Математическое моделирование
Изучение современных принципов, подходов и методов моделирования сложно формализуемых объектов. Решение задач структурной и параметрической идентификации. Характеристики вычислительных систем как сложных систем массового обслуживания. Теория потоков.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 18.02.2012 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО
ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН
Кафедра «Информатика и математика»
КОНСПЕКТ ЛЕКЦИЙ
По дисциплине «математическое моделирование»
для студентов направления «Информатика и информационные технологии»
Составитель:
Сапаев. У
УРГЕНЧ-2008
АННОТАЦИЯ
В данном сборнике лекций представлены современные принципы, подходы и методы моделирования сложно формализуемых объектов. Описаны задачи структурной и параметрической идентификации. Рассмотрены практические задачи управления сложными объектами. Для усвоения материалов лекций достаточно знания основ высшей математики в объеме обычного курса ВТУЗа. Курс рассчитан для подготовки бакалавров по направлению образования "Информатика и информационные технологии".
Курс рассчитан на 64 часов аудиторных занятий, из них:
32 асов -- лекционных занятий;
16 часов -- практических занятий;
16 часов -- лабораторных занятий.
Лекция 1. ОБЩИЕ ВОПРОСЫ ТЕОРИИ МОДЕЛИРОВАНИЯ (2 часа)
1. Предмет теории моделирования
2. Роль и место моделирования в исследованиях систем
3. Классификация моделей
4. Моделирование в процессах познания и управления
5. Классификация объектов моделирования
6. Основные этапы моделирования
1. Предмет теории моделирования
Мысленные модели как форма теоретического осмысления и отражения действительности играют большую роль в физическом познании. В этой связи важное теоретико-познавательное и методологическое значения приобретает вопрос о формировании моделей, использовании их в познании, возможности их включения в более общие представления и их связи с другими формами познавательной деятельности, мысленным и реальным экспериментами, гипотезой, теорией.
Модели, как научные гипотезы, мы можем рассматривать как форму развития науки, неокончательно разработанные теории, согласно мнениям некоторых представителей конкретных наук, можно рассматривать в качестве моделей будущих совершенных теорий.
Представляется, что можно дать следующее рабочее определение мысленным и материальным моделям.
Моделирование -- это замещение одного объекта (оригинала) другим (моделью) и фиксация или изучение свойств оригинала путем исследования свойств модели. Замещение производится с целью упрощения, удешевления, ускорения фиксации или изучения свойств оригинала.
В общем случае объектом-оригиналом может быть любая естественная или искусственная, реальная или воображаемая система.
Метод моделирования применяется все большим числом ученых.
Примеры из механики, физики (твердого тела), химии, биологии, медицины, экономии и др.
Концепция моделирования прежде всего преследует цель включения моделей в процесс создания теорий, поскольку идеальные модели могут быть предварительной ступенью в построении или моделью интерпретации теории.
Гипотезы отличаются от идеальных моделей, являющихся идеализированными объектами теории, и могут быть представлены как предварительная ступень или модель интерпретации теории, прежде всего благодаря своей функции в процессе познания в качестве научно обоснованного предложения о до сих пор неизвестных и недоступных явлениях. Гипотезы могут рассматриваться как предварительные ступени формирующихся моделей.
При разработке исходной модели интуиция исследователя играет большую роль. В начале может выдвигаться большое число моделей, однако в ходе исследования их число сокращается.
Формой работы с моделью является мысленный эксперимент. Иногда он называется идеализированным, что вскрывает тесную его связь с реальными экспериментами и основное различие между ними. В известной мере мысленный эксперимент представляет образное мысленное реконструирование определенных сторон реального эксперимента «мышление есть не более чем продукт опыта в уме » , -«мысленный опыт, безусловно удобнее, чем действительный опыт: мысли у нас всегда имеются, и легче накопить опыт в уме, чем в действительности » [по Энгельмайеру].
Эксперимент остается критерием адекватности отражения в модели определенных сторон объекта оригинала. Эксперимент играет роль судьи, который выносит решение, жить или не жить представлению, полученному с помощью модели.
Представление изучаемого явления, процесса или объекта с помощью математических соотношений и формул называется математической моделью. При моделировании объекта исследования дело начинается с формализации объекта, т.е. с построения соответствующей математической модели. Для этого выделяются его наиболее существенные черты и свойства и описываются с помощью математических соотношений.
После того, как построена математическая модель, т.е. задача придана математическая форма, мы можем воспользоваться для ее изучения математическими методами.
Примеры математических моделей.
Рис.1. x2+y2=r2-уравнение (модель) окружности.
Рис.2 y=ax2-уравнение (модель) параболы.
Рис.3. - уравнение (модель) эллипса.
Задача 1. Необходимо определить площадь поверхности письменного стола.
Это означает, реальный объект (письменный стол) заменяется абстрактной математической моделью прямоугольника. Прямоугольнику присваиваются размеры, полученные в результате измерения, и площадь такого прямоугольника приближенно принимается за искомую площадь.
Выбор модели прямоугольника для поверхности стола мы обычно делаем, полагаясь на свое зрительное восприятие. Однако, человеческий глаз как измерительный инструмент не отличается высокой точностью. Поэтому при более серьезном подходе к задаче, прежде чем воспользоваться моделью прямоугольника для определения площади, эту модель, т.е. объект исследования, нужно проверить на предмет описания его моделью прямоугольника. Для этого можно измерить противоположные стороны и обе диагонали прямоугольника. Если они попарно равны, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае от модели прямоугольника надо отказаться, и следует перейти к модели четырехугольника общего вида.
