курсовая работа Программная реализация решения обратной задачи методом наименьших квадратов
Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.02.2015 |
Размер файла | 473,6 K |
Подобные документы
Развитие навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью электронно-вычислительных машин. Схема алгоритма. Назначение функции Линейн и метода наименьших квадратов.
курсовая работа [340,4 K], добавлен 17.12.2014Обзор методов аппроксимации. Математическая постановка задачи аппроксимации функции. Приближенное представление заданной функции другими, более простыми функциями. Общая постановка задачи метода наименьших квадратов. Нахождение коэффициентов функции.
курсовая работа [1,5 M], добавлен 16.02.2013Матричная форма записи системы линейных уравнений, последовательность ее решения методом исключений Гаусса. Алгоритмы прямого хода и запоминания коэффициентов. Решение задачи о сглаживании экспериментальных данных с помощью метода наименьших квадратов.
курсовая работа [610,7 K], добавлен 25.06.2012Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет коэффициентов аппроксимации, детерминированности в Microsoft Excel. Построение графиков функций, линии тренда.
курсовая работа [590,9 K], добавлен 10.04.2014Анализ методов идентификации, основанных на регрессионных процедурах с использованием метода наименьших квадратов. Построение прямой регрессии методом Асковица. Определение значения дисперсии адекватности и воспроизводимости, коэффициентов детерминации.
курсовая работа [549,8 K], добавлен 11.12.2012Определение зависимости одной физической величины от другой. Применение метода наименьших квадратов с помощью программного обеспечения Mathcad. Суть метода наименьших квадратов. Корреляционный анализ, интерпретация величины корреляционного момента.
курсовая работа [63,8 K], добавлен 30.10.2013Создание и реализация алгоритма решения транспортной задачи методом наименьших стоимостей. Схема алгоритма основной программы. Основные шаги алгоритма решения транспортной задачи. Инструкция по эксплуатации программы и обзор результатов ее выполнения.
курсовая работа [2,0 M], добавлен 12.02.2013Построение аппроксимирующей зависимости методом наименьших квадратов. Расчет интеграла по Ричардсону. Последовательность действий при аппроксимации экспоненциальной зависимостью. Определение корня уравнения методом простых итераций и решение задачи Коши.
курсовая работа [550,5 K], добавлен 13.03.2013Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет аппроксимаций в табличном процессоре Excel. Описание программы на языке Turbo Pascal; анализ результатов ее работы.
курсовая работа [390,2 K], добавлен 02.01.2015Определение зависимости между экспериментальными данными при помощи аппроксимации, особенности решения поставленной задачи различными способами, проведение расчетов с помощью табличного процессора Microsoft Excel и среды программирования Turbo Pascal 7.0.
курсовая работа [765,0 K], добавлен 25.02.2012