайных параметров модели. Затем измерения каждого сечения обрабатываются как при оценке случайных величин. В книге рассмотрена методика этих вычислений.

Процессы обработки измерений имитационного эксперимента направлены на получение интегральных характеристик, т. е. на сжатие данных.

Определение зависимостей характеристик от параметров системы. По результатам статистического моделирования может быть проведен анализ зависимостей характеристик от параметров системы и внешних воздействий. Для этого можно воспользоваться корреляционным, дисперсионным или регрессионным методами.

С помощью корреляционного анализа можно установить наличие связи между двумя или более случайными величинами. Оценкой связи служит коэффициент корреляции при наличии линейной связи между величинами и нормальном законе их совместного распределения. Коэффициент корреляции, равный единице по абсолютной величине, свидетельствует о наличии функциональной нестохастической линейной связи между анализируемыми величинами. При равенстве нулю коэффициента корреляции связь отсутствует. Промежуточные значения коэффициента корреляции соответствуют наличию линейной связи с рассеянием или нелинейной корреляции.

Дисперсионный анализ можно использовать для установления относительного влияния различных факторов на значения выходных характеристик. При этом общая дисперсия характеристики разлагается на компоненты, соответствующие рассматриваемым факторам. По значениям отдельных компонентов делают вывод о степени влияния того или другого фактора на анализируемую характеристику.

Когда все факторы в эксперименте являются количественными, можно найти аналитическую зависимость между характеристиками и факторами. Для этого используются методы регрессионного анализа. Найденная зависимость называется эмпирической моделью. Регрессионный анализ заключается в том, что выбирается вид соотношения между зависимыми и независимыми переменными, по экспериментальным данным вычисляются параметры выбранной зависимости и оценивается качество аппроксимации экспериментальных данных моделью. Если качество неудовлетворительное, берется зависимость другого вида, и процедура повторяется.

К анализу результатов моделирования можно отнести задачу анализа чувствительности модели к вариациям ее параметров. Под анализом чувствительности понимают проверку устойчивости характеристик процесса функционирования системы к возможным отклонениям значений параметров.

Анализ результатов моделирования позволяет уточнить множество информативных параметров модели, что может привести к существенному изменению первоначального вида концептуальной модели; найти функциональные зависимости характеристик и параметров, что иногда дает возможность создать аналитические модели системы, или определить весовые коэффициенты критерия эффективности.

Использование результатов моделирования. В конечном счете результаты моделирования используются для принятия решения о работоспособности системы, для выбора лучшего проектного варианта или для оптимизации системы. Решение о работоспособности принимается по тому, выходят или не выходят характеристики системы за установленные границы при любых допустимых изменениях параметров. При выборе лучшего варианта из всех работоспособных вариантов выбирается тот, у которого максимальное значение критерия эффективности. Наиболее общей и сложной является оптимизация системы: требуется найти такое сочетание значений переменных параметров системы или рабочей нагрузки из множества допустимых, которое максимизирует значение критерия эффективности:


Подобные документы

  • Имитационное моделирование как один из наиболее широко используемых методов при решении задач анализа и синтеза сложных систем. Особенности имитационного моделирования систем массового обслуживания. Анализ структурной схемы системы передачи пакетов.

    курсовая работа [1,2 M], добавлен 28.05.2013

  • Язык GPSS как один из наиболее эффективных и распространенных языков моделирования сложных дискретных систем. Транзакт - элемент системы массового обслуживания. Решение задач на основе моделирования с применением языка GPSS, создание имитационной модели.

    курсовая работа [54,7 K], добавлен 25.11.2010

  • Программные средства имитационного моделирования систем массового обслуживания. Программная среда Matlab, ее структура и основные компоненты, функциональные особенности, а также назначение. Разработка подсистем моделирования. Инструкция пользователя.

    дипломная работа [3,3 M], добавлен 10.07.2017

  • Определение функциональных характеристик систем массового обслуживания (СМО) на основе имитационного моделирования; синтез СМО с заданными характеристиками. Разработка программы на языке SIMNET II; расчет процесса работы СМО; подбор требуемого параметра.

    лабораторная работа [623,8 K], добавлен 11.03.2011

  • Характеристика электрических систем в установившихся режимах. Классификация кибернетических систем. Развитие методов моделирования сложных систем и оптимизация на электронных вычислительных машинах моделей в алгоритмическом и программном аспекте.

    реферат [27,3 K], добавлен 18.01.2015

  • Основные сведение о системе моделирования GPSS и блоки, используемые при моделировании одноканальных и многоканальных систем массового обслуживания. Разработка модели работы ремонтного подразделения в течение суток с использованием программы GPSS World.

    курсовая работа [36,4 K], добавлен 11.02.2015

  • Структурно-информационный анализ методов моделирования динамических систем. Математическое моделирование. Численные методы решения систем дифференциальных уравнений. Разработка структуры програмного комплекса для анализа динамики механических систем.

    дипломная работа [1,1 M], добавлен 14.05.2010

  • Математическое описание имитационной модели. Описание блок-схемы алгоритма. Анализ полученных результатов имитационного моделирования. Сопоставление полученных результатов для разработанных моделей. Математическое описание аналитического моделирования.

    курсовая работа [306,5 K], добавлен 25.03.2015

  • Концептуальная модель процесса обслуживания покупателей в магазине. Описание системы моделирования GPSS. Разработка моделирующей программы на специализированном языке имитационного моделирования в среде AnyLogic. Результаты вычислительных экспериментов.

    курсовая работа [906,9 K], добавлен 12.07.2012

  • Моделирование как основная функция вычислительных систем. Разработка концептуальной модели для системы массового обслуживания и ее формализация. Аналитический расчет и алгоритмизация модели, построение блок-диаграмм. Разработка и кодирование программы.

    курсовая работа [164,8 K], добавлен 18.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.