Моделирование целесообразно, когда у модели отсутствуют те признаки оригинала, которые препятствуют его исследованию, или имеются отличные от оригинала параметры, способствующие фиксации или изучению свойств модели.
Теория моделирования представляет собой взаимосвязанную совокупность положений, определений, методов и средств создания и изучения моделей. Эти положения, определения, методы и средства, как и сами модели, являются предметом теории моделирования.
Основная задача теории моделирования заключается в том, чтобы вооружить исследователей технологией создания таких моделей, которые достаточно точно и полно фиксируют интересующие свойства оригиналов, проще или быстрее поддаются исследованию и допускают перенесение его результатов на оригиналы.
Теория моделирования является основной составляющей общей теории систем -- системологии, где в качестве главного принципа постулируются осуществимые модели: система представима конечным множеством моделей, каждая из которых отражает определенную грань ее сущности.
В данной книге в качестве объектов-оригиналов рассматриваются ВС, т. е. ВС составляют предметную область моделирования. Понятие ВС здесь трактуется в широком смысле--от однопроцессорных систем обработки данных до распределенных сетей ЭВМ с различным программным обеспечением и функциональным назначением.
Поскольку ВС -- это искусственные, инженерные системы, все их параметры известны, по крайней мере, они известны создателям ВС, а значит могут быть изучены, познаны их исследователями. Это предопределяет принципиальную возможность моделирования ВС.
2. Роль и место моделирования в исследованиях систем
Трудно переоценить роль моделирования в научных изысканиях, инженерном творчестве и, вообще, в жизни человека. Познание любой системы сводится, по существу, к созданию ее модели. Перед изготовлением каждого устройства или сооружения разрабатывается его модель-проект. Любое произведение искусства является моделью, фиксирующей действительность. Человек, прежде чем совершить что-либо, обдумывает возможную последовательность действий или интуитивно руководствуется определенными установившимися апробированными моделями поведения.
Особую ценность имеют конструктивные модели, т. е. такие, которые допускают не только фиксацию свойств, но и исследование зависимостей характеристик от параметров системы. Такие модели позволяют оптимизировать функционирование систем. Оптимизационные модели -- основа теории сложных систем.
Роль моделирования как метода научного познания и метода решения технических задач всегда оценивалась достаточно высоко. С развитием техники нашло широкое применение физическое моделирование сооружений, машин и механизмов.
Достижения математики привели к распространению математического моделирования различных объектов и процессов. Подмечено, что динамика функционирования разных по физической природе систем описывается однотипными зависимостями, т.е. может быть представлена одинаковыми моделями. Расчетные формулы, которые используют инженеры для анализа и синтеза всевозможных систем, зачастую выведены из математических моделей этих систем.
На качественно новую ступень поднялось моделирование в результате разработки методологии имитационного моделирования. Это обусловлено тем, что существенно расширился класс систем, которые могут быть исследованы с помощью моделирования.
Появление вычислительных машин способствовало углублению и расширению сфер применения моделирования. Особое значение приобретает моделирование в современных условиях всемерного ускорения научно-технического прогресса, при требованиях достижения больших эффектов с ограниченными материальными, трудовыми, энергетическими и временными ресурсами.
Сейчас трудно указать область человеческой- деятельности, где не применялось бы моделирование. Разработаны, например, модели производства автомобилей, выращивания пшеницы, функционирования отдельных органов человека, жизнедеятельности Азовского моря, последствий атомной войны. В перспективе для каждой системы могут быть созданы свои модели, перед реализацией каждого технического или организационного проекта. должно проводиться моделирование.
Специалисты считают, что моделирование становится основной функцией вычислительных систем. Действительно, в настоящее время основные усилия направлены на внедрение вычислительной техники в автоматизированные системы управления технологическими процессами, организационно-экономическими комплексами и процессами проектирования, для создания банков данных и знаний. Но любая система управления нуждается в информации об управляемом объекте или процессе. Поэтому справочные системы, банки данных и знаний следует рассматривать как подспорье для управляющих систем. В свою очередь, любая система управления нуждается в модели управляемого объекта или процесса, в моделировании последствий тех или иных управляющих решений. В связи с этим применение вычислительных систем для моделирования приобретает первостепенное значение.
Сами ВС как сложные и дорогостоящие технические системы могут и должны стать объектами моделирования. Моделирование целесообразно использовать на этапе проектирования ВС, и для анализа функционирования действующих систем в экстремальных условиях или при изменении их состава, структуры, способов управления или рабочей нагрузки. Применение моделирования на этапе проектирования позволяет анализировать варианты проектных решений, определять работоспособность и производительность, выявлять дефицитные и малозагруженные ресурсы, вычислять ожидаемые времена реакции и принимать решения по рациональному изменению состава и структуры ВС или по способу организации вычислительного процесса.
В том случае, когда не удается создать модель, допускающую использование аналитических методов оптимизации, процесс разработки ВС принимает итерационный характер. Предварительно выбранный вариант проектного решения анализируют путем моделирования. Это дает возможность определить ожидаемые характеристики будущей системы, выявить ее сильные и слабые стороны. Если характеристики не удовлетворяют предъявляемым требованиям, по результатам анализа выполняют корректировку проекта, затем снова проводят моделирование. Этот процесс повторяется до достижения требуемого качества функционирования разрабатываемой ВС.
При анализе действующих систем с помощью моделирования определяют границы работоспособности системы, выполняют имитацию экстремальных условий, которые могут возникнуть в процессе функционирования системы. Искусственное создание таких условий на действующей системе затруднено и может привести к катастрофическим последствиям, если система не справится со своими функциональными обязанностями. Применение моделирования может быть полезным при разработке стратегии развития ВС, ее усовершенствовании и образовании связей с другими ВС при создании многомашинных комплексов и сетей ЭВМ, при изменении количества, номенклатуры или частоты решаемых задач.
Целесообразнее использовать моделирование для действующих ВС, поскольку можно опытным путем проверить адекватность модели и оригинала и более точно определить те параметры системы и внешних воздействий на нее, которые служат исходными данными для моделирования. Моделирование реальной ВС позволяет выявить ее резервы и прогнозировать качество функционирования при любых изменениях, поэтому полезно иметь модели всех развивающихся систем.
3. Классификация моделей
Физические модели. В основу классификации положена степень абстрагирования модели от оригинала. Предварительно все модели можно подразделить на две группы: материальные (физические) и абстрактные (математические).
Физической моделью обычно называют систему, которая эквивалентна или подобна оригиналу, либо у которой процесс функционирования такой же, как у оригинала, и имеет ту же или другую физическую природу. Можно выделить следующие виды физических моделей: натурные, квазинатурные, масштабные и аналоговые.
Натурные модели -- это реальные исследуемые системы. Их называют макетами и опытными образцами. Натурные модели имеют полную адекватность с системой-оригиналом, что обеспечивает высокую точность и достоверность результатов моделирования. Процесс проектирования ВС завершается зачастую испытанием опытных образцов.
Квазинатурные модели представляют собой совокупность натурных и математических моделей. Этот вид моделей используется в случаях, когда математическая модель части системы не является удовлетворительной (например, модель человека-оператора) или когда часть системы должна быть исследована во взаимодействии с остальными частями, но их еще не существует, либо их включение в модель затруднено или дорого. Примерами квазинатурных моделей могут служить вычислительные полигоны, на которых отрабатывается программное обеспечение различных систем, или реальные АСУ, исследуемые совместно с математическими моделями соответствующих производств.
Масштабная модель -- это система той же физической природы, что и оригинал, но отличающаяся от него масштабами. Методологической основой масштабного моделирования является теория подобия, которая предусматривает соблюдение геометрического подобия оригинала и модели и соответствующих масштабов для их параметров. При проектировании ВС масштабные модели могут использоваться для анализа вариантов компоновочных решений по конструкции системы и ее элементов.
Аналоговыми моделями называются системы, имеющие физическую природу, отличающуюся от оригинала, но сходные с оригиналом процессы функционирования. Обязательным условием при этом является однозначное соответствие между параметрами изучаемого объекта и его модели, а также тождественность безразмерных математических описаний процессов, протекающих в них. Для создания аналоговой модели требуется наличие математического описания изучаемой системы.
В качестве аналоговых моделей используются механические, гидравлические, пневматические системы, но наиболее широкое применение получили электрические и электронные аналоговые модели, в которых сила тока или напряжение являются аналогами физических величин другой природы. Особенностью аналоговых моделей является их гибкость и простота адаптации к изменению и измерению количественных значений параметров и характеристик моделируемой системы.
Аналоговые модели используют при исследовании средств вычислительной техники на уровне логических элементов и электрических цепей, а также на системном уровне, когда функционирование системы описывается, например, дифференциальными или алгебраическими уравнениями.
Математические модели. Математическая модель представляет собой формализованное описание системы с помощью абстрактного языка, в частности с помощью математических соотношений, отражающих процесс функционирования системы. Для составления модели можно использовать любые математические средства -- алгебраическое, дифференциальное и интегральное исчисление, теорию множеств, теорию алгоритмов и т. д. По существу вся математика создана для составления и исследования моделей объектов или процессов.
К средствам абстрактного описания систем относятся также языки химических формул, схем, чертежей, карт, диаграмм и т. п. Выбор вида модели определяется особенностями изучаемой системы и целями моделирования, так как исследование модели позволяет получить ответы на определенную группу вопросов. Для получения другой информации может потребоваться модель другого вида.
Цели моделирования и характерные черты оригинала определяют в конечном счете ряд других особенностей моделей и методы их исследования. Например, математические модели можно классифицировать на детерминированные и вероятностные (стохастические). Первые устанавливают однозначное соответствие между параметрами и характеристиками модели, а вторые -- между статистическими значениями этих величин. Выбор того или иного вида модели обусловлен степенью необходимости учета случайных факторов. Среди математических моделей можно выделить по методу их исследования аналитические, численные и имитационные модели.
Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.
Численная модель характеризуется зависимостью такого вида, который допускает только частные численные решения для конкретных начальных условий и количественных параметров модели.
Имитационная модель -- это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить измерения интересующих характеристик.
Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные модели. Поскольку для реализации имитационных моделей используются, как правило, ВС, средствами формализованного описания имитационных моделей служат зачастую универсальные или специальные алгоритмические языки. Имитационные модели в наибольшей степени подходят для исследования ВС на системном уровне.
4. Моделирование в процессах познания и управления
С проблемой моделирования мы сталкиваемся в двух случаях: во-первых, в процессах познания, когда стараются познавательные модели объектов и явлений, с которыми приходится сталкиваться человеку, и во-вторых, в процессах управления, связанных с целенаправленным изменением объекта, т.е. с достижением целей, поставленных человеком.
Рассмотрим оба типа моделирования подробнее.
В процессах познания создается познавательная модель объекта, отображающая в необходимой мере механизм его функционирования. Примером такого рода моделирования является изучение окружающей нас природы. Объяснение феноменов природы, их взаимная увязка и обусловленность, анализ механизмов и т.д. - вот основные задачи моделирования этого рода. Такое моделирование по сути дела мало чем отличается от познания вообще, целью которого, как известно, является синтез моделей; отражающих важную для человека специфику объектов окружающего его мира. Эта специфика отражается в своеобразии причинно- следственных связей каждого объекта или явления, которые удобно представить в виде некоторого «преобразователя» причины в следствие (рис 4.)
Рис 1. Представление объекта познания.
Описание «работы» такого преобразователя на каком-либо языке мы будем подразумевать моделью.
Таким образом под моделью мы будем подразумевать рассуждения (на любом языке - математическом, графическом, алгоритмическом, разговорном и т.д.), позволяющие имитировать наблюдаемое явления. Очевидно, что конкретные цели конкретизируют и язык на котором описывается модель. Так, языком большого числа физических и технических моделей является математика.
Формализуем сказанное. Будем обозначать причину буквой Х, а следствие-Y. Связь между ними запишем условно в виде
Y=F(X),
где F-правило преобразования причины Х в следствие Y. Это и есть модель. Назовем F оператором модели.
На рис.5 показано взаимодействие моделируемого объекта со средой.
Рис.5. Взаимодействие объекта со средой.
Это взаимодействие происходит по каналом Х иY. По каналу Х среда воздействует на объект, а по какому Y объект воздействует на среду.
Задача моделирования сводится к определению оператора F, связывающего вход и выход объекта.
Пусть x1,x2, ... ,xN - наблюдения входа объекта, y1,y2, ... yN -соответствующие им наблюдения его выхода в дискретные моменты времени 1,2, ... , N эти наблюдения связаны неизвестным оператором объекта F0 , т.е.
Yi=F0(xi) (i=1,2,...,N)
задача моделирования заключается в построении (синтезе) модельного оператора F, т.е. в получении оценки F0 по наблюдениям хi и yi. Естественно потребовать, чтобы F был близок к F0 в смысле некоторого критерия, т.е. F~F0.
Существенной особенностью познавательных моделей является отражения механизма объекта или явления в структуре оператора F, т.е. всех причинно - следственных связей, имеющихся у объекта и выявленных в процессе моделирования. При не учете этих связей познавательная сторона модели существенно пострадала бы, так как для познания необходимо представлять не только как, но и почему это происходит. Мы эти вопросы не будем затрагивать.
Другой тип моделирования, который мы будем изучать связан непосредственно с потребностями управления объектом и по отношению к управлению имеет вспомогательный характер. Действительно, чтобы управлять, нужно прежде всего знать, чем управляешь, т.е. иметь модель объекта, на которой можно «разыгрывать» последствия предполагаемого управления и выбрать наилучшее. Поэтому в процессе моделирования такого рода должна быть создана модель, которая прежде всего обязана удовлетворять потребностям управления.
Следует отметить, что такая модель, синтезированная специально для потребностей управления, может и не отражать внутренних механизмов явления, что совершенно необходимо для познавательной модели. Ей достаточно лишь констатировать наличие определенной формальной связи между входом и выходом объекта.
В связи с этим целесообразно выяснить, что следует подразумевать под понятием «управление» и какие требования оно накладывает на модель управляемого объекта, получаемую в процессе моделирования.
Под управлением будем понимать процесс такого целенаправленного воздействия на объект, в результате которого объект оказывается в определенном смысле «ближе» к выполнению поставленных целей , чем до управления. На рис.6. показана общая схема управления объектом.
Здесь Х - неуправляемая, но контролируемая составляющая;
U-управляемая составляющая; Y-информация о состоянии объекта, доступная управляющему устройству.
Для синтеза управления необходимо прежде всего определить цель Z, т.е. то, к чему должно «стремиться » управляющее устройство при воздействии на объект, каким должен быть объект с точки зрения управления. Однако, этого мало, необходимого еще иметь алгоритм управления А, который указывает, как достигнуть этой цели.
Таким образом управление реализуется четверкой
<U,I=<X,Y>,A,Z>,
где U-управляющее воздействие; I=<X,Y> - информация о состоянии среды и объекта; А- алгоритм; Z-цель управления.
Цель Z определяет требования, выполнение которых обеспечивается и организацией управляющего воздействия U с помощью алгоритма А и сбором информации по каналу Y. Не зная, как X и U влияют на состояние Y, т.е. не имея модели Y=F(X,U), нельзя определить управление U, достаточно лишь констатировать наличие определенной формальной связи.
5. Классификация объектов моделирования
Задача моделирования, как задача построения оператора модели, отражающего качественные и количественные стороны объекта, может быть сформулирована и соответственно решаться по схеме, приведенной на рис 7. Исторически эти подходы возникли независимо друг от друга и в связи с решением различных задач. Классификационных задач, породивших эти методы, удобно произвести на основе понятий динамического и статического объектов.
Рис. 7. Классификация объектов моделирования.
Первыми и простейшими объектами, которые были подвергнуты процедуре модулирования, оказались статические детерминированные (не стохастические) объекты, т.е. регулярные функции, связывающие вход и выход объекта. Это обстоятельство и породило первый подход в теории моделирования, который известен в математическом анализе в виде теории приближения функций многочленами и ведет свое начало от работ П.Л. Чебышева. Это направление связано с представлением функции в виде разложения по некоторой системе функций (чаще всего по системе полиномов). В этой теории известны два направления - теория аппроксимации и теория интерполяции. Для идентификации стохастических объектов используются методы математической статистики. В этом направлении известны две теории - теория оценивания и планирования эксперимента. Основной задачей теории оценивания является оценка неизвестных параметров статического объекта по наблюдениям в обстановке помех и случайных возмущений. В теории планирования экспериментов рассматриваются активные эксперименты в целях определения неизвестных параметров стохастического объекта.
Третьим подходом моделирования динамических объектов являются методы теории систем автоматического управления. В этой теории разработаны специальные методы моделирования динамических объектов управления в режиме нормальной эксплуатации, т.е. в обстановке помех и случайных возмущений.
6. Основные этапы моделирования
Для моделирования необходимо создать модель и провести ее исследование. Перед созданием модели требуется конкретизировать цели моделирования. После исследования надо выполнить анализ результатов моделирования. Процесс создания модели проходит несколько стадий. Он начинается с изучения объекта и внешних воздействий и завершается разработкой или выбором математической модели или программы для ВС, если моделирование будет проводиться с ее помощью. Некоторые математические модели могут быть исследованы без применения средств вычислительной техники, но в дальнейшем, как правило, рассматриваются такие модели, исследование которых надо проводить с помощью ВС. Таким образом, моделирование на ВС предполагает наличие следующих укрупненных этапов: формулировка целей, изучение объекта, описательное моделирование, математическое моделирование, выбор (или создание) метода решения задачи, выбор или написание программы для решения задачи на ЭВМ, решение задачи на ЭВМ, анализ получаемого решения.
Этапы моделирования объектов (процессов, явлений)
Формулировка целей. В основе всякой задачи, проблемы моделирования лежит информация о том, чего собственно добывается, что хочет субъект от объекта, т.е. каковы его цели {Z}. Именно эта информация определяет объект. Существует своеобразный парадокс: цель определяется объектом, а объект целью. Этот парадокс разрешается довольно просто. Субъект, формулируя цель, всегда имеет какие-то представления об объекте. Эти представления могут быть очень приближенными, но всегда отражают некоторые его свойства, достаточные для эффективной формулировки целей моделирования. Обычно в задачах моделирования цель достигается путем максимизации или минимизации некоторого критерия, задаваемого в виде целевой функции.
Изучение объекта. При этом требуется понять происходящий процесс, определить границы объекта с окружающей его средой, если таковые имеются. Кроме того, на данном этапе определяются перечень всех входных и выходных параметров объекта исследования и их влияние на достижение целей моделирования.
Описательное моделирование - установление и словесная фиксация основных связей входных и выходных параметров объекта.
Математическое моделирование - перевод описательной модели на формальный математический язык. Цель записывается в виде функции, которую обычно называют целевой. Поведение объекта описывается с помощью соотношений, входные и выходные параметры объекта на данном этапе в зависимости от сложности исследуемой проблемы могут возникать ряд задач чисто математического характера. Такими задачами являются задачи математического программирования, линейной алгебры, задачи дифференциального и интегрального исчисления и многие другие.
Выбор (или создание) метода решения задачи. На данном этапе для возникшей математической задачи подберется подходящий метод. При выборе такого метода необходимо будет обратить внимание на сложность метода и потребляемые вычислительные ресурсы. Если подходящего метода по предъявленным критериям не окажется, то требуется разработать новый метод решения задачи. Мы делаем упор на разработку новых эффективных методов, не уступающих известным методам по основным вычислительным характеристикам.
Выбор или написание программы для решения задачи на ЭВМ. На данном этапе выбирается подходящая программа, реализующая выбранный метод решения. Если такая программа отсутствует, то необходимо написать такую программу.
Решение задачи на ЭВМ. Вся необходимая информация для решения задачи вводится в память ЭВМ вместе с программой. С использованием подходящей программы производится обработка целевой информации и получение результатов решения задач в удобной форме.
Анализ получаемого решения. Анализ решения бывают двух видов: формальный (математический), когда проверяется соответствие полученного решения построенной математической модели (в случае несоответствия проверяется программа, исходные данные, работа ЭВМ и др.) и содержательный (экономический, технологический и т.п.), когда проверяется соответствие полученного решения тому объекту, который моделировался. В результате такого анализа в модель могут быть внесены изменения или уточнения, после чего весь рассмотренный процесс повторяется. Модель считается построенной и завершенной, если она с достаточной точностью характеризует деятельность объекта по выбранному критерию. Только после этого модель можно использовать при расчетах.
Перечисленные этапы вытекают из общей методологии моделирования систем. При моделировании различных систем трудоемкости одних и тех же этапов могут быть разными. В процессе моделирования конкретной системы могут иметь место некоторые изменения технологии. В частности, может быть заранее предопределен метод моделирования или выбрано конкретное средство моделирования. Математическая модель окажется настолько простой, что не потребуется проведения машинных экспериментов, разработка программной модели исключит необходимость создания математической модели.
Следует обратить внимание на первоочередную необходимость постановки, формулирования цели моделирования. В этом вопросе должно быть достигнуто взаимопонимание между заказчиком, ответственным за создание или модернизацию системы, и разработчиком модели. Важность корректного выполнения этого этапа определяется тем, что все последующие этапы проводятся с ориентацией на определенную цель моделирования.
На этом же этапе конкретизируется, в каких единицах измерения (относительных или абсолютных) должны быть представлены результаты моделирования. Под относительными единицами здесь понимаются качественные градации, сравнительные оценки разных вариантов системы (типа «лучше--хуже», «больше-- меньше»). При необходимости представления результатов в абсолютных единицах должен быть решен вопрос о точности измерения. Этот вопрос зачастую не имеет однозначного ответа, но крайне важен для выполнения всех этапов моделирования.
Проверка адекватности указана выше в виде одного из этапов моделирования. Не надо это понимать буквально, так как на адекватность модели оказывает влияние качество выполнения практически всех этапов. Поэтому проверка адекватности должна проводиться в том или ином виде, начиная от разработки концептуальной модели и кончая анализом результатов моделирования.
Под разработкой математической модели подразумевается создание полностью формализованного описания динамики функционирования системы. Однако не для всех систем, внешних условий и целей моделирования может быть подобран известный метод формализации или конструктивный математический аппарат. Тем не менее и для таких систем следует разработать однозначные зависимости выходных характеристик от параметров и воздействий для каждой составляющей системы, алгоритмы взаимодействия между составляющими, логические условия изменения состояний.
Результаты машинного моделирования должны быть проанализированы с целью проверки их достоверности и выработки рекомендаций о способах повышения качества исследуемой системы. На всех этапах моделирования следует обратить особое внимание на документирование принимаемых решений, допущений, ограничений и выводов.
Из организационных аспектов моделирования следует выделить необходимость непосредственного участия в работе квалифицированных представителей заказчика на первых этапах (вплоть до разработки математической модели) и на этапе анализа результатов моделирования. Ответственный за систему заказчик должен четко понимать цели моделирования, разработанную концептуальную модель, программу исследований и полученные результаты. Это будет способствовать внедрению выработанных рекомендаций.
Контрольные вопросы
1. В чем заключается сущность моделирования?
2. Роль и место моделирования в процессах познания.
3. Какие разновидности моделей используются в исследованиях систем?
4. Классификация моделей.
5. Определение модели.
6. Определение математической модели.
7. Роль моделирования в задачах управления.
8. Классификация объектов моделирования.
9. Основные этапы моделирования объектов (процессов, явлений).
Литература
Альянах И.Н. Моделирование вычислительных систем, Л.: Машиностроение, 1988 г. - 223 стр.
Растригин Л.А. Современные принципы управления сложными объектами , М.: Советское радио, 1980 г. - 232 стр.
Растригин Л.А., Маджаров Н.Е. Введение в идентификацию объектов управления, М.: Энергия, 1977 г. -- 216 стр.
Лекция 2. ТЕХНОЛОГИЯ МОДЕЛИРОВАНИЯ (2 часа)
План
1. Создание концептуальной модели
2. Подготовка исходных данных
3. Разработка математической модели
4. Выбор метода моделирования
1. Создание концептуальной модели
Определение и ориентация. В процессе разработки модели можно условно выделить такие этапы описания, как концептуальный, математический и программный. На этих этапах создается соответствующая модель.
Концептуальная (содержательная) модель -- это абстрактная модель, определяющая состав и структуру системы So, свойства элементов и причинно-следственные связи, присущие исследуемой системе и существенные для достижения цели моделирования. В концептуальной модели обычно в словесной форме приводятся сведения о природе и параметрах элементарных явлений исследуемой системы, о виде и степени взаимодействия между ними, о месте и значении каждого элементарного явления в общем процессе функционирования системы.
Рис. 1. Отображение оригинала So и модели Sm в сознании исследователя
Первоначально концептуальная модель системы So возникает в сознании исследователя j (рис. 1). Модель ориентируется на выявление определенных свойств системы в соответствии с целями моделирования. Для этого исследователь делает как бы мысленный срез системы в «плоскости» той метасистемы М, в качестве элемента которой представляет интерес система So, т. е. выполняет M-ориентацию. Затем исследователь выявляет основные признаки ориентированной модели и может добавить некоторые признаки и условия, которые облегчат исследование модели или позволят представить ее в виде некоторого среза моделирующей системы Sm. Концептуальная модель -- это субстрат системы с позиций достижения целей моделирования.
Разработка концептуальной модели требует достаточно глубоких знаний системы So, так как надо обосновать не только то, что должно войти в модель, но и то, что может быть отброшено без существенных искажений результатов моделирования. Последнее является наиболее проблематичным, поскольку возникает замкнутый круг: для точного определения влияния исключения какого-либо элемента или явления из модели на степень искажения результатов необходимо создать и исследовать две модели -- с учетом и без учета этого элемента или явления. Выполнить это по каждому сомнительному элементу и явлению не представляется возможным в связи со значительным увеличением объема работ.
Основная проблема при создании модели заключается в нахождении компромисса между простотой модели и ее адекватностью с исследуемой системой. Имеются теоретические проработки решения данной проблемы, но практически их трудно реализовать. Поэтому разработчик модели, руководствуясь своими знаниями системы, оценочными расчетами, опытом, должен принять решение об исключении какого-то элемента или явления из модели без достаточно полной уверенности в том, что это не внесет существенных погрешностей в результаты моделирования. Процесс создания концептуальной модели, очевидно, никогда не может быть полностью формализован. Именно в связи с этим иногда говорят, что моделирование является не только наукой, но и искусством. При создании ориентированной модели уточняются множества полезных и возмущающих внешних воздействий.
Стратификация. Следующим шагом на пути создания концептуальной модели служит выбор уровня детализации модели (рис. 2).
Рис. 2. Уровни модели
Известно, что любая система, в том числе и вычислительная, -- это прежде всего целостная совокупность элементов. Непременным свойством каждой системы является ее членимость. Модель системы представляется в виде совокупности частей (подсистем, элементов) (рис. 2). В эту совокупность включаются все части, которые обеспечивают сохранение целостности системы. Исключение каких-либо элементов из модели не должно приводить к потере основных свойств системы при выполнении функций по отношению к метасистеме.
С другой стороны, каждая часть системы тоже состоит из совокупности элементов, которые, в свою очередь, могут быть расчленены на элементы. С учетом этого проблема выбора уровня детализации может быть разрешена путем построения иерархической последовательности моделей. Система представляется семейством моделей, каждая из которых отображает ее поведение на различных уровнях детализации (рис. 2). На каждом уровне существуют характерные особенности системы, переменные, принципы и зависимости, с помощью которых описывается поведение системы.
Уровни детализации иногда называются стратами, а процесс выделения уровней--стратификацией. Выбор страт зависит от целей моделирования и степени предварительного знания свойств элементов. Для одной и той же системы могут быть использованы различные страты. Обычно в модель включаются элементы одного уровня детализации -- K-страта. Однако может представлять интерес построение модели из элементов разных страт. В том случае, когда общесистемные (функциональные) свойства отдельных элементов мало известны или вызывает затруднение их описание, можно для каждого такого элемента включить в модель его детализированное описание из нижестоящего (К -- 1)-страта. Некоторые элементы и этого уровня можно расчленить, т. е. использовать их описание из следующего уровня -- (К -- 2)-страта.
При построении ориентированной и стратифицированной концептуальной модели необходимо руководствоваться следующим. В модель должны войти все те параметры системы Sok и, в первую очередь, параметры {soj}, допускающие варьирование в процессе моделирования, которые обеспечивают определение интересующих исследователя характеристик Yok при конкретных внешних воздействиях {xon} на заданном временном интервале Т функционирования системы. Остальные параметры должны быть, по возможности, исключены из модели.
Детализация. При расчленении системы на элементы можно поступать следующим образом. Функционирование любой системы представляет собой выполнение одного или нескольких технологических процессов преобразования вещества, энергии или информации. Каждый процесс складывается из последовательности элементарных операций. Выполнение каждой элементарной операции обеспечивается определенным ресурсом -- элементом. Поэтому в модели должны присутствовать все элементы, которые реализуют выполнение всех технологических процессов. Кроме них в модель могут быть включены элементы, которые служат для управления ресурсами и процессами и для хранения объектов преобразования в промежутках времени между выполнением элементарных операций, а также для хранения информации, необходимой для управления. Применение этого правила требует предварительного определения понятия элементарной операции.
Детализация системы должна производиться до такого уровня, чтобы для каждого элемента были известны или могли бы быть получены зависимости параметров выходных воздействий элемента, существенных для функционирования системы и определения ее выходных характеристик, от параметров воздействий, которые являются входными для этого элемента.
Если по результатам ориентации, стратификации и расчленения получается модель большой размерности, т. е. с большим числом параметров, в частности, с большим числом элементов (несколько сотен или даже тысяч), то ее следует упростить, поскольку с громоздкой моделью работать неудобно. Это можно сделать разными способами изоморфных преобразований модели без снижения степени адекватности, в том числе путем декомпозиции системы на подсистемы, интеграции элементарных операций и соответствующей интеграции элементов, исключения или усечения второстепенных технологических процессов с исключением обеспечивающих эти процессы элементов.
Локализация. Последующий шаг создания концептуальной модели -- ее локализация, которая осуществляется путем представления внешней среды в виде генераторов внешних воздействий, включаемых в состав модели в качестве элементов. При необходимости они дифференцируются на генераторы рабочей нагрузки, поставляющие на вход системы основные исходные объекты -- вещество (сырье, полуфабрикаты, комплектующие), энергию для энергетических систем или данные для информационных систем, в том числе для ВС; генераторы дополнительных обеспечивающих объектов и энергии; генераторы управляющих и возмущающих воздействий. Генераторы возмущающих воздействий нарушают процесс функционирования системы (рис.3).
Приемники выходных воздействий системы обычно не включают в модель. Считается, что результаты функционирования системы,
Рис. 3. Локализованная модель
включая основные продукты преобразования, побочные продукты и отходы, информацию о состоянии системы и управляющие воздействия на другие системы, внешняя среда потребляет (принимает) полностью и без задержек.
Структуризация. Управление. Завершается построение структуры модели указанием связей между элементами. Связи могут быть подразделены на вещественные и информационные. Вещественные связи отражают возможные пути перемещения продукта преобразования от одного элемента к другому. Информационные связи обеспечивают передачу между элементами управляющих воздействий и информации о состоянии. Отметим, что как информационные, так и вещественные связи не обязательно должны быть представлены в системе некоторым материальным каналом связи. В простых системах, составленных из одно-функциональных элементов, имеющих не более чем по одной выходной вещественной связи, информационные связи могут вообще отсутствовать. Управление процессом функционирования в таких системах определяется самой структурой, т. е. в них реализован принцип структурного управления. Примерами таких систем могут служить логические элементы и аналоговые вычислительные машины.
В более сложных системах, включающих многофункциональные элементы или элементы, которые имеют больше чем по одной выходной вещественной связи, имеются управляющие средства (решающие элементы) и соответствующие информационные связи. Управление требуется для указания, какому элементу какой исходный объект когда и откуда взять, какую операцию по преобразованию выполнить и куда передать. О таких системах можно говорить, что они функционируют в соответствии с программным или алгоритмическим принципом управления. В концептуальной модели должны быть конкретизированы все решающие правила или алгоритмы управления рабочей нагрузкой, элементами и процессами.
Выделение процессов. Рассмотренные выше действия направлены на создание модели, отражающей статику системы -- состав и структуру. Поскольку основной интерес представляют динамические системы, следует дополнить эту модель описанием работы системы.
Функционирование системы заключается в выполнении технологического процесса преобразования вещества, энергии или информации. В сложных системах зачастую одновременно протекает несколько технологических процессов. В частности, все современные универсальные ВС рассчитаны на мультипрограммный режим работы. Технологический процесс представляет собой определенную последовательность отдельных элементарных операций. Часть операций может выполняться параллельно разными элементами (ресурсами) системы. Задается технологический процесс маршрутной картой, путевым листом, программой и т. п., другими словами -- одним из видов изображения алгоритма.
Алгоритм однозначно определяет, какие ресурсы системы, в какой последовательности и какие операции должны выполнить для достижения некоторого целевого назначения системы. В системах с программным принципом управления, обеспечивающих параллельное выполнение нескольких технологических процессов, имеются алгоритмы управления совокупностью процессов. Их основное назначение заключается в разрешении конфликтных ситуаций, возникающих, когда два или более процесса претендуют на один и тот же ресурс. Совокупность алгоритмов управления А0 совместно с параметрами входных воздействий Х0 и элементов S0 отражают динамику функционирования системы.
Обычно алгоритмы преобразовываются к виду Am, удобному для моделирования. Данный подход к описанию динамики работы системы особенно удобен для имитационного моделирования и является естественным способом определения множества характеристик системы:
(1)
где Ф -- множество операторов вычисления выходных характеристик (здесь и в дальнейшем индексы о, т,k множеств, указывающие на интересующие (k) элементы оригинала (о) и модели (т), опущены в целях упрощения записи).
Отражение состояний. В ряде случаев, в частности для систем со структурным принципом управления, получил распространение другой подход. Для каждого элемента выбирается определенный параметр s (иногда несколько параметров), значение которого изменяется в ходе функционирования элемента и отражает его состояние в текущий момент времени z(t). Множество таких параметров по всем п = элементам системы {zn} отражает состояние системы Z (t). Функционирование системы представляется в виде последовательной смены состояний: Z(t0), Z(t1) .... Z(Т). Множество {Z} возможных состояний системы называют пространством состояний. Текущее состояние системы в момент времени t() отражается в виде координаты точки в n-мерном пространстве состояний, а вся реализация процесса функционирования системы за время Т -- в виде некоторой траектории.
Если известно начальное состояние системы Z°= Z (t0), то можно определить ее состояние в любой момент t, принадлежащий интервалу Т, когда известна зависимость
(2)
Тогда выходные характеристики определятся по формуле
V =G(Z, Т}. (3)
Созданная концептуальная модель должна быть проверена на адекватность исследуемому объекту. Поскольку на данном этапе возможен только умозрительный анализ и эксперимент, желательно, чтобы такую проверку выполняли эксперты, а не разработчик модели.
2. Подготовка исходных данных
Сбор фактических данных. При создании концептуальной модели выявляются качественные (функциональные) и количественные параметры объекта и внешних воздействий X. Для количественных параметров необходимо определить их конкретные значения, которые будут использованы в виде исходных данных при моделировании. Это трудоемкий и ответственный этап работы. Он существенно влияет на успех моделирования. Очевидно, что достоверность результатов моделирования однозначно зависит от точности и полноты исходных данных.
Подобные документы
Имитационное моделирование как один из наиболее широко используемых методов при решении задач анализа и синтеза сложных систем. Особенности имитационного моделирования систем массового обслуживания. Анализ структурной схемы системы передачи пакетов.
курсовая работа [1,2 M], добавлен 28.05.2013Язык GPSS как один из наиболее эффективных и распространенных языков моделирования сложных дискретных систем. Транзакт - элемент системы массового обслуживания. Решение задач на основе моделирования с применением языка GPSS, создание имитационной модели.
курсовая работа [54,7 K], добавлен 25.11.2010Программные средства имитационного моделирования систем массового обслуживания. Программная среда Matlab, ее структура и основные компоненты, функциональные особенности, а также назначение. Разработка подсистем моделирования. Инструкция пользователя.
дипломная работа [3,3 M], добавлен 10.07.2017Определение функциональных характеристик систем массового обслуживания (СМО) на основе имитационного моделирования; синтез СМО с заданными характеристиками. Разработка программы на языке SIMNET II; расчет процесса работы СМО; подбор требуемого параметра.
лабораторная работа [623,8 K], добавлен 11.03.2011Характеристика электрических систем в установившихся режимах. Классификация кибернетических систем. Развитие методов моделирования сложных систем и оптимизация на электронных вычислительных машинах моделей в алгоритмическом и программном аспекте.
реферат [27,3 K], добавлен 18.01.2015Основные сведение о системе моделирования GPSS и блоки, используемые при моделировании одноканальных и многоканальных систем массового обслуживания. Разработка модели работы ремонтного подразделения в течение суток с использованием программы GPSS World.
курсовая работа [36,4 K], добавлен 11.02.2015Структурно-информационный анализ методов моделирования динамических систем. Математическое моделирование. Численные методы решения систем дифференциальных уравнений. Разработка структуры програмного комплекса для анализа динамики механических систем.
дипломная работа [1,1 M], добавлен 14.05.2010Математическое описание имитационной модели. Описание блок-схемы алгоритма. Анализ полученных результатов имитационного моделирования. Сопоставление полученных результатов для разработанных моделей. Математическое описание аналитического моделирования.
курсовая работа [306,5 K], добавлен 25.03.2015Концептуальная модель процесса обслуживания покупателей в магазине. Описание системы моделирования GPSS. Разработка моделирующей программы на специализированном языке имитационного моделирования в среде AnyLogic. Результаты вычислительных экспериментов.
курсовая работа [906,9 K], добавлен 12.07.2012Моделирование как основная функция вычислительных систем. Разработка концептуальной модели для системы массового обслуживания и ее формализация. Аналитический расчет и алгоритмизация модели, построение блок-диаграмм. Разработка и кодирование программы.
курсовая работа [164,8 K], добавлен 18.12.2